- Kurdistan Wns HamaAli
- [email protected]
- 0750 746 4633
- thesis_KurdistanWns_Final
-
Abstract
The integration of Five Generation networks and Wireless Sensor Networks is crucial for the new area of the Internet of Things, which is used for a wide range of applications. Such as: daily living, manufacturing, health care and transportation, etc. Wireless sensor networks consist of small sensor nodes with limited energy. Such nodes have the ability to monitor the physical conditions and communicate information among the nodes without the requirement of the transmission medium. Wireless Sensor Networks are autonomous and are distributed in space. Due to the absence of central authority and random deployment of nodes in the network, Wireless Sensor Network is prone to security threats.
Wireless Sensor Network are vulnerable to so many network layer attacks such as wormhole and replay attacks. Also, Energy conservation is critical in Wireless Sensor Network because the main source of power for sensor nodes is battery with a limited energy. It cannot be easily replaced or recharged. Therefore, power saving is essential to increase the lifetime of sensor nodes. Attackers compromise the internal sensor nodes from which they launch attacks. By sending malicious information, attackers may decrease the sensor nodes’ lifetime from years to days and have a severe impact on the energy of the sensor network. Therefore, The larger amount of energy consumed by sensor nodes during the illegal packet transmission by the attackers. Our work proposed a Detect and Compare Packet Nonce (DCPN) algorithm and Packet Count Detection (PCD) algorithm for Wireless Sensor Networks. These algorithms efficiently identify and isolate attacks like wormhole and replay while avoiding possible service degradation like energy consumption in sensor nodes. The simulation results show that our mechanism can outperform existing techniques in terms of energy consumption and lifetime of sensor nodes. DCNP saves energy by (21.6%) per
X
hour for a wormhole attacks, whereas PCN saves up energy by (12%) per hour for replay attacks, thus increases the lifetime of the sensor node by (19.2%) per hour when using DCPN and by (12%) per hour when using PCD. Finally, the study also shows the temperature monitoring of some mobile sensor nodes. By implementing these algorithms, the temperature of the sensors can be reduced by (10C- 2.50C) per (2.5) minutes. - Erbil Technical Engineering College
- Information System Engineering
- Wireless Sensor Network(WSN)