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ABSTRACT

In this dissertation, three nonlinear techniques of prestressing, analysis, and
preservation were developed based on the principles of the force method to
address geometric nonlinearities in pin-jointed spatial structures. These
techniques provide a comprehensive framework for accurately performing
prestressing, analysing, and preserving spatial assemblies, validated through

rigorous numerical and experimental investigations.

The research introduces direct nonlinear approaches especially for prestressing
and preservation, overcoming the limitations of iterative and linear
approximation-based methods. The derived nonlinear equations, expressed as
functions of joint displacements, were efficiently solved using MATLAB’s
fsolve function, demonstrating robust applicability to both simple and complex
spatial systems. The proposed prestressing technique computes the desired
prestress level by accurately accounting for nonlinear member alterations,
preventing cable slack, and maintaining alignment with software solvers under

predetermined actuation conditions.

The developed analysis method is efficient and precise, capable of calculating
internal member stresses and axial forces for both rigid and flexible members
while incorporating geometric nonlinearities under different loading
conditions. Similarly, the preservation technique reliably restores disturbed
geometries, nodal displacements, and internal forces, with targeted control of
specific parameters. The effectiveness of the preservation process depends on
actuator placement, bar sensitivity analysis, and the appropriate selection of

actuation targets.

Validation of these techniques included numerical case studies and

experimental testing on a hyperbolic paraboloid space cable net model with 64

Vil



members and 41 joints. The results demonstrated strong agreement, with
maximum and minimum discrepancy ratios of 7% and 0%, respectively,
between theoretical and experimental measurements. This dissertation presents
a novel framework that significantly enhances the precision, efficiency, and
control of structural response prediction, making substantial advancements in

the field of pin-jointed spatial structures.
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CHAPTER ONE INTRODUCTION

CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION AND OVERVIEW

A spatial structure is a three-dimensional structural system with a non-planar
configuration, applied loads, internal response, and nodal transitions. The
concept of spatial structures has been highlighted through numerous
architecturally striking constructions in recent years. These assemblies are
prominently featured in sports facilities, stadiums, bridges, malls, and
museums, such as the National Maritime Museum in Amsterdam, Netherlands,

as shown in Fig. 1-1.
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Fig. 1-1 The grid roof of the National Maritime Museum in the Netherlands
(Pascal, 2021).




CHAPTER ONE INTRODUCTION

Due to their distinctive geometric shape and material properties, these
structures have the ability to support a broad variety of loads and withstand
large spans. Spatial structures are characterised by their superior stability and
strength compared to two-dimensional structures. They are specifically built to
efficiently bear loads in several directions. Their exceptional capacity to endure
wide areas without requiring internal supports makes them ideal for such
purposes. Space structures often exhibit superior material efficiency and cost-
effectiveness compared to traditional structural systems due to their inventive
geometric configurations. The overall mass and material expenses decrease
while maintaining the structure's reliability due to this enhanced efficiency.
Space structures have versatility in design, thus they could be designed using
many forms, including domes, trusses, and space frames (Schodek and
Bechthold, 2014).

The construction industry plays a pivotal role in global initiatives aimed at
mitigating environmental impacts (Reksowardojo and Senatore, 2023).
Additionally, the lightweight properties of spatial structures have great
potential to reduce material consumption and costs compared to conventional
structures. Moreover, the reusability of stocked spatial structures' components
makes them more sustainable and significantly supports the environmental
impact of structural built-up (Brdtting et al., 2019). Spatial structures have been
used in Kurdistan and Iraq for only a few decades. Initially, they were limited
to truss roofs and small canopies, but their application has expanded to include
terminals, wide-span roofs of exhibition galleries, and sports arenas such as Al-

Minaa Stadium in Basra, see Fig. 1-2 (Kaliciak, 2022). For these reasons, there
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IS a need to attract the interest of Kurdish researchers to become familiar with

spatial structures and understand the basics of this field.

Currently, enormous space structures with cable members as the primary

element of assembly are in high demand. Cables offer unique perspectives for
forming enticing spatial grid structures that are highly flexible. Notably, cable
nets exhibit high structural flexibility and a nonlinear response to loading.
However, the absence of flexural rigidity, resulting in large displacements,

presents the most challenging aspect of cable structure analysis (Kwan, 1998).

Sources of nonlinearity in structures can be classified into three categories:
material nonlinearity, boundary nonlinearity, and geometric nonlinearity.
Consequently, geometric nonlinearity must be considered in the analysis of
cable structures due to their highly flexibility and nonlinear response for

loading. Geometric nonlinearities arise when structural deformation results in

3
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noticeable nodal displacements, making the cable’s stress sufficient to produce

a state of equilibrium in deformed states (Levy and Spillers, 2003).

The efficiency of cable structures depends on prestressing to attain a desirable
appearance and function with the required stability. The inserted prestressing
effort enhances structural rigidity, reduces structural distortion, and
redistributes internal stress, resulting in a more cost-effective structure
(Cinquini and Contro, 1985; Dong and Yuan, 2007; Abdulkarim and Saeed,
2023). As Kwan (1998) states, the behaviour (initial stiffness) of cable nets
depends more on prestressing than on their axial stiffness. In tensile structures,
the main load-bearing components do not bend or compress but instead
transmit loads through direct tensile stress, making it one of the most unique

and challenging problems in structural engineering.

In multiple domains of structural construction, the tolerable levels of certain
structural forms and internal stresses are not only pertinent but also affect the
service life of the structure (Saeed, 2014). Occasionally, deformability in
spatial structures causes overstress in some cable members in tension or struts
in compression. In such situations, it is necessary to adjust the stress in these
cables by redistributing the internal forces among the required members
through the adjustment of the length of some active members via a set of
actuations. However, form alteration in these structures is unavoidable due to
various reasons, such as fatigue, manufacturing imperfections, temperature
changes, unpredicted loading, and looseness in joints. When shape distortion

becomes intolerable, the nodal positions must be restored to their original



CHAPTER ONE INTRODUCTION

configuration (Saeed, 2014; Saeed and Kwan, 2016b; Manguri et al., 2017,
Saeed et al., 2019; Abdulkarim et al., 2020).

Varieties of structural types require accuracy in their geometry, and effective
control of the shape, particularly in large flexible structures, is currently a
significant issue of interest (Kawaguchi et al., 1996; You, 1997; Xu and Luo,
2009; Yuan and Dong, 2002; Wang et al., 2013; Saeed and Kwan, 2016b; Saeed
and Kwan, 2016a; Saeed and Kwan, 2018; Saeed, 2019; Saeed et al., 2019;
Abdulkarim et al., 2020). For example, bridges frequently fail due to large
displacements, which is unacceptable. Therefore, there are two options: either
use member length actuation to adjust the deformation to a prescribed profile,
which develops stress in these members to restore the shape to a given profile,
or leave it to suffer a significant displacement that ultimately leads to failure

and collapse.

1.2 PROBLEM STATEMENT

Recent advancements in spatial structures have led to innovative, visually
iconic landmarks. However, achieving effective prestressing while preserving
unaltered configurations is challenging and requires detailed structural
engineering. These lightweight, long-span structures, with significant
architectural value, must maintain geometric integrity within elastic limits yet

exhibit marked geometric nonlinearity under loading.

Previous research efforts have introduced various techniques for computing
prestress and loading effect on geometrical configuration, preserving nodal
displacement, internal stress, and combined displacement-internal force control
(You, 1997; Yuan and Dong, 2002; Xu and Luo, 2009; Wang et al., 2013;
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Saeed and Kwan, 2016a; Saeed and Kwan, 2016b; Yuan et al., 2016; Li et al.,
2017; Manguri et al., 2017; Saeed and Kwan, 2018; Saeed, 2019; Saeed et al.,
2019; Abdulkarim et al., 2020; Saeed et al., 2021; Saeed et al., 2022; Saeed,
2022). These approaches, however, have primarily relied on linear control
techniques applicable under limited loading conditions or iterative procedures
to meet nonlinear preservation goals. Consequently, these methods have been
unable to address preservation requirements effectively when large

deformations necessitate direct nonlinear geometric solutions.

This dissertation aims to address a critical gap by developing a robust numerical
method for prestressing, analysing, and preserving spatial structures,
integrating geometric nonlinearity directly into a system of nonlinear algebraic
equations. It advances analytical methods and prestressing strategies that retain
geometric integrity under substantial deformation. Furthermore, this study
seeks to experimentally integrate and validate all phases of nonlinear
prestressing, analysis, and preservation by testing them comprehensively on a
complex physical model; this level of combined analysis has not been fully

achieved in previous studies.

1.3 AIMS AND OBJECTIVES

The current dissertation has four main aims with the following objectives:

1. To develop a method for prestressing spatial structures that accounts for the
nonlinear geometric response in both flexible and rigid pin-jointed
assemblies.

1.1. To derive a new prestressing technique for nonlinear geometric pin-
jointed spatial systems.

1.2. To compute the internal member forces resulting from members' lack

of fit.
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2. To formulate a nonlinear geometric analysis approach as a function of nodal
displacement via deriving a comparable analysis technique for nonlinear
geometric pin-jointed spatial systems.
3. To provide a direct nonlinear preservation technique for controlling nodal
deformations, internal forces, and simultaneous displacement and stress.
3.1.To derive a technique for positioning nodal displacements, maintaining
analytical axial force below the maximum limit, and preventing slack.

3.2.To identify the active members (locations of actuators) for performing
prestress and shape control.

3.3.To identify optimal locations for turnbuckles and determine how to
achieve the target with minimal actuation.

3.4.To establish an efficient number of actuators with minimal adjustment
effort.

4. To apply the proposed techniques experimentally to a complex physical

model for validation purposes.

1.4 THE OUTLINE OF THE DISSERTATION

The outline of this dissertation (see Fig. 1-3) is divided into six chapters as
follows:

Chapter One: starts with an introduction and overview of the concept of spatial
structure, its application, and its behaviour. The aims and objectives follow the
problem statement.

Chapter Two: provides a detailed review of the existing prestressing, analysis,
and preservation techniques for spatial structures in general and cable net
structures in particular. The most crucial findings regarding the number of

actuators, their locations, and types are also stated in this chapter.
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Chapter Three: discusses the theoretical derivation and formulation of the
prestressing, analysis, and preservation techniques, as well as their validation
through numerical examples. The basics of the force method are utilised for the
fundamental formulations, and geometric nonlinearity is introduced through
member alteration using different mathematical methods for various targets.
Chapter Four: includes the experimental procedure for the structural model
and the experimental techniques for computing nodal displacements and
member forces for each of the prestressing phase, analysis phase under various
loading conditions, and preserving phase of the geometry and internal stress.
Chapter Five: provides a presentation and discussion of both the theoretical
and experimental results. This chapter also involves the comparison and
validation of the techniques.

Chapter Six: is devoted to the conclusions of the study and the

recommendations for future work.
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CHAPTER TWO LITERATURE REVIEW

CHAPTER TWO
LITERATURE REVIEW

2.1 INTRODUCTION

This chapter presents a literature review of prior studies pertinent to the
dissertation's focus. The review begins with an examination of prestressing
techniques, followed by an analysis of spatial structures, addressing both linear
and geometrically nonlinear responses. Preservation techniques are then
discussed, focusing on methods categorised as displacement control, member
force control, or a combined approach for displacement and force control.

Finally, an overview of turnbuckling members is provided.

In this dissertation, the force method is selected due to its distinct analytical
advantages, which are especially suited to the specialised requirements of this
study. Unlike the displacement method, where force and displacement systems
are interdependent, the force method enables separate and accessible analysis
of parameters influencing internal forces and external displacements, allowing
for clearer management of potentially conflicting demands (Saeed, 2014). The
equilibrium matrix subspaces within the force method also provide essential
insights into self-stress states and structural mechanisms. The straightforward
application of prestress further highlights the suitability of the force method for
this research framework (Kwan, 1991; McGuire, 2000; Kassimali, 2012).

10
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2.2 PRESTRESSING TENSILE STRUCTURES

Space structures are characterised by being lightweight, cost-effective, and
rapid assembly. Due to their structural efficiency, spatial systems are
commonly employed in applications such as wide-span roofing and deployable
mesh reflectors (Kawaguchi et al., 1996). Tensile members in structures have
been around for decades, ranging from canopy elements in Roman times to
suspension bridges for passing over rivers and deep valleys. Currently, tensile
members are utilised in cable cars, cable roofs, masts, and other tall structures.
They are also used in the fabrication of cable-stayed bridges, which are
becoming increasingly popular due to their aesthetic appeal. Tensile assemblies
are also used in temporary structures such as tents and construction equipment
(Gossen, 2004; Sernizon Costa et al., 2022).

The capability to allow internal stress without external loads is fundamental to
most spatial structures, particularly tensile structures. Prestress is required to
attain these structures' desired form, stability, and function. For structures with
rigid geometry, the presence of prestress, imposed by the member's fit
deficiency, can significantly enhance the design, particularly when buckling is
the primary failure mode. Conversely, for flexible structures, prestress is
essential to achieve the required geometrical configuration (Hanaor, 1988).
Cinquini and Contro (1985) stated that the most significant feature in designing
a cable-net system is the level of pretension due to its direct influence on load-
carrying capacity, cost, and geometrical configuration. Also, the nonlinearity
becomes more noticeable with declining pretension (Yuan and Dong, 2002).
Hence, the indication of the preliminary prestress has an essential effect on the

design steps.

Numerous studies have been conducted to establish the optimal prestressing

levels for pin-jointed spatial structures. Additionally, various form-finding
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techniques have been proposed to address aesthetic, industrial, and mechanical
requirements, including iterative methods, dynamic relaxation, and force
density approaches. However, these methods set limits on member stresses and
nodal displacements but typically do not ensure the prestressing degree
(Cinqguini and Contro, 1985; Zhou et al., 2017; Chen et al., 2020).

Pellegrino and Calladine (1986) proposed an algorithm to provide complete
details about the modes of inextensional deformation and all the states of initial
stress. Pellegrino (1990) made another matrix algorithm that deals with both
extensional and inextensional modes separately. The author also grouped
structural assemblies into separate states of self-stress and mechanism modes.
In a study by Kwan and Pellegrino (1993), an algorithm based on the linear
force method was proposed to achieve a uniform degree of prestress. Choosing
the correct location for prestressing actuators, the required amount of extension
for the actuators, and improving the incorrect prestress state by adjusting the
actuators were the basics of their working process. Additionally, based on the
force method, linear and partially nonlinear internal force control has been done
(Saeed et al., 2021; Saeed and Kwan, 2016a; Saeed, 2014), which is part of

achieving the required amount of prestressing.

Nevertheless, the simulated annealing algorithm was developed by Xu and Luo
(2010); counting for geometrical stability, the optimisation model was used to
find the force of tensegrity structure. Later, Li et al. (2013) used two different
form-finding techniques on a deployable mesh reflector antenna to indicate the
cable prestress to satisfy the required exterior accuracy. Guo and Zhou (2016)
came up with a simulation-based pretension algorithm for a negative Gaussian-
curvature cable dome. However, it depends on an iterative process between the
desired internal stress for the indicated tensile force step and the prestressing

degree of active tensile members. In a study by Ma et al. (2019), an

12



CHAPTER TWO LITERATURE REVIEW

optimisation using a Pareto solution was made to improve the coefficient vector
of self-equilibrium of prestressing design for cable strut structure. Furthermore,
Zhang et al. (2021) presented a method for measuring the initial self-stress in a

cable-strut system to achieve a specified shape and topology.

The cited studies indicate that prior research relied on specifically developed
algorithms, iterative methods, and linear approaches to determine the
prestressing levels of statically and kinematically indeterminate space systems.
Despite the imprecision of modelling and mechanical imperfection, it was
revealed that the amount of member alteration produced might produce an
unbalanced state of prestress (Kwan and Pellegrino, 1993; Fraddosio et al.,
2021). Another comparative study concerning the member alteration to the
sensitivity matrix was carried out by Xue et al. (2021). They indicated that the
primary discrepancy between the sensitivity matrices arose from differences in
geometric stiffness. Accordingly, a principal objective of this dissertation is to
develop a nonlinear method for directly determining the required prestressing
levels or member adjustments to achieve the desired degree of prestress in both
rigid and flexible pin-jointed spatial structures. Furthermore, the proposed
technique is formulated by expressing nonlinear member alterations in terms
of external nodal distortions, thereby reducing the tolerance for unbalanced

prestress and moving it closer to a self-equilibrated state.

2.3 ANALYSIS TECHNIQUES OF SPATIAL STRUCTURES

The fundamental equations in the force method are equilibrium, compatibility,
and flexibility relations. Improving the linear force method has been of interest
for many researchers. For instance, Calladine (1978), based on the principle of
virtual work, confirmed that the transpose of the equilibrium matrix is equal to

the compatibility matrix. The force method is mostly applied in analysing
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prestressed spatial structures with infinitesimal mechanisms, and an
experimental investigation has been completed by Pellegrino (1990) to validate
this approach. Later, Pellegrino (1993) came up with the singular value
decomposition (SVD) of the equilibrium matrix to show the static and
kinematic nature of the structural assemblies in relation to their physical

properties when coming up with the stress and displacement formulation.

This technique has been further enhanced as a non-linear analysis approach for
geometrically non-linear structures. Kwan (1998) reused the main classical
equations of the force method and expressed the member actuation for
prestressed cable structure in terms of displacement using the Taylor series. In
addition, Luo and Lu (2006) extended the linear force method to analyse non-
linear geometric cable structures. They proposed an algorithm using SVD for
equilibrium matrix in every step of the iteration process. Xu and Luo (2009)
implemented the non-linear force method to propose an iteration procedure for
restoring the displaced joints and controlling the prestressed level of cable net
systems. Similarly, Yuan et al. (2016) contributed the non-linear force method
to control stress and shape of the cable-strut structure but utilised Moore—
Penrose pseudoinverse to compute minimal necessary actuation. Moreover,
Manguri and Saeed (2020), and Saeed et al. (2022) proposed an analysis
technique which is an approximate linear force method. It is based on updating
joint coordinates of the structural geometry in every iteration for the discretized

applied load.

Regardless of the different solving algorithms for the force method in the
previous studies, some factors give inaccurate findings, such as using the
constate states of the self-stress matrix or the constant equilibrium matrix in the
derivation of the analysis formulation. However, in some studies, the part of

geometric nonlinearity was introduced in compatibility and equilibrium
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matrices in the scheme of an iteration (Deng et al., 2016; Xue et al., 2021).
Therefore, a direct equation for representing both compatibility and equilibrium
in the completely deformed configuration as a system of algebraic nonlinear

equations is required and used in deriving the proposed equation.

2.4 PRESERVATION TECHNIQUES OF SPATIAL STRUCTURES

A simple definition of an adjustment is a procedure that is performed to fine-
tune the existing performance of a system or achieve a desired result. For
instance, through shape restoration, the deformation of a structure caused by
external forces can be minimised or eliminated (Ziegler, 2005; Saeed, 2014). It
Is possible for the structure to undergo observable deformability due to a
number of factors, including but not limited to connection looseness, excessive
temperatures, a large span, fatigue, and other unidentified factors. Tolerances
of structural geometry and internal forces, under varying operating
circumstances, are not only significant but also influence the boundary status
of a structure in numerous structural engineering domains (You, 1997; Yuan et
al., 2016; Saeed and Kwan, 2016b; Saeed et al., 2019; Abdulkarim et al., 2020;
Saeed, 2022). The preservation techniques can be categorised into three
restoration types: restoring the disturbed nodal positions, restoring the inner

member forces, or simultaneously restoring nodal positions and internal forces.

More than fifty years ago, the concept of structural control was introduced to
enhance the protection of structures under extreme conditions (Korkmaz,
2011). Korkmaz (2011) categorised structural control into three subdomains:
active control, adaptive control, and intelligent control (see Fig. 2-1). Active
structural control employs sensors and actuators to adjust deformability and

internal stress, thereby modifying the structural response. In adaptive structural
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control, the adjustment process enhances the structural response irrespective of
the previous loading conditions. In contrast, intelligent structural control
involves a process that preserves and improves structural performance by
recalling behavioural changes and actions, adapting to current objectives, and
using past events to enhance future responses. Since its beginning, the
implementation of structural control has been used in both civil and space
structures with the aim of mitigating the adverse consequences of natural
catastrophes such as earthquakes and winds, as well as addressing the
detrimental effects of vibrations, geometric disturbances, and excessive internal

stress.

\
~

Structural
Control

Active
Control

. T~
Adaptive
Control

Intelligent
Control

Fig. 2-1 Structural control and controlling subdomains (Korkmaz, 2011).
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2.4.1 Geometrical Preservation

The spatial structures face geometrical deformation after being affected by
external loading conditions, changes in temperature, or even imperfections in
construction. To eliminate or reduce this deformation, many studies have been
carried out. Because of the nonlinear geometrical property, the linear
techniques can work well within a small deformation, but they become inactive
or insufficient when a large disturbance is present (Xu and Luo, 2009; Yuan et
al., 2016; Xue et al., 2021). Generally, the geometrical form of spatial
structures is defined by their nodal locations. Once the components are
assembled, the nodal locations must be adjusted to achieve the desired
geometry. For example, the geometry of a double-layer dome was preserved,
as demonstrated by Abdulkarim et al. (2020) in Fig. 2-2.

KNP, VAVZANZANTA A
N\
z Discrepancy
2 k w—  Deformed Shape
" | X a) Pre-preservation b) After-preservation Origisal Shape

Fig. 2-2 Geometrical preservation of double layer dome Abdulkarim et al.
(2020)

Another straightforward method involves equipping the structure with

actuatable members. By adjusting the lengths of these members, the nodal
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locations can be modified (You, 1997). Burdisso and Haftka (1990) were the
former researchers that examined static geometrical controlling techniques,
specifically with truss systems where degree of prestress is not a concern. They
dealt with the manufacturing member length errors in the radiometer antenna's
spatial structure. Then, through the decomposition of eigenstrain, Nyashin et
al. (2005) improved a theorem for controlling the shape distortion. The concept
claims that the load-dependent distortion pattern can be visualised by solving
boundary value problems in linearized elasticity with specified nonzero
displacements at the outer surface. When this type of deformation is imposed
using eigenstrain, the resultant displacements are as specified, but no stress is

introduced.

While various researchers have addressed geometrical restoration with regard
to prestress levels, particularly for flexible spatial structures, this study focuses
specifically on this issue. The first inquiry into the geometrical control of
prestressed truss structures was undertaken by Kawaguchi et al. (1994),
Pellegrino (1995), and Kawaguchi et al. (1996). In these studies, the proposed
methods were to simultaneously control the level of prestress of selected
components and the displacements of particular joints. The proposed
methodology by You (1997) allows for displacement restoration of prestressed
pin-jointed systems by adjusting the length of selected structural components
while ensuring that the prestress value remains over a preset lower limit. Shea
et al. (2002) conducted an investigation into the potential for adjusting the
elongation of individual components in order to modify a tensegrity structure
to achieve a desired configuration. This was done by combining the simulated
annealing method, the dynamic relaxation technique, and the computation of
nodal deflection data into a single strategy. Moreover, an optimised problem

was solved by using simulated annealing with an improved technique based on
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the linear-force method. It was applied to accomplish non-linear displacement
restoration of prestressing cable systems (Xu and Luo, 2009).

Over the course of recent decades, several theoretical, computational, and
experimental investigations have been carried out to explore the use of
piezoelectricity in the monitoring and controlling of various adaptive
structures. Sunar and Rao (1999) surveyed numerous studies that used
piezoelectric actuators for the purpose of displacement control. Piezoelectric
actuators use the reverse piezoelectric impact to transform electric signals into

strain or displacement in their supporting systems.

It is important to note that the actual desired displacements are normally known
after the nodal positions have been identified and compared to the actual

configuration of the assembly (You, 1997; Saeed and Kwan, 2016b).

2.4.2 Member Force Preservation

The member force of some types of spatial structures may need more concern
than their geometry, as in the case of preventing slack in cable nets, failing due
to buckling in slender struts, or improving adaptability while facing new

loading conditions during serviceability.

Kwan and Pellegrino (1993) performed prestressing with a minimum number
of actuators regarding slack prevention in a deployable structure. First, the
exact number of actuators was chosen to get the closest estimate of the member
forces using singular value decomposition with the least squares solution
technique. Later, they utilised the typical linear-programme to apply the
constrained condition for optimisation purposes, so the selection of the
actuators gave a more automatic procedure with an optimal solution for

achieving the requested member forces. Another study was carried out for
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controlling bar forces after affection by external forces by Saeed and Kwan
(2016b). Even though there was an internal force due to the applied loads, the
corrective amount of member actuation was calculated to give the desired
vector of member forces. Moreover, a 4.9-metre Levy-shaped cable dome was
used in numerical and experimental work to deal with the controlling and
optimising of its member force. The central compressive members were
predetermined as actuators to enhance the adaptability of the cable dome when

it faces various loading conditions (Zhang et al., 2023).

2.4.3 Simultaneous Geometrical and Member Force Preservation

In a practical situation, it is quite probable that circumstances necessitating the
regulation of geometry preservation will also impose certain demands on the
internal member forces. For instance, restoring the deflected deck of the cable-
stayed bridge to a horizontal level requires keeping the struts below the critical

buckling force and preventing the cables from slacking.

The study of geometrical and member force control together has not been
widely done. Kawaguchi et al. (1996) developed an analytical method for
restoring deformation and internal forces in truss structures using the linear
force method. Their approach involved numerical and experimental restoration
of a tension-stabilised truss model by altering member lengths without applying
external loads. While the study successfully adjusted the prestressing degree, it
did not fully address the restoration of deformability. Similarly, You (1997)
used the linear force method and proposed the control of prestressed cable nets
and trusses deformation in two stages. At first, the researcher picked a group of
adjustable members while keeping the prestressing degree above the initial
value. Then he achieved the required amount of actuation that was determined

previously. The work was applied numerically to the two-dimensional cable
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net structure as shown in Fig. 2-3, but an Al-alloy truss with the same scheme
as shown in Fig. 2-3 was used for the ease of experimental data collection. It
should be stated that the cited technique is applicable only for small
deformations and within the elastic limit. In addition, this technique would
become complicated when it was applied to a more complicated system or

sought for a more optimal solution.
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Fig. 2-3 A two-dimensional cable net structure (You, 1997).

The cable net structure in Fig. 2-3 was also examined numerically by Xu and
Luo (2008) utilising multi-objective optimisation for the same target of shape
restoration while keeping the same degree of prestress. However, the total
computed amount of actuation was reduced by 33%, but the number of used
actuators was higher. Once more, Xu and Luo (2009) used a simulated
annealing algorithm in association with the developed nonlinear force method

through an iteration technique for the same targets as the cited studies. The
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proposed approach was tested on the cable net in Fig. 2-3, and achieved a better

target when larger deformations were experienced.

Likewise, the linear force method was being solved by deploying the least
squares solution (Saeed, 2014; Saeed, 2019), matrix condensation (Saeed and
Kwan, 2016a), quadratic programming (Saeed, 2022) for simultaneous
preservation of displacement and member force in pantographs and pin-jointed
systems. Moreover, the levy cable dome has been restored numerically and
experimentally by Zhang et al. (2023) through active control to attain the new
adaptability of form and internal stress for a different loading condition. Zhang
et al. (2023) adapted an intelligent algorithm solver for the numerical
computation of the required actuation of the members. Nevertheless, the
authors focused on theoretical computation and simulation modelling for
control purposes. Besides, the experimental attempts were with the symmetric

loading condition.
2.4.4 Actuators

Actuators are components that establish a functional link between the
information-receiving component of a controller and a technical or
nontechnical action (Janocha, 2004). Actuators are taking significant roles
during the preservation process, either for geometrical restoration or stress
control. The existence of a sufficient number of actuators, the location of
actuators, and the necessary amount of actuation are key points to reaching the
optimal solution for the preservation process (Kwan and Pellegrino, 1993;
Saeed and Kwan, 2016b; Saeed et al., 2019; Abdulkarim et al., 2020).

According to a study by Haftka (1984), the optimum number and placement of

actuators have been calculated, and it has been stated that the improvement of
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the controlling procedure has been attained. The operations begin by
establishing an initial state whereby actuators are positioned in every
conceivable location. The process of identifying and eliminating the least
efficient actuator is iterated until the number of actuators reaches the total
number of accessible actuators. Haftka and Adelman (1985) used the integer
programming technique to find the optimal actuator location among a large set
of available members. Besides, the concept of the ideal actuator has been
proposed to compute the required number of actuators for the preservation
process (Haftka, 1991).

Many statistical techniques and various algorithms have been improved and
applied for optimal actuation computation. The continuum approximation
(Burdisso and Haftka, 1989) and adjoint technique and modal expansion
approach (Burdisso and Haftka, 1990) were applied to optimise the actuator
placement. Onoda and Hanawa (1992) were the first to introduce the simulated
annealing algorithm with a genetic algorithm to search for the optimal
placement of the actuators for mitigating truss distortion. Similarly, a hybrid
optimisation approach was set to compute the effect of the quantity and location
of actuators on the minimum weight of actively controlled assemblies (Dhingra
and Lee, 1994). Kwan and Pellegrino (1993) applied a standard linear-
programme to prestress a deployable structure. The number of states of self-
stress was indicated as an optimal criterion for a sufficient number of actuators

to perform prestress.

Saeed and Kwan (2016b) stated that the greater coefficient in the self-stress
matrix shows the more active member for positioning the actuators during the
preservation process. These locations for actuator placement can approach the
desired target of geometry and stress control with minimal actuation. Amir

Sohrabi et al. (2017) used electroactive actuators that have the ability to change

23



CHAPTER TWO LITERATURE REVIEW

length and rotation employing the finite element approach for the computation
of the required actuation. The authors applied the technique to the actively
controlled 3D truss, which could enhance its performance and prevent
disastrous system failures. Likewise, research has confirmed that the
effectiveness of the preservation process is significantly influenced by the
number and proximity of actuators to the controlling geometry (Saeed et al.,
2019; Abdulkarim et al., 2020) and stress (Saeed and Kwan, 2018; Saeed, 2019;
Saeed et al., 2021; Mahmood et al., 2022; Manguri et al., 2022).

Various actuators are used in structural engineering to alter the form and stress
levels of a structure. Actuators are used in a variety of applications, including
adaptive assemblies, form control, stress reduction, prestressing, and the
evaluation of structural health. The following sub-sections describe some types

of actuators employed in geometrical and stress preservation.
2.4.4.1 Turnbuckles

The turnbuckles (see Fig. 2-4) are the main components of the actuators, and
each has two threaded eye bolts or hooks that are joined by a central barrel with
right-hand and left-hand threads, respectively. The tension in a cable or rod
fastened to the turnbuckle's eye bolts or hooks may be increased or decreased
by adjusting the turnbuckle's effective length, which is done by turning the
barrel. Similarly, it can be used to preserve the geometry and internal stress of
spatial structures (Saeed, 2014; Lee et al., 2021).
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Fig. 2-4 A representative example of a turnbuckle

2.4.4.2 Piezoelectric actuators

Piezoelectric actuators are used to create modest deformations in structures,
with the primary objectives being shape control, stress control, and health
monitoring. The deformations exhibit rapidity, precision, and reversibility
(Irschik, 2002; Janocha, 2004; Aabid et al., 2021). The typical working

principle of piezoelectric actuators is shown in Fig. 2-5.

Displacement Vibration
Pressure Impact Acoustic wave Force Acoustic wave
Voltage Voltage

Fig. 2-5 Role of piezoelectric ceramic in generating electrical and mechanical
effect (‘Yoichi, 2006)
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2.4.4.3 Electromechanical actuators

A mechanical actuator that 1is powered electrically is called an
electromechanical actuator. It is an actuator (see Fig. 2-6) that utilises both
electrical and mechanical mechanisms to produce controlled motion with high
precision. Where accurate linear or rotary movement is needed,
electromechanical actuators are often utilised. They have a stellar reputation
for dependability, accuracy, and adaptability (Janocha, 2004; Zhang et al.,
2023).

'7 Electromechanical Actuators —l
Linear ﬁ Rotary

Direct Drive

Motor

) Lnsar Vanabile Differentid Transformer

Fig. 2-6 Classification of different electromechanical actuators (Qiao et al.,
2018)

2.4.4.4 Shape memory alloy actuators

Shape-memory alloys are materials that may transform in response to variations
in temperature. In the case of shape memory alloy smart materials are used to
regulate and adjust the geometrical properties resulting from the semi-

permanent deformation (Janocha, 2004; Bodaghi et al., 2014), and noticeable

26



CHAPTER TWO LITERATURE REVIEW

strain to produce required force. Such example is presented in Fig. 2-7 . Itis

used for making deployable assembly with shape stretching.

a) Closed deployable by Deplovable structure ¢) Deployable structure

structure during opening fully opened

Fig. 2-7 Deployable structure opened by shape memory alloy

The process of selecting actuators in the field of structural engineering is
influenced by a combination of factors, including the specific requirements of
the application and the desired outcomes. Actuators may be placed to maintain
the structural integrity, mitigate stress imbalances, and improve the
performance and safety of a given system. Fig. 2-8 shows the normalised
actuator attributes between power-to-weight ratio and their efficiency for
different types of actuators made by Zupan et al. (2002). Fig. 2-8 was generated
with data taken from Zupan's comprehensive actuator database. Certain
families of actuators have similarities; however, overall, they demonstrate
notable distinctions from one another. The shape-memory actuator exhibits
essential inefficiency due to its dependence on heating and cooling processes.
Nevertheless, the advantageous characteristic of these materials lies in their
high energy density, which refers to their ability to do work per unit volume.
This attribute renders them highly sought-after for use in microactuators.

Piezoelectric actuators, despite their limited displacement capabilities, have the
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ability to generate substantial power outputs. Due to their capacity for high-
frequency cycling, they have the capability to generate significant quantities of

power.
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Fig. 2-8 Normalized actuator attributes: power-to-weight ratio versus
efficiency (Zupan et al., 2002)

2.5 SUMMARY

This chapter summarises the key findings of prior research relevant to the
subject of this dissertation. It begins with a discussion of prestressing strategies,
followed by an examination of various approaches to spatial structure analysis,

including both linear and geometric nonlinear responses. Additionally, several
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preservation methods are explored, including displacement control, member
force control, and the combined control of displacement and force. The chapter
concludes with an analysis of actuator functions, optimal actuator placement,
actuator quantity and actuation methods, as well as actuator types in relation to

shape and force control, with a focus on their efficiency.

The gaps in these approaches are as follows:

1. Previous methods failed to account for equilibrium in the post-deformation
state, with some only ensuring compatibility in the deformed configuration.

2. Previous methods lacked the capability to directly compute nonlinear
prestressing, analysis, and preservation for pin-jointed spatial structures as
a system of nonlinear algebraic equations.

3. No comprehensive integration or experimental validation has been
conducted for all phases of nonlinear prestressing, analysis, and
preservation in a complex physical model, combining both theoretical and

experimental approaches.
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CHAPTER THREE
THEORETICAL FORMULATION

3.1 INTRODUCTION

This chapter focuses on the formulation of prestressing, statical analysis, and
preservation techniques, developed based on the fundamentals of the force
method. The derived equations are presented as sets of nonlinear algebraic
expressions that account for the geometric nonlinearity of spatial structures,
considering both elastic behaviour and small and large displacements. To
further clarify the application of the prestressing technique, an illustrative
numerical example is provided. The approaches are applied and validated
through both simple and complex, as well as flexible and rigid, pin-jointed
space structures. These techniques will be utilised in Chapter 4 for the
computation of prestress levels, structural analysis, and the preservation

process.

3.2 FORMULATION OF THE PRESTRESSING TECHNIQUE

One of the crucial aspects of the design of structural space systems is the degree
of prestressing since it is involved in load transfer, and deformability. The
prestress state can be reached via the required member alteration. This section
presents a nonlinear numerical approach based on the force method for
prestressing the spatial nonlinear structures to the desired level through

computing nonlinear actuation as a function of external nodal displacements.
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The present technique is based on the flexibility method. The three dimensional
of statically indeterminate structural assemblies with nB bars, nJ joints and ¢
support constraints are assumed to have the amount of prestress of tnex1 without
excitation by an external load P .,-¢)x;. Hence, the equilibrium equation and
element force of the indeterminate structure with s numbers of independent
states of self-stress in its initial state (Kwan and Pellegrino, 1993; Zhou et al.,
2017; Fraddosio et al., 2021; Saeed and Kwan, 2016b; Luo and Lu, 2006) can
be expressed as:
A(d)t=0 3.1
t=Sa 3.2

Where A(d)sw-oxns 1S the equilibrium matrix, S is the matrix of the
independent state of self-stress, and a defines the arbitrary combination

coefficient vector of s independent self-stress states.

Similarly, considering geometric conditions, the relation between the strain
inside a structural assembly as a vector of initial member elongations or
shortenings eo(d) to their nodal displacements d can be written in the
compatibility equation as:

B(d)d =e,(d) 3.3

B(d) x5~ ;3n-¢) IS the compatibility matrix, which is proved via the principle of
virtual work to be equal to A(d)™ (Calladine, 1978).

Taking into account the material of the structural assembly with elasticity

characteristics, the constitutive equation can be set as:
e,(d)=Ft 3.4
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Where Fnexng IS the flexibility matrix, which has full rank and invertible
property and can be attained from the element Lo/EAo; Lo is the initial member
length, and E and A, are the modulus of elasticity and element cross-sectional

area, respectively.
3.2.1 Deriving Nonlinear Member Alteration

Now the vector e, shall be derived by taking into consideration the effect of
geometric nonlinearity via experiencing the large displacement of the structural
assembly of space structures. For the sake of simplicity, a two-dimensional
single element of the structural assembly is considered as shown in Fig. 3-1. It
has an initial length of Lo, and a new length as L’ after the prestressing process.
The element has initial coordinates (xi, yi) and (x;, y;) from nodes (i, j), and is
then shortened by the amount e, reach to the new position (i, j'). The
abbreviation of ( );i = (); — ()iis used in deriving the set of members alteration

eo. For the single element that is shown in Fig. 3-1.

Fig. 3-1 Two-dimensional element before and after prestressing process
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L'=L, —e€, 3.5

L':{(xji—dxji)2+(yji—dyji)2}% 3.6

Expanding Eq. 3.6 gives L'={x} +y} —2x;dx; +dx} —2y,dy, +dyj?i}%.

Now, rearranging this expanded equation gives L’

2 2 H
o = Xji + Y, with the
remaining terms, thus let the remaining terms be D
{D=-2x;dx; +dx, — 2y,dy, +dy} }. Accordingly, the new equation will be
generated as written below:
b
L'=LO{1+E} 3.7

2
(0]

Now Eg. 3.7 can be expanded mathematically as a binomial function by
Taylor’s series (Kwan, 1998; Levy and Spillers, 2003) and as a rational
function by the Pade approximation method (Baker et al., 1996; Nisar et al.,
2021).

3.2.2 Mathematical Expanding of Prestressed Member Alteration
This section computes the amount of required member alteration for each

element to achieve the desired degree of nonlinear prestress. Eq. 3.7 needs to

be simplified in suitable mathematical ways.
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3.2.2.1 Expansion via Taylor’s series

The EQ. 3.7 can be expressed by its Taylor’s series (Kwan, 1998; Levy and

: , D D* D , :
Spillers, 2003) as L'=L 1+ 8l el [ then L' can be written
as:

2
P2 D 5
2L, 8L

Taking the terms only up to the second order of D is shown in Eg. 3.8, in which
this accuracy is sufficient for our purpose. Now, through equalising Eq. 3.5

with Eqg. 3.8, e, can be written as:

2
DD 15
2L, 8L

By substituting the value of D expression and neglecting the small terms with

higher orders, the amount of e, can be expressed as:

2

_ Xl ydyy  dxg oy X+ ydyy X0y,
° L 2L 218 E

0 0

e 3.10

Eqg. 3.10 is a manifestation of the element alteration as a second-order function
in terms of nodal displacements as a nonlinear compatibility condition of Eq.
3.3.

3.2.2.2 Expansion via Pade approximation method

Here, another mathematical method is used for arranging the relation between
external nodal displacement and member alteration. In most of the instances,

the Pade approximation method (Baker et al., 1996; Nisar et al., 2021) indicates
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further improved approximant to the main function, which is Eq. 3.7 in our
situation. Due to the strength of the Pade approximation, only the first order of
the expanded function is considered as:

Now Eq. 3.11, which is equivalent to Eg. 3.5, then the initial member alteration
can be set as:

e, =— 22[)"0 3.12
412 +D

Substituting D into Eq. 3.12, then it becomes:
2L, (2xdx; — G + 2y dy  —dy )

€ =— > ; 3.13
4L, —2x;dx; +dx; — 2y dy; +dy;;

Eq. 3.13 is the nonlinear format of Eq. 3.3, which is the representation of the
amount of nonlinear member alteration with respect to external nodal

displacement in the form of a rational function.

3.2.3 Equilibrium Matrix at Deformed Configuration

Eqg. 3.1 represents the self-equilibrium state after attaining the prestressing. The
equilibrium matrix and t can be set of its x and y components as tx;; and ty;; for
each member as follows:

tx; ; =tcosé 3.14
ty,; =tcosA4 3.15
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Referring back to Fig. 3-1 cos@ =x; —dx; /L'and cosA=y,; —dy; /L', by
substituting Eg. 3.5 they become cosé=x;-dx;/L,—e, and
cosA=y; —dy; /L, —e,. Now substituting e, with neglecting the second-

order of displacements from Eq. 3.10 cos@ and cos A can be expressed in the
forms of Eqgs. 3.16 and 3.17 based on Taylor’s series expansion. Analogously,
using Eq. 3.13, cos@and cos A can be expressed as Egs. 3.18 and 3.19 based on

the Pade approximation method.

X;L, —dx;L,
C0SO = — 3.16
L, — indxji - ydyji
ALy —dy. L
COSA = 2y,, 2~ Wi 3.17
L, — X;dx;; — ydy;

2 2 2
cosd) — 4x; L, —2x5dx; — 2%,y ;dy ; —4dx; L 118
AL - 6x;dx; L, —6y,dy;L,

. 4yjiL§ - Zy?idyji _zxjiyjidyji _4dyjiL§

_ 3.19
4I-o _6indxjiLo _6yjidyjiLo

Hence, the internal force vector t can be computed via equalising Eq. 3.4 with
the Egs. 3.10 and 3.13 as shown below:

indxji + yjidyji B de?i + dy?i N XJ?idXJ?i + ngidy?i L

L 2L 213
] . o 3.20
ﬁﬁ%ﬂﬁ_mzo
2|_0(2indxji _dX]?i + 2yjidyji _dylzl) —Ft=0 3.21

412 - 2X;dx;; + dXJ?i —2y;dy; + dyJ?i

The typified Egs. 3.20 and 3.21, based on Taylor’s series and Pade

approximation method, respectively, can be solved using any technique for
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solving a system of nonlinear equations. Here, fsolve in MATLAB (R2021a) is
adopted since the form of the nonlinearity is identified and the highest order is
two. fsolve makes an attempt to resolve an equation system by decreasing the

sum of squares of the components.

In the derivation steps of the proposed technique, the matrix of S in Eq. 3.2 is
not used for indicating the internal force vector t. In the linear force method,
the self-stress state matrix is derived from the null space of equilibrium matrix
(A) at the original configuration. In contrast, the proposed nonlinear approach
for computing the vectors t and e, relies on the A(d) and B(d) in Egs. 3.1 and

3.3, which are evaluated at the fully deformed configuration.
3.2.4 Steps for Solving Nonlinear Prestressing Method

Various procedures can be utilised to solve the group of nonlinear equations
represented in Egs. 3.10, 3.13, 3.20 and 3.21. In the proposed technique, fsolve
as a built-in function in MATLAB (R2021a) has been adopted to achieve the
solution of these nonlinear systems. The solving stepwise can be outlined as

follows.

1. Set up the nodal coordinates of the structural geometry and boundary

conditions.

2. Assign the connectivity matrix (connection between coordinates) and the
desired degree of prestressing. (If finding the amount of prestressing was the

goal, assign the e, instead of t in step 2).

3. Assign the material properties of the elements, such as cross-sectional

area and modulus of elasticity.

4, Assemble the equilibrium, compatibility, and flexibility matrices.
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5. Calculate the amount of member alteration using Egs. 3.10 or Eq. 3.13

(If finding prestress was required, use Eqgs. 3.20 or 3.21 to find the value of t).

6. Compute the rate of the Euclidean norm via Eq. 3.28 or Eq. 3.29 reliant

on the target to find the cost function (see Sub Section 3.2.6 for clarification).

3.2.5 lllustrative Example

A simple model that consists of three-linked cables as shown in Fig. 3-2 named
triple-link cable structure is selected to explain the process of applying the
proposed prestressing technique. The assembly has an axial stiffness of 10* N.
Itis pin supported at nodes 1, 3, and 4, and has two degrees of freedom at node
2. The labelling and dimensions are presented in Fig. 3-2. The cable structure
Is prestressed using the derived nonlinear Egs. 3.20 and 3.2. The process of
prestressing began by shortening cable i by e1 without applying external load
for simplicity. The following steps explain how to formulate the required

equations for the unknowns and solve the set of algebraic nonlinear equations.

Shortening member i caused the triple-link to generate pretension in the
members. Since it did not carry additional loads, the structure becomes self-
equilibrated. The two equilibrium equations at joint 2 can be written as:

t. =t 3.22

t, =(t; +t;)cosi 3.23

Either Eq. 3.17 or Eq. 3.19 can be substituted into Eq. 3.23 to expand it. As
both derived equations yield similar results, the equations derived via the Pade
approximation method are utilised for this example. Substituting Eg. 3.19 into

Eq. 3.23 can be re-written as:
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3.24

L=t +t,) 30000 — 7.6dy, —1.8dy?
bVt 50000 - 9dx, — 9dy,

The three compatibility equations relating the member alteration (Eq. 3.13)
caused by e; can be applied with the constitutive relationship (Eq. 3.21),
resulting in the following equations:

10° (103 dy, —dx? — dyzz) ¢ 500

=t 3.25
10° -10°dy, + dx; +dy2 ' 10°

10°(800dx, -+ 600dy, — dx; — dy; ) 500 s
10° —800dx, — 600dy, + dx? +dy? " 10° '

10°(800dx, + 600dy, — dx; — dy; ) . 500

6 2 2 i 74 3.27
10” —800dx, —600dy, + dx; + dy, 10

Fig. 3-2 Triple-link cable structure
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Because t. =t the number of unknowns becomes four

(t,,t; (or t;;),dx,,and dy, ), with two being linear (t, andt;) and the other two

nonlinear (dx,, and dy, ). For this reason, the set of nonlinear equations needs

to be solved using a nonlinear solver. Here, the fsolve function in MATLAB
(R20214a) is used to solve the system of nonlinear equations. To utilise fsolve
in MATLAB (R2021a), it is necessary to define the set of equations so that it
can create a function that returns the equations required for solving. Then,
fsolve must be called to provide the function and an initial guess to start solving

the equations.

For this example, if the value of e: is specified as -1 mm, the value of
t.t,,and t; are 8.38 N, 6.97 N, and 6.97 N respectively. The displacements at

node 2 (dx,, and dy, )are 0, and 0.58 mm. The specific code in MATLAB using

fsolve, written and used to achieve the reported results for the triple link

structure, is as presented in Appendix -A.
3.2.6 Validation of the Prestressing Technique

The derived e, in both Egs. 3.10 and 3.13 are examined in this section via two
examples, namely cable net structure and deployable structure. The prestress is
also computed for the space truss grid with an imposed lack of fit. Then the

results are compared with the experimental and theoretical published works.

The Euclidean norm ration (Fraddosio et al., 2021; Xue et al., 2021; Zhou et

al., 2017) between the member alterations and the internal force of the proposed
technique (e, & t) and the previous techniques (e, & t*) (You, 1997; Kwan and

Pellegrino, 1993; Hanaor and Levy, 1985) is computed as a cost function

purpose as below:
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eo _eo

=——2x100 3.28

€ *

Ht —t
T2 4100 3.29

2

)
I

3.2.6.1 Cable net structure

A cable net structure (You, 1997) with three states of self-stress, as shown in
Fig. 3-3, has seven nodes (1-7); three of them are free and the rest nodes are
pinned. The structure has nine (i-ix) cables with EA equal to 431600 N. The
cable network is prestressed computationally and experimentally via altering
the members’ length of vii, viii, and ix by the quantity of -5.02, 4.49, and -5.02
mm, respectively. The proposed technique is applied to the given structure for
the same target, and the results are compared with the computational results by
You (1997), as shown in Table 3-1. The results indicate a good agreement. The
total amount of members varying length by the linear technique of You (1997)
|eo|= 14.59 mm, while from the current nonlinear technique is only 13.51 mm,
which is less than the quoted method by 7.4% via utilising both derived Egs.
3.10 and 3.13. Besides, the rate of I>-norm of member alteration, that is shown
in Table 3-1, was 15.5% as a result of geometrical nonlinearity consideration.
It can be concluded that the current method takes less effort and is consequently
more economical members’ length of vii, viii, and ix by the quantity of -5.02,

4.49, and -5.02 mm, respectively.
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|<— 900 mm + 900 mnv—>|
I 3

|<—54( ) mn»—»l
|< 1440 mm -|

Fig. 3-3 Cable net model designed by You (1997)

Table 3-1 Comparison of nonlinear member alteration with You (1997)

€o (mm)
Cables t (N)
You (1997) Eg. 3.10 Eqg. 3.13
i 61.4
ii 61.4
iii 235
1\ 17
v 17
Vi 23.5 - - -
vii 50 -5.02 -4.22 -4.22
viii 50 4.49 5.07 5.07
iX 50 -5.02 -4.22 -4.22
Y | eo | (mm) 14.59 13,51 13.51
R, 15.5%
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3.2.6.2 Deployable structure

A deployable structure that consists of six cells and sixty members is shown in
Fig. 3-4 (Kwan and Pellegrino, 1993). It has twenty-four bars drawn in thick
lines and thirty-six (1-12 in-plane and 13-36 out of plane) cables with six states
of self-stress. Kwan and Pellegrino (1993) prestressed this structure in a fully
opened configuration, which is part of the deployable mesh antenna. Fig. 3-5
shows the general state of self-stress for one unit of the structure and their in-
plane connector members to the support. Each of the cables with EA=98 kN
and bars with EA=3500 kN has a length of 500 mm. To achieve the desired
prestressing level, that is 2 N for inner in-plane cables 3, 5, 7, 8, and 11, also 1

N for the remaining cables in pretension, and -1 N for all the bars.

Kwan and Pellegrino (1993) tried various ways to nominate the necessary state
of prestress. In the first way of determining the total amount of member
alteration, they used the Gaussian elimination method. The members with the
ability to change their length were 1, 3, 4, 7, 8, and 9, which are equal to the
number of states of self-stress. The total amount of actuation set-out as 0.486
mm, whereas the proposed technique determined the total actuation to be
Y | € | = 0.475mm. The results are tabulated in Table 3-2, and the findings by
Eq. 3.10 and Eqg. 3.13 of the current approach are reduced by about 2.2% and

minimised the l>-norm ratio by 6.2%.

In the second way, Kwan and Pellegrino (1993) performed a standard linear
program to determine member alteration by inserting dual sets of non-negative
variables to solve for an optimal total amount of actuation by a number equal
to the states of self-stress. Saeed and Kwan (2016b) stated that the member with
the greater arbitrary coefficients (a) of the state of self-stress can be more active

during the actuation process. Therefore, using only the four members with a
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coefficient = 2, as shown in Fig. 3-5, the structure would reach the same level
of prestress instead of six elements. The participating members were 1, 3, 5, 7,
10, and 11, and the total amount of member alteration was 0.177 mm.
Correspondingly, utilising the proposed technique by Egs. 3.10 and 3.13 the
> |eo| was less than 50.5% and minimised the l-norm ratio by 72.2% as

shown in Table 3-3.

The results of the nonlinear technique that tabulated in Table 3-2 and Table 3-3
show a great precision and similitude of the present findings in comparison to
the highlighted linear approach. For the particular case in Table 3-2, the total
actual is lesser by 2.2%, while for the optimal case, as in Table 3-3 is lesser by
50.5%, which is of a practical interest. Moreover, the nonlinear computing of
member alteration produced a more compacted overall amount of member

actuation and minor member alteration with fewer disturbances in geometry.
The close agreement of the findings attained by directly applying Eq. 3.10 and

Eqg. 3.13 shows the great potential and reduces the computational exertion

producing validated results.
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b) Isometric view

Fig. 3-4 Deployable structure (Kwan and Pellegrino, 1993)
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Fig. 3-5 Plan view of the general state of self-stress of a unit (Kwan and

Pellegrino, 1993)

Table 3-2 Comparison of nonlinear member alteration with the particular
choice of Kwan and Pellegrino (1993)

Members t(N) - € (mm)

Kwan and Pellegrino (1993) Eg. 3.10 Eq. 3.13

1 1 -0.1550 -0.15130 -0.15131

3 2 -0.0931 -0.08660 -0.08668

4 1 0.1238 0.12700 0.12701

7 2 -0.0415 -0.03360 -0.03361

8 2 0.0312 0.03908 0.03908

9 1 -0.0415 -0.03781 -0.03780
5,10,11 2 - - -
2,6,12-36 1 - - -
37-60 -1 - - -

Y | eo | (mm) 0.4861 0.47538 0.47549

R.. 6.2%
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Table 3-3 Comparison of nonlinear member alteration with the optimal set of
Kwan and Pellegrino (1993)

€o (Mm)
Members t (N) .
Kwan and Pellegrino (1993) Eg. 3.10 Eq. 3.13
1 1 -0.0104 -0.010288 -0.010288
3 2 -0.0001 0.016053 0.016053
5 2 -0.0325 0.007138 0.007141
7 2 -0.0100 0.001184 0.001185
8 2 - - -
10 2 -0.0727 -0.024468 -0.024471
11 2 -0.0517 -0.028590 -0.028592
2,6,9,12-36 1
37-60 -1 - - -
> | eo | (mm) 0.1774 0.08772 0.08773
R, 72.2%

3.2.6.3 Space truss structure

A double-layer grid space truss system, depicted in Fig. 3-6 (a), (b), and (c),
has vertical restraints applied to all perimeter joints. It comprises 25 nodes,
including 16 nodes at the bottom, and 72 members (Hanaor and Levy, 1985;
Levy etal., 1994). The geometry shown in Fig. 3-7 forms the lack of fit amount
of the truss grid assemblies. From the study by Hanaor and Levy (1985), the
members' lack of fit is represented as a factor that needs to be multiplied by
PLo./EA., which is equal to 1 for this example. The positive and negative signs
in Fig. 3-7 show the elongation and shortening of the members. The present
technique is examined on this system using Egs. and, then compared with the
analytical results by Levy et al. (1994). The results for computing the level of
prestress are presented in Table 3-4. From Fig. 3-7, the nonsymmetric
distribution of the imposed lack of fit for the selected members can be seen.
The reported findings by Hanaor and Levy (1985) showed symmetric prestress
distribution despite the nonsymmetric distribution of members’ lack of fit and

this is not logical. The proposed technique results showed the effect of this
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dissimilarity and minimised the I,-norm ratio of stress vectors by 0.17% and
0.23% with respect to the outcomes of Eq. 3.20 and Eq. 3.21 respectively. Itis
noticeable that the outcomes of both Eqgs. 3.20 and 3.21 have a good agreement

with the compared one.

i > 8
@ (-
i
-]
e Top bars

—  Bottom bars

- [nter connected Bars

© Pin joints

¢) Isometric view ‘ /

Fig. 3-6 Space truss geometry by Levy et al. (1994)
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:
%

Fig. 3-7 Space truss grid lack of fit

Table 3-4 Comparison of nonlinear member alteration with Hanaor and Levy

(1985)
t(N)
HEimas; Present study
No. Hanaor and Levy (1985)
Eqg. 3.20 Eqg. 3.21
1,3 0.1207 0.1206
0.1208
2,4 0.1212 0.1214
57 -0.1617 -0.1616
-0.1620
6,8 -0.1620 -0.1622
9,11 0.1999 0.1999
0.2003
10,12 0.2004 0.2006
13,18 -0.1001 -0.1000
14,17 -0.0998 -0.0999
-0.1002
15,20 -0.1002 -0.1005
16,19 -0.1000 -0.1000
R, 0.17% 0.23%
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3.2.6.4 3D cable-net model

The 3D cable-net model shown in Fig. 3-8, has 14 nodes that the x, y, and z
coordinates are shown in Table 3-5. Eight of them are pinned and shown in
black solid connectors. It consists of 21 members with axial stiffness of 40,000
N. The targeted degree of prestress (t) for all the cables is determined as shown
in the 2" column in Table 3-6. The prestressing process is performed by pre-
indicating the required member pretension force for all members. The present
technique has been applied to attain the targeted prestress (t*) using fsolve in
MATLAB (R2021a) and the results were as shown in the 3" column in Table
3-6. The other findings of the present technique such as 3D nodal displacements
of the free nodes and the required amount of nonlinear members actuation are
tabulated in Table 3-7. As a practical consideration, only members 7, 8, 9, 10,
19, 20, and 21 are selected as actuators while the remaining cables are set to
have unchangeable lengths. The total amount of shortening is 13.1514 mm.
Later, the results are validated using nonlinear analysis of the same model with
SAP2000 finite element analysis software, version 23.2.0. When setting up the
geometric nonlinearity parameters in the software, the P-Delta plus Large
Displacements option should be used. This is because all the equilibrium
equations are indicated at the deformed state of the structure, similar to the
proposed technique. At this stage, the same quantity of members’ shortening is
assigned to the same cables. The outcomes of the computed prestress and nodal

displacements are presented in the 4" column in Table 3-6 and Table 3-7.

For testing the accuracy and the closeness to the desired prestress level, the

Euclidean norm (I2-norm) (Xue et al., 2021) is used as an evaluation index as

presented in Table 3-6. The l,-norm is defined as [t—t

and |t—t’| to indicate
2 2

the discrepancy between the vectors of targeted prestress to the calculated

prestress by the present technique and SAP2000, respectively. The smaller

50



CHAPTER THREE THEORETICAL FORMULATION

value of the Euclidean norm is 0.0809 with the present technique showing that
it is more accurate and more approachable to the desired target in comparison
to t'. Regarding the nodal displacements, the computed dx, dy, and dz by the
present technique have a very good agreement in comparison to the SAP2000
results as shown in Table 3-7. SAP2000 fails to compute the required member
actuation if the targeted prestress of member forces is requested. For this
reason, the output of the member actuation from the proposed technique is
assigned to the cables to achieve the prestressing of the members.

For ten cables (Table 3-6) the computed prestress by SAP2000 is closer to the
targeted t, while for the other 11 members, the computed one by the present

technique is closer as confirmed above through the Euclidean norm index.

L ]

X

Fig. 3-8 3D cable-net model with labeled nodes and members
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Table 3-5 Nodal coordinates for the 3D cable net model

Coordinates Coordinates
Nodes Nodes
X (mm) y (mm) z (mm) X (mm) y (mm) z (mm)
1 0 720 720 8 0 -720 720
2 900 270 540 9 900 -270 540
3 1800 720 720 10 1800 -720 720
4 180 540 0 11 180 -540 0
5 630 270 270 12 630 -270 270
6 1170 270 270 13 1170 -270 270
7 1620 540 0 14 1620 -540 0

Table 3-6 Cable prestress and 1, —norm for the 3D cable net model

Prestress (N)
Cables .
t t* Present Technique t' SAP2000
1,2,13,14 51 50.8 50.92
3,6,15,18 29 29.03 28.88
4,5,16,17 12.7 12.61 12.68
7,9,19,21 51.1 51.08 51.32
8,20 50.5 50.41 50.48
10 44.5 44.35 44.83
11,12 38.1 38.07 37.99
=t 0.0809
=1, 0.1909

Table 3-7 Nodal displacement and cable actuation for the 3D cable net model
Displacement (mm)
Nodes Present Technique SAP2000
dx dy dz dx dy dz 7 -1.3796
2 0 -2.5476 | -1.0199 0 -2.5422 | -1.022 8 -0.9696
5 0.1446 | 0.2569 | -1.3495 | 0.1433 | 0.2559 | -1.3368 9 -1.3796
6 -0.1446 | 0.2569 | -1.3495 | -0.1433 | 0.2559 | -1.3368 10 -5.6938
9 0 2.5476 | -1.0199 0 2.5422 | -1.022 19 -1.3796
12 0.1446 | -0.2569 | -1.3495 | 0.1433 | -0.2559 | -1.3368 20 -0.9696
13 | -0.1446 | -0.2569 | -1.3495 | -0.1433 | -0.2559 | -1.3368 21 -1.3796
Total Actuation (mm) 13.1514

Actuator | eo (mm)
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3.2.6.5 Conical cable-net model

A conical cable-net structure as shown in Fig. 3-9 is prestressed by the present
approach. The system consists of 24 cables labeled as shown in Fig. 3-9, and
they have axial stiffness (EA) of 10* N. The model has 18 nodes as shown in
Fig. 3-10, and the coordinates are tabulated in columns 2-4 of Table 3-8. Joints
2, 4, 6, and 13-18 are restrained against x-, y-, and z- directions translation,
while joints 1, 3, and 5 are restrained only in vertical (z) direction. The nodes
6-12 are free to move in all directions. The prestress of this model started by
determining the members shortening of cables 19-24 by 9 mm and cables 7-12
by 5 mm as shown in column 4 of Table 3-9, which results in 66 mm of the
total amount of members actuation that prevent any slack of the cables. Via
using Eq. 3.20 the required pretension for all members is attained and presented
in Table 3-9 (column 2). The exterior nodal displacement also came out as

presented in columns 5-7 of Table 3-8.

Similarly, the conical cable-net system is modelled and prestressed in SAP2000
software with the same given properties of joints, connectivity members, and
supports. The identical amount of member actuation as members deformation
in the load case is assigned to the above-mentioned cables. Then it is analysed
by selecting nonlinear geometrical considerations with large deformability. The
joint displacements output is shown in Table 3-8 (columns 8-10), and the
member pretensions output is presented in Table 3-9 (column 3). The maximum
difference percent of the displacement resultant between the present technique
and SAP2000 is 0.01%, while the maximum discrepancy percent for prestress
level is 0.04%. These findings show great consistency and precision of the
proposed approach in computing the required degree of prestress without

causing slack of any member.
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Fig. 3-9 Conical cable-net model with labeled nodes

24 21

Fig. 3-10 Top view of the conical cable-net model with labeled cables
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Table 3-8 Conical cable-net nodal coordinates, and displacements

Coordinates Displacements (mm)
Nodes (mm) Present technique SAP2000

X y z dx dy dz dx dy dz
1 500 | 800 |2000 |-0.13605 | 0.25208 0 -0.13605 | 0.25207 0
2 700 | 800 | 2000 0 0 0 0 0 0
3 800 | 600 | 2000 | 0.36521 0 0 0.36520 0 0
4 700 | 400 | 2000 0 0 0 0 0 0
5 500 | 400 | 2000 |-0.13605 |-0.25208 0 -0.13605 | -0.25207 0
6 400 | 600 | 2000 0 0 0 0 0 0
7 420 | 950 | 1000 | 2.42820 |-4.61710 |-5.68460 | 2.42818 |-4.61715 |-5.68466
8 780 | 950 | 1000 |-2.40600 |-4.57380 |-5.64970 |-2.40595 | -4.57384 | -5.64983
9 950 | 600 |1000 |-3.92790 0 -5.30870 | -3.92774 0 -5.30872
10 | 780 | 250 | 1000 |-2.40600 | 4.57380 |-5.64970 |-2.40596 | 4.57384 |-5.64983
11 420 | 250 | 1000 | 2.42820 | 4.61710 |-5.68460 | 2.42818 | 4.61714 |-5.68466
12 | 250 | 600 | 1000 | 3.86180 0 -5.26860 | 3.86166 0 -5.26859
13 | 300 [1200| O 0 0 0 0 0 0
14 900 [1200| O 0 0 0 0 0 0
15 1200 | 600 0 0 0 0 0 0 0
16 900 0 0 0 0 0 0 0 0
17 300 0 0 0 0 0 0 0 0
18 0 600 0 0 0 0 0 0 0

Table 3-9 Conical cable-net member prestress and member actuation

Prestress (N)
Cable Present technique SAP2000 o (mm)
1,4 6.8104 6.8103
2,3 7.3148 7.3147 0
5,6 7.3676 7.3674
7,10 4.6076 4.6075
8,9 5.6949 5.6948 -5
11,12 5.6917 5.6917
13,17 46.3540 46.3542
14,16 46.5490 46.5492 0
15 45.7450 45.7446
18 45.9650 45.9646
19,23 47.5640 47.5639
20,22 47.7590 47.7586 9
21 46.7130 46.713
24 46.9320 46.9316
Total actuation (mm) 66
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3.3 FORMULATION AND VALIDATION OF THE ANALYSIS
TECHNIQUE

Cable-supported structures are introduced as highly flexible structures, so they
distort significantly when exposed to transverse loadings. Consequently, the
extra challenge is preferred in analyzing these types of non-linear geometric
structures. The formulation of the present analysis approach depends on the
principles of the flexibility method and the fundamentals of structural
mechanics. The Pade approximation, recognised as one of the most effective
approximations of a rational function of a given order, is employed to derive
this non-linear equation. This approximation was initially presented and
researched by Frobenius (1881) for the possibility of rational approximations
of power series and then developed by Henri Eugene Pade (Nisar et al., 2021).
The Pade approximation is a conventional rational function whose extension is
pointed to settle with the Taylor series expansion of the main function as distant

as conceivable.

In most cases, the Pade approximation affords a more improved approximation
for the original function and could work where the Taylor series does not
converge, particularly for the functions with poles (Vazquez-Leal et al., 2014).
In this formulation, the cable element is considered as a general bar within the
initial prestress t for preventing slack of the member, as shown in Fig. 3-11. Let
the bar io- jo with the original length L has the initial end coordinates at (Xio, Yio,
Zio) and (Xjo, Yjo, Zjo). After experiencing the deformation, its length becomes L.
in ic-jc, and the new end coordinates are (Xci, Yei, Zci) and (X, Y, Zcj), as shown
in Fig. 3-11. The bar in Fig. 3-11 undergoes the deformation after being
affected by external loads Pi and P; at both ends; their horizontal and vertical

components are shown in Fig. 3-12.
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Fig. 3-12 Spatial equilibrium state at original and deformed configuration

After loading, the bar experiences bar tension T and elongation e over its
original length. The abbreviation of the notation is arranged as ( )o = ()jo — ( )io.

Now, by reflecting the new position of the joints, the current length can be
written as:
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LC={(xo+dxo)2+(yo+dy0)2+(zo+dzo)2}2 3.30

L, = (L2 +2x,0dx, +2y,dy, +22,dz, + dx? + dy? + dz] )% 3.31

C

1
2

Let H =2x.dx, +2y,dy, +2z,dz, +dx? +dy’ +dzZ?, thus L, :(L2 +H ) .

Rewriting L. gives:

L = L(1+H/L) 3.32

1
2

The Pade approximation is applied to extend (1+ H/LZ) . Due to this method's

ability to accelerate or turn from the divergent to convergent function, only the
first order of the asymptotic expansion is considered. Hence, the deformed bar

length (Lc) becomes:

2
L. =L % 3.33
4+H/L

substituting H, hence:

A 3(2x0dxO +2y.dy. + 2z zy, +dx? +dy’ + dz(f)

+

L, =Lx L 3.34
(2x0dxo +2y,dy, + 22,2y, +dxZ +dy? + dzg)

LZ

4+

The elongation of the bar can be expressed as e=L_ —L, Thus:

3(2x0dx0 +2y,dy, +2z,zy, +dx? +dy? + dzf)

4+

e=L L 1 335
(2x0dx0 +2y.dy, +2z,zy, +dx? +dy’ + dzg)

L2

4+
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From the state of equilibrium for the deformed configuration, as shown in Fig.
3-12, the relationship between the internal and external forces with each of their

components can be dedicated as shown below:

P=—(T+t)=—P, 3.36

]
Consequently, for each component in 3D becomes:
Px, =—(T +t)cosa =—Px,

Py, =—(T +t)cos 8 =—Py, 3.37
Pz, =—(T +t)cosy =—Pz,

Moreover, the terms of cosa €088 and €057 with neglecting the high order of
small displacements can be in the form:

X, +dx,  4x L +4dx L* +2x2dx, + 2X,Y,dY, + 2X,Z,dz,
4L° +6L(x, 0%, + Y,dy, + z,dz, )

Yo +dy, _ 4Y,L° +4dy,L° +2y,x,dx, +2y,dy, +2Y,2,dz,
L 41° +6L(x,0x, + Y, dy, + 2,dz, )

C

COSa =

C

Cos f =

3.38

z,+dz, 4z, L +4dz,L* +2z,x,dx, +22,Y,dy, + 2z2dz,
41° +6L(x,0x, + Y, dy, + 2,dz, )

CoSy =

C

Employing the constitutive relationship between the tensile force of the bar and
its elongation can be set up in the form:
TL
e=——
EA,

where E is the modulus of elasticity and A, is the cross-sectional area of the

3.39

cable. Via equalizing both Egs. 3.35 and 3.39, the general analytical equation

for geometrically non-linear cable and pin-jointed structures are formulated as

below:
417 +3(2x,0x, +2y,dy, + 22,0z, + dx? + dy? +dz?) AT o s
AL +(2x,0x, + 2y,dy, + 22,dz, + dx; +dy; +dz] ) EA '
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For justification and presentation of the precision of the proposed non-linear
approach, seven numerical examples from the quoted literature have been
examined. Then the results were compared with the findings of the previous

analysis techniques.
3.3.1 Two-Linked Structure

The two linked structure is pre-tensioned by 4448.2 N, as shown in Fig. 3-13.
Each link has EA.= 546920 N, which is examined via the present technique.
The middle joint vertical displacement and each internal bar force showed -
166.457 mm and 303.193 N, respectively. Accordingly, the analysis of the
same structure was presented by Kwan (1998) as -166.449 mm and 303.246 N
for the same target correspondingly. Besides, Levy and Spillers (2003) reported
-166.536 mm and 303.413 N, respectively. The outcomes showed that the
current approach has a discrepancy of only 0.004% and 0.04% in displacement
with Kwan (1998) and Levy and Spillers (2003), respectively. At the same

time, the tensile force deviations were only 0.02% and 0.07%.

3I1.38N

44482 N l 44482 N

G, — Mp— ® U e—lp - 1':1

5080 mm S080 mm

Fig. 3-13 Two-linked structure
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3.3.2 Flat Cable-Net Structure

Figure 3-14 shows a 3x 3 square grid of flat cable-net structure, which has been
numerically evaluated by numerous studies (Toklu et al., 2017; Kwan, 1998;
Lewis, 1987). It has a 400 mm length of cell sides, EA of 97970 N, and
prestressed with 200 N. The system has 12 joints. It is supported at its perimeter
from 8 joints, leaving 4 inner joints free. It was loaded by 15 N at three
positions, as shown in Fig. 3-14. The present formulation is applied to the flat
cable-net system and then compared with the literature. The results are
presented in Table 3-10 and Table 3-11 for the joint displacements and cable

tensions, respectively, which are very accurate with the other techniques.

Fig. 3-14 Flat cable-net structure
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Table 3-10 Nodal displacement (mm) for internal joints of the flat cable-net

N Present Technique Kwan (1998) Lewis (1987) Toklu et al. (2017)
dx dy dz dx | dy dz | dx | dy | dz dx dy dz

4 1-0.07-0.07|-12.17 {-0.08 | -0.08 | -12.2 |-0.1 [-0.1 |-12.2 | -0.07 | -0.07 | -12
5 |-0.08] 0.04 | -11.18 |-0.08 | 0.05 |-11.2|-0.1| 0 |-11.2| -0.08 | 0.04 | -11
8 10.04 |-0.08|-11.18 | 0.04 |-0.08|-11.2| 0 |-0.1|-11.2| 0.04 | -0.08 | -11
9 1-0.04]-0.04| -5.59 |-0.04|-0.04|-559| 0 | O | -5.6 | -0.04 | -0.04 | -5.6

Table 3-11 Cable tensile forces (N) of the flat cable-net

Cable | Present technique Kwan (1998) Lewis (1987)
1 227.97 227.97 228.10
2 219.19 219.19 219.30
3 227.97 227.98 -

4 227.94 227.94 228.00
5 228.00 228.01 228.10
6 227.94 227.94 219.20
7 219.14 219.15 219.10
8 219.19 219.19 -
9 219.14 219.15 -
10 219.07 219.08 219.10
11 228.00 228.01 -
12 219.07 219.08 -

3.3.3 Spatial Net Structure

In this example, a spatial cable-net structure consists of a grid system with 24
m in the x-direction and 16 m in the y-direction, as shown in Fig. 3-15. It has
38 cables with EA, of 56x10° N and 19.2x10° N in x and y-directions,
respectively. Due to its central symmetry, the z-direction coordinates (z-coor.)
are given for only a quarter of the structure, as presented in Table 3-12. The
system is pre-tensioned by 90,000 N in the x-direction and 30,000 N in the y-
direction (Toklu et al., 2017; Kwan, 1998; Lewis, 1987). The present technique

was applied to obtain the displacements after applying the vertical point loads
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of 6800 N at all internal joints. The attained displacements were compared with
the numerical findings by Lewis (1987), Abad et al. (2013) and Toklu et al.

(2017), as presented in Table 3-12. These results confirmed a remarkable

similarity with the established techniques.

Table 3-12 Nodal displacements comparison (mm) of the spatial net

Fig. 3-15 Spatial net structure

B, & Present Technique | (Lewis, 1987) | Abad ef al. (2013) | Toklu et al. (2017)
Zo V8| dy dz |dx | dy | dz | dx | dy dz dx dy dz
11000 | - - - - - - - - - - - -
212000 | - - - - - - - - - - - -
313000 | - - - - - - - - - - - -
6| O - - - - - - - - - - - -
7 1819.5|-5.03 10.40| 29.47 |-5.14/0.42|30.41{-5.05 | 0.40 | 29.6 |-5.03 | 0.40 | 29.46
8 11409.6| -2.23 | 0.40| 17.12 |-2.26{0.47(17.70|-2.23 | 0.40 | 17.16 | -2.22 | 0.39 | 17.18
9116769 0 [2.39|-3.19| 0 |-2.27|-3.62| 0 |-2.36|-3.19| 0 |-3.12| -3.19
13] 0 - - - - - - - - - - - -
14/ 687.0|-493 | 0 |42.88 |-4.98] 0 [43.49/-493| 0 |4294|-492| 0 |42.84
15(1147.8| -2.55 | 0 | 4432 |-2.55] 0 |44.47/-2.55| 0 [44.34|-255| 0 |44.27
16{1317.6| 0 0 4214 0 | 0 [41.65 O 0 |42.14| O 0 |42.08
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3.3.4 Quarter Hyperbolic Paraboloid Net Structure

Fig. 3-16 shows a quarter of the hyperbolic paraboloid net system consisting of
31 cables and 26 joints with 36 degrees of freedom. The axial stiffness of all
members is 100200 N. The structure is concentrically loaded by 15.7 N in the
z-direction at all internal nodes except 17, 21, and 22. The cable segments carry
the amount of 200 N of pretension force. Several authors (Lewis et al., 1984;
Lewis, 1987; Kwan, 1998; Thai and Kim, 2011; Toklu et al., 2017) have
numerically and experimentally examined this net system via utilising different
analysis techniques. For example, Dynamic relaxation (DR), which is used by
Lewis (1989) and Kwan (1998), while approximation of Taylor series (ATS),
elastic catenary cable element in finite element, and total potential optimisation
were used by Thai and Kim (2011) and Toklu et al. (2017), respectively. The
results for the vertical displacements of the current and previously published
methods are presented in Table 3-13. It showed great accuracy and similitude

of the current findings compared to the highlighted approaches.

Fig. 3-16 Hyperbolic paraboloid net structure
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Table 3-13 Nodal displacements comparison (mm) in the z-direction of
hyperbolic paraboloid net

Lewis et | Lewis et Kwan Kwan )
Present Thai and |Toklu et al.
Node al. (1984) | al. (1984) | (1998) (1998) Kim (2011) (2017)

technique Experimentf DR DR ATS

5 19.53 19.50 19.30 19.38 19.52 19.56 19.48
6 24.66 25.30 25.30 25.62 25.35 25.70 25.59
7 23.32 22.80 23.00 22.95 23.31 23.37 23.17
10 25.88 25.40 25.90 25.57 25.86 2591 25.75
11 34.08 33.60 33.80 33.79 34.05 34.16 33.86
12 29.52 28.80 29.40 29.32 29.49 29.60 29.27
15 25.81 25.20 26.40 25.43 25.79 25.86 25.65
16 31.33 30.60 31.70 31.11 31.31 31.43 30.96
17 21.43 21.00 21.90 21.28 21.42 21.56 21.03
20 21.49 21.00 21.90 21.16 21.48 21.57 21.33
21 20.01 19.80 20.50 19.79 20.00 20.14 19.67
22 14.41 14.20 14.80 14.29 14.4 14.55 14.04

3.3.5 Saddle Net Structure

The preliminary geometry of the saddle net structure, as shown in Fig. 3-17,
consists of 142 cables with EA, = 44.982x10° N and 95 joints, of which 32 of
them are constrained at the perimeter. It has mirror symmetry about both
centrelines, each segment has a 5000 mm distance in both x and y-directions,
and the z-coordinates (z-coor.) for the one-fourth of the structure are given in
Table 3-14. The saddle net structure was completed by a tensile prestressing
force of 60,000 N and was affected by concentrated loads of 1000 N in x- and
y-directions at the half of free nodes (11-15, ...., 66-70, and 77-81). The
analysis of the proposed method is presented in Table 3-14. After comparison
with the previous approaches of (Lewis, 1989; Kwan, 1998), Thai and Kim

(2011), and both discrete and continuous catenary cable models by Abad et al.
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(2013), it showed good accuracy and was verified to be comparable with the
well-known methods. The maximum percentage of error for the present
technique, Kwan (1998) and Thai and Kim (2011), as compared to
experimental work performed by Lewis (1989), did not exceed 3.87%, while
they were 5.81% and 4.91% for the discrete and continuous models of Abad et
al. (2013), respectively, as presented in Table 3-14. In most of the studies, the
saddle net is introduced as the most complex cable structure and outstanding
comparable problem. It is used to confirm the effectiveness of the analysis
techniques as Lewis (1987) reported that the analysis of saddle net failed in
using the finite element method due to the ill-condition issue for such

complicated assembly.

Fig. 3-17 Saddle net structure
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Table 3-14 Nodal displacements comparison (mm) of saddle net

2| z- |Lewis (1987a)| Present | Kwan | Thai and Abad et al. |Abad et al. (2013)
Z |coor.| experiment |technique|(1998b)Kim (2011)[ (2013) discrete continuous
13632 0 0 0 0 0 0
2 2568 0 0 0 0 0 0
31808 0 0 0 0 0 0
4| 1352 0 0 0 0 0 0
51200 0 0 0 0 0 0
10] 5000 0 0 0 0 0 0
8328 | 8328 | 8324 83.46 8338
11139681 8353 029 | (029) | (0.34) (0.08) (0.17)
6255 | 6254 | 625 62.63 62.6
12131651 62.85 048) | (049 | (0.56) 0.27) (0.4)
3438 | 3438 | 3434 3447 34.43
13125921 3457 055 | (055 | (0.67) (0.29) (0.4)
1892 | 1892 | 18091 19.02 18.96
14| 2248 19 042) | (042) | (047 (-0.11) (0.21)
1221 | 1222 | 1221 12.29 12.26
15121331 1227 0.49) | (0.41) | (0.49) (-0.16) (0.08)
21/ 5000 0 0 0 0 0 0
9827 | 9827 | 9823 9857 98.42
22| 4208 98.4 ©.13) | (0.13) | (0.17) (-0.17) (-0.02)
739 | 739 | 73.84 74.17 74.03
2335921 74.02 ©0.16) | (0.16) | (0.24) (-0.2) (-0.01)
3293 | 3293 | 3289 3314 33.03
243152) 3284 -027) | (027)| (-0.15) (-0.91) (-0.58)
1215 | 1215 | 12.14 12.33 12.24
25/2882|  11.88 227) | (227 (-2.19) (-3.79) (-3.03)
1232 | 1232 | 1232 12.12 1221
26 2800 12.68 284) | 284) | (2.84) (4.42) 3.71)
32/ 5000 0 0 0 0 0 0
93.19 | 93.19 | 93.15 93.56 93.38
334352 93.19
0) © | (0.04) (-0.4) (-02)
6765 | 6765 | 676 63.02 67.84
34138481 67.56 (0.13) | (:0.13) | (-0.06) (-0.68) (-0.41)
202 | 212 | 2116 2151 2136
35|3488 | 2081 (-187) | (-187) | (-1.68) (-3.36) (-2.64)
1489 | 1489 | 14.89 14.59 12.73
3613272 1549 387 | 387 | (3.87) (5.81) (4.91)
3609 | 36.09 | 3607 35.77 359
37|32001 36.85 206) | 206 | (212 (2.93) (2.58)
23] 5000 0 0 0 0 0 0
44 4400 i 8936 | 89.36 | 8931 89.75 89.56
45]3933 i 63.44 | 6344 | 6338 63.84 63.65
46| 3600 i 1516 | 1516 | 15.12 15.49 15.34
47/ 3400 i 2299 | 2299 | 22.99 22.65 22.80
48] 3333 i 4611 | 4612 | 46.09 45.74 45.89
524400 i 593 | 5.93 5.93 6.34 6.17
72[3152 i 3037 | 3038 | 3036 30.07 30.19
81| 2133 i 1220 | 1222 | 1221 12.29 12.26
853968 i 3267 | 3267 | 32.65 32.89 32.79
85 3968 i 3267 | 3267 | 32.65 32.89 32.79

() shows the error percentage of the proposed technique and other quoted techniques
concerning Lewis’s experimental work.
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3.3.6 Cantilever Truss Structure

A simple cantilever truss, as shown in Fig. 3-18, consists of six nodes and ten
bars with an axial stiffness of 400,000 N. It is pin-supported at node number
one and roller-supported at node number two. The two external point loads are
applied on nodes 3 and 5 with quantities of 1000 N and 3000 N in the gravity
direction, respectively. The cantilever truss has been previously used by (Saeed
and Kwan, 2016b) using the linear force method. The linear analysis results
were obtained using the least squares solution. The proposed nonlinear force
method is applied for analyzing the same cantilever truss, and both of the
findings are presented in Table 3-15. SAP2000 software is also used for the
purpose of comparison, precision, and validation of the results. The output of
the software analysis is basically based on finite element analysis with an
improved tangent stiffness matrix, and the results for displacement and member

forces are presented in columns 2-4 in Table 3-15.

To assess the proposed method's accuracy and utility, the Euclidean Norm
index for internal forces (linear and nonlinear) error to internal force from
SAP2000 is used. The accuracy evaluation ratio (RT) of I.-Norm is found using
Eq. 3.29, where T1 and T2 are the member forces of the linear force method
and SAP2000, respectively. The percent Euclidian norm ratio between linear
and SAP2000 was 2.23%, while between the proposed technique and
SAP2000, it was 0.05%. These ratios clearly show the precision of the present
approach in considering the geometric nonlinearity during the analysis stage of

spatial structures.

Further, it can be noticed that neglection from the geometric deformability in
the linear force method leads to giving the internal force of bar number 7 as

zero. That is due to using the equilibrium matrix in its original configuration
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and the zero coefficient of the state of self-stress found in the null of the

equilibrium matrix.

1000N 3000N
l }
j‘>~ 23 , J=—"
1 /
3 =
/ =
o
&
1 4 6 6\10
P S\J 9— =+
2 100 mm 4 100 mm 6
- RO -
Fig. 3-18 Cantilever truss structure with nodal labels, panels spacing, and
nodal loads

Table 3-15 Nodal displacements and internal bar forces of the cantilever truss
by SAP2000, linear and nonlinear force methods

Nonlinear Analysis R Nonlinear Analysis
by SAP2000 by Saced and Kwan resent Stud
y (2016b) P Y
Nodes| Nonlinear Linear Nonlinear Bars
Displacement Member Displacement Member Displacement Member
(mm) Force (mm) F(;\rlce (mm) Force
dx dy (N) dx dy (N) dx dy (mm)
1858.4 2000 1858.5 | 1
2 0 -0.465 0 -0.500 0 [-0.465
5105.6 5000 51074 | 2
-2836.8 -2828 -2837.8| 3
3 |1.227 | -3.149 1.250 | -3.164 1.228 |-3.150
2751.8 2828 27524 | 4
-4967.4 -5000 -4970 | 5
4 |-1.265| -2.604 -1.250 | -2.664 -1.266 | -2.605
-2055.8 -2000 -2056 | 6
98.3 0 98.683 | 7
5 |1.061 ]| -9.334 1.250 | -9.286 1.061 |-9.335
4304.7 4243 4303.1 | 8
-3012.1 -3000 -30094 | 9
6 [-2.195| -8.532 —2.000 | —8.536 -2.195|-8.533
-2995.5 -3000 -2993.9 | 10
Euclidian Norm Ratio RTI  2.23% RT  0.05%
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3.3.7 Double Layer Spherical Structure

For apprising the validity of the proposed technique, a very complicated
structure is selected. The spherical double-layer model (Mahmood et al., 2022)
shown in Fig. 3-19 is analysed using the technique presented in the previous
section. The outer diameter of the sphere is 8000 mm and the distance between
both layers is 200 mm. The model consists of 382 nodes, that 21 nodes of the
outer layer from the bottom on a diameter of 1174 mm are pin supports as
shown in Fig. 3-20. It has 1520 members. The axial stiffness of all the members
Is 15707963.3 N. The model is laterally loaded in the x-direction by 1000 N at
73 nodes on the outer surface as shown in Fig. 3-20. The lateral loads produced

noticeable deformability in all of the x-, y-, and z- directions.

Fig. 3-19 Double-layer spherical model
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Fig. 3-20 Supports and laterally load in (N) of double-layer spherical model

The maximum axial force for this specifically applied load is located at
members 862 as 45.456 kN, and 857 as -45.456 kKN (Mahmood et al., 2022).
The present technique determined tensile 45.282 kN and compressive 45.643
kN for members 862 and 857 respectively, which are almost equal to the
SAP2000 results with values 45.281 kN, -45.642 kN for the same members.

The difference of maximum member forces between the present approach and
SAP2000 analysis (SNF) and also between linear technique and SAP2000
findings (SLF), were computed. The difference value between nonlinear
techniques (SNF) is 0.001 N, while for SLF is 0.175 N for member 862 and
0.186 N for member 857 N. These similarities between nonlinear techniques
are due to the impact of geometrical stiffness on the member force computation

and vice versa.
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The analysis results for the displaced selected nodes in the x-, y-, and z-
directions via applying the current technique are presented in columns 2-4 of
Table 3-16. Similarly, the model was analysed by nonlinear finite element
analysis using SAP2000. The findings are presented in columns 5-7 of Table
3-16. Both nonlinear analysis results are in very well agreement with each
other. Later, they compared with linear analysis result by Mahmood et al.
(2022) as shown in columns 8-10 of Table 3-16.

The Euclidean norm ratio is used to find out the difference rate between the
nonlinear displacement and the linear displacement. The difference rate is
about 0.11%, and this rate will increase when the model faces greater loading
values for the same loading condition. Moreover, the differences in resultant
displacements between SAP2000 and the present non-linear technique (SND),
as well as between SAP2000 and the linear technique (SLD), are evaluated.
The difference between the non-linear techniques (SND) is negligible across
all joints, with a maximum value of 0.002 mm. In contrast, the difference
associated with the linear technique (SLD) is significant, with a maximum
value of 0.146 mm, highlighting the limitations of neglecting geometric
nonlinearity. Accounting for the geometric nonlinearity in systems exhibiting
such behaviour yields more accurate results, particularly under conditions of

large deformations.
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Table 3-16 Nodal displacement of double-layer spherical model

- Present Technique (mm) SAP2000 (mm) Linear FM (mm)
odes
dx dy dz dx dy dz dx dy dz
1-20 0 0 0 0 0 0 0 0 0

25 [11.358|-1.018 | -6.250 |11.358 |-1.018 | -6.250 | 11.380 | -1.050 | -6.050

30 8.998 | 2.336 | 18.533 | 8.998 | 2.336 | 18.534 | 8.850 | 2.370 | 18.640

35 7.197 | 0.172 | 5.817 | 7.197 | 0.172 | 5.817 | 7.170 | 0.250 | 6.040

40 7.308 |-1.587 | -18.715 | 7.308 |-1.587 | -18.716 | 7.450 |-1.570 | -18.590

45 | 23.494 | -0.691 | -10.299 | 23.494 | -0.691 | -10.299 | 23.540 | -0.680 | -10.080

50 | 22.454 | 2.758 | 30.767 | 22.454 | 2.758 | 30.768 | 22.260 | 2.810 | 31.000

55 [16.828 | 1.279 | 9.746 |16.828 | 1.279 | 9.747 |16.780 | 1.380 | 10.040

60 |19.757 |-3.576 | -31.181 | 19.757 | -3.576 | -31.181 | 19.930 | -3.520 | -30.900

70 | 34.887 | 3.567 | 36.626 | 34.888 | 3.568 | 36.627 | 34.670 | 3.650 | 36.930

80 |31.494|-4.300 | -37.191 | 31.494 | -4.300 | -37.192 | 31.690 | -4.220 | -36.840

90 |[47.886 | 4.000 | 38.591 | 47.886 | 4.000 | 38.591 |47.660 | 4.120 | 38.960

95 |41.137| 1.403 | 12.228 | 41.138 | 1.403 | 12.229 | 41.060 | 1.520 | 12.650

100 |44.200 | -4.541 | -39.362 | 44.201 | -4.541 | -39.362 | 44.400 | -4.430 | -38.940

105 |63.144 | -1.367 | -12.450 | 63.145 | -1.367 | -12.450 | 63.190 | -1.220 | -12.040

110 |60.772 | 3.907 | 36.623 | 60.774 | 3.907 | 36.624 | 60.560 | 4.050 | 37.060

115 |54.336 | 1.293 | 11.570 | 54.336 | 1.294 | 11.571 | 54.260 | 1.440 | 12.060

120 | 57.216 | -4.412 | -37.603 | 57.217 | -4.412 | -37.604 | 57.400 | -4.270 | -37.120

125 | 74.310 | -1.252 | -10.691 | 74.312 | -1.252 | -10.691 | 74.350 | -1.080 | -10.220

130 |72.188 | 3.362 | 30.946 | 72.190 | 3.362 | 30.947 | 72.010 | 3.530 | 31.440

135 |66.665 | 1.075 | 9.699 |66.667 | 1.075 | 9.699 |66.600 | 1.250 | 10.240

140 |69.163 |-3.867 | -32.075 | 69.165 | -3.867 | -32.076 | 69.310 | -3.700 | -31.540

145 | 82.627 |-1.016 | -7.927 |82.628 | -1.016 | -7.927 | 82.650 |-0.820 | -7.400

150 |81.001 | 2.439 | 22.185 | 81.002 | 2.439 | 22.185 | 80.860 | 2.630 | 22.730

155 | 76.954 | 0.745 | 6.800 |76.955| 0.745 | 6.800 |76.900 | 0.940 | 7.390

160 | 78.835 |-2.935 | -23.343 | 78.837 | -2.935 | -23.343 | 78.940 | -2.740 | -22.760

165 |87.320 | -0.669 | -4.435 |87.322 | -0.669 | -4.435 | 87.320 |-0.460 | -3.860

170 |86.371 | 1.238 | 11.259 |86.373 | 1.238 | 11.259 | 86.290 | 1.440 | 11.840

175 |84.205| 0.288 | 3.218 |84.207 | 0.288 | 3.219 |84.160 | 0.490 | 3.820

180 |85.201 |-1.678 | -12.411 | 85.203 | -1.678 | -12.411 | 85.240 | -1.470 | -11.810

382 |87.747|-0.211| -0.601 |87.749 |-0.211 | -0.601 | 87.730 0 0
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3.4 FORMULATION OF THE PRESERVATION TECHNIQUE

In situations where there is necessity to manage large displacements,
particularly in the context of structural non-linearity, it becomes evident that
the linear displacement and force control techniques lack precision and
accuracy throughout the entirety of the process undertaken to search for a
solution conducive to the effective control of large displacements (Li et al.,
2017). The formulation of the preservation technique starts by introducing the

amount of nonlinear member alteration (shortening or elongation) as €, (d )

Referring to elements shown in Fig. 3-1 and Fig. 3-11, the preserving quantity
can be formulated with the same employed procedure of deriving Egs. 3.10,
3.13, and 3.35, which all came from the compatibility relationship as in Eq. 3.3.
Setting the element in Fig. 3-1 under preservation, the required member
alteration employing Taylor’s series (Eq. 3.41) and Pade approximation
expansion (Eq. 3.42) can be written as the following:

_ Xji:0X; + Yiidyyi dxj.; +'dyj2.i. N Xj‘i'deJ?'i' + Yy N Xj.i.yj.i.dlxj.i.dyj.i.

¢ L 2L 2L° L®

2L (2% 0X . — dXEy + 2y pdy g — dyl
o, = 2L (2K 0K 429, — ) 3.42
AL" =2, 0% + X — 2y dy g+ dYT

e 341

To perform the preservation for displacement, internal member force, and/or
displacement and internal force simultaneously, the constitutive relationship
between the controlling actuation and the resulting internal force vector can be
written as:

e, (d)=Ft, 3.43
where tc is the member force attained during the preservation process.
Substituting Eqgs. 3.41 and 3.42 into Eqg. 3.43 yields to Taylor and Pade

preservation equations respectively as shown below:
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X; X + Ypidy; B dsz'i' +ldy,?-i' N Xi :

L 2L 2L 3.44
Xj'i-yj-i'ﬁ)s(j'i-dyj'i' “Ft =0

2L (2x;5x; . — A+ 2y dy . —dy2 )

AL% = 2% dX g+ OXG — 2y dy g+ dy S

2o+ Yoyt
. +

“Ft =0 3.45

Now, the produced member force after prestressing and preservation can be
computed by accumulating t and tc as Te, and can be expressed in terms of
member length alteration as:

e,(d)=FT, 3.46
where e¢(d) is the change in member length after both the prestressing and

preserving processes.

Similarly, the derivation of the ec(d) can be generalized to be used with rigid
assemblies’ preservation. When the element in Fig. 3-12 is affected by external
loads (P) at both ends, it experiences nodal deformation and member length. If
the member is rigid, it does not need to be prestressed by (t) and it will be
equilibrated by just producing internal (T). Therefore, Te in Eq. 3.46 is the
combination of tc and T. Although Te in Eq. 3.46 can be the combination of t,
tc, and T if the preservation process is performed after applying an external load

to the prestressed system.
3.4.1 Sensitivity Technique for the Preservation Process

Determining which bars to actuate is a critical point of interest during the
preservation procedure. It is imperative to install actuators in structural
elements where they will most effectively control future displacements and
internal forces, especially when their placement is still undecided during the

design phase. A specific technique involves testing the sensitivity of each
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member separately by applying a unit of actuation (+1 or -1) to a single member
and recording the effect on each nodal displacement and member force. This
technique, referred to as bar sensitivity, was previously used by Saeed (2014)
to control displacements only. However, using Eqg. 3.20 or 3.21 enables
observation of each member's impact as an actuator on nodal displacements and
member stresses. The effect of member sensitivity can then be evaluated by
observing the output to identify which member has the greatest impact on
multiple joints and member forces. The sensitivity technique is applied to the
cantilever truss shown in Fig. 3-18, and the computed displacements and bar

forces are tabulated in Tables 3-17 and 3-18, respectively.

For example, if a 1 mm shortening is applied to the member labeled 7, it results
in a displacement of -0.999 mm in the x-direction and -0.005 mm in the y-
direction at node 5. It has no effect on the other joints, as shown in Table 3-17,

and on the member forces, as shown in Table 3-18.

Table 3-17 Computed nodal displacements based on the bar sensitivity

technique
Actuator| ec Displacement (mm)

No. |(mm)| dy, | dxs | dys | dxs | dys | dxs | dys | dxe | dys
1 -1 |0.896 | 0.103 | 0.499 | 0.103 | 0.397 | 0.103 | 0.499 | 0.103 | 0.499
2 -1 [-0.104 |-0.897 | 0.494 | 0.102 | 0.396 |-0.902 | 1.492 | 0.096 | 1.497
3 -1 | 0.146 |-0.149|-0.709 | -0.149 | -0.562 | -0.149 | -0.709 | -0.149 | -0.709
4 -1 | 0.146 |-0.149| 0.709 [-0.149 | 0.855 |-0.149 | 0.708 |-0.149 | 0.708
5 -1 [-0.104 | 0.102 |-0.499 | -0.897 | -0.598 | 0.097 |-1.497 | -0.901 | -1.492
6 -1 [-0.103| 0.103 |-0.499 | 0.103 | 0.397 | 0.103 [-0.504 | 0.099 | -0.504
7 -1 0 0 0 0 0 -0.999 | -0.005 0 0
8 -1 0 0 0 0 0 -0.010 | 1.409 | -0.010| 1.409
9 -1 0 0 0 0 0 -0.005 | -0.999 | -1.004 | -0.995
10 -1 0 0 0 0 0 -0.005 | -0.999 0 0
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Table 3-18 Computed member forces based on the bar sensitivity technique

Actuator | ec Member Force (N)
No. [(mm) | ¢ t t3 ta ts te |t7|ts|to |t
1 -1 | 415.76 | 415.76 |-586.51 |-586.51 | 415.76 | 411.61 |0 |0 |0 | O
2 -1 | 415.78 | 415.76 |-586.50 |-586.51 | 411.61 | 415.75 |0 |0 |0 | O
3 -1 |-584.75 | -584.74 | 824.02 | 829.89 |-584.74 |-584.75/0 /0|0 | 0
4 -1 |-584.75 | -584.74 | 829.89 | 824.02 |-584.74 |-584.75|0 /0|0 | 0
5 -1 | 415.78 | 411.61 |-586.51 | -586.50 | 415.76 | 415.75 |0 |0 |0 | O
6 -1 | 411.61 | 415.76 |-586.51 |-586.51 | 415.76 | 415.76 |0 |0 |0 | O
7 -1 0 0 0 0 0 0 |o|ojo]|oO
8 -1 0 0 0 0 0 0 |o|ojo]|oO
9 -1 0 0 0 0 0 0 |o|ojo]|oO
10 -1 0 0 0 0 0 0o |o|ojo0]|oO

3.4.2 Validation of the Preservation Technique

The precision of the proposed preservation technique is validated through
numerical examples using rigid and flexible spatial structures and later through
an experimental model (see Chapter 4). The preservation process has been
applied, considering geometrical preservation and member force preservation

separately and simultaneously.

3.4.2.1 Displacement preservation without concern for member force

The displacement preservation is now being applied on the simple cantilever
truss as shown in Fig. 3-18. The results of displacements during the analysis
stage are presented in Table 3-15 (columns 5 and 6). The vertical displacements
of unsupported joints (3 and 5) at the top of the truss are identified to be of
interest. Thus, the target of preservation is defined to adjust the displacement
to (-2 mm) under the applied load instead of -3.164 mm and -9.286 mm for

nodes 3 and 5, respectively. The outcome of the process is tabulated in Table
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3-19, then compared with the linear technique by Saeed and Kwan (2016b).
The desire target of displacement was accomplished with total amount of
actuation of 8.768 mm using Pade preservation equation, and 8.764 mm using
Taylor preservation equation. Comparing the sum of the total actuation for
attaining this prescribed vertical displacement gives a very good agreement
with the linear approach. The total nonlinear actuation for the preservation
process showed a discrepancy ratio of 0.44% and 0.39% when using Eqgs. 3.44
and 3.45 compared to linear preservation. This discrepancy arises due to the
consideration of geometric nonlinearity and equilibrium in the deformed

configuration.

Members 2 and 3 are chosen as actuators because they significantly impact
raising the displaced vertical joints. As shown in Table 3-17 (columns 5 and 9),
shortening member 2 by 1 mm raises nodes 3 and 5 by 0.494 mm and 1.492
mm, respectively. In contrast, member 3 has the opposite effect, preventing

node 3 from rising more than required.

Table 3-19 Displacement of the cantilever truss after preservation process
using present technique in comparison to the linear technique by Saeed and
Kwan (2016c¢)

Linear preservation Nonlinear preservation of the present study
Nodes va/gﬁe(dzgng) Ec Eq. 3.44 €c Eq. 3.45 €c Bars
ax | ay | ™ Tax [ dy | (mm) | ax | ay | ™
2 0 -0.74 -6.221 0 |-0.750 -6.211 0 |-0.750 -6.215 ;
3 |-4.630| -2 '2'882 -4582| -2 '2'853 -4.582| -2 '2'853 j
4 1-1.009| -1741 8 -0.996 | -1.717 8 -0.996|-1.717 8 2
5 |-4630| -2 8 -4.395| -2 8 -4.394| -2 8 ;
6 |-1.759]| -1.250 8 -1.5731-1.263 8 -1.574|-1.263 8 190
Total ec 8.803 8.764 8.768
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3.4.2.2 Member force preservation without concern for joint displacement

Controlling forces in some structures is more important than minimising shape
disturbances, such as preventing buckling in truss members or slack in cable
systems. Similarly, the same cantilever truss in 18 is tested numerically using
the present approach and compared to work by Saeed and Kwan (2016b). The
analysis of member forces resulting from the applied loads is presented in Table
3-15. It was reported by Saeed and Kwan (2016b) that bars 2, 5, and 8
experienced the greatest forces, with values of 5000 N, -5000 N, and 4243 N,

respectively. Thus, the target is to control these member forces.

The first aspect to consider is the computed member force for the column
labeled tg in Table 3-18, where all values are zero. This indicates that the
member force ts is independent of e,. Similarly, bars 7, 9, and 10 on the right
side of the cantilever truss are unaffected by e, and cannot be prestressed or

controlled. Therefore, they experience stress only from the applied loads.

Members 2 and 5 exhibit a similar response to member actuation, as observed
in Table 3-18 when they are at their original positions. Therefore, any change
in e results in a parallel effect on both members simultaneously, with both
being reduced or increased together. The greatest effect on members 2 and 5
can be achieved by using members 3 and 4 as actuators, either separately or
together, as they are associated with the maximum member force for bars 2 and
5. The findings of member forces after the preservation process for controlling
member forces are presented in the Table 3.20. The target by Saeed and Kwan
(2016Db) was an increase of +1000 N for both members to achieve -4000 N and
6000 N for bars 2 and 5, respectively. The computed bar force was 5976 N for
bar 2 and -4000 N for bar 5, with total actuation of 1.6928 mm and 1.6702 mm

when bar 3 and bar 4 were used separately as actuators, respectively. However,
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when both bars 3 and 4 were used together, the target was achieved with 1.6856

mm of actuation.

The computed nonlinear member force 2 using the proposed technique is less
than that obtained by the linear method by Saeed and Kwan (2016b). This is
attributed to the derived technique's capability to compute nonlinear member
alterations after deformation has occurred and equilibrium has been achieved
in the deformed configuration. Additionally, member force 2 could reach up to
6000 N, but this would cause member 5 to approach -3975 N if member 4 were
selected and actuated by 1.7119 mm. This finding suggests that linear analysis
underestimates internal bar forces by neglecting the stress induced by the length
alterations of other bars. A similar conclusion was reported by Du Pasquier and
Shea (2022) when comparing linear and nonlinear adjustments in morphing
structures.

Table 3-20 Internal force of the cantilever truss after preservation process in
comparison to the linear technique by Saeed and Kwan (2016¢)

B Linear preservation Nonlinear preservation of present study
No | Saeed and Kwan (2016b) Eq. 3.44 and Eq. 3.45
tc (N) ec (mm) tc (N)  |ec(mm)| tc(N) [ec(mm)| tc(N) | ec(mm)
1 3000 2983 2984 2983
2 6000 5975 5975 5975
3 -4243 1.7070 -4223  11.6928 | -4207 -4214 | 0.7880
4 1414 1430 1413 | 1.6702 | 1421 | 0.8976
5 -4000 -4000 -4000 -4000
6 -1000 -1008 -1008 -1008
7 0 0 0 0
8 4243 4243 4243 4243
9 -3000 -3000 -3000 -3000
10 -3000 -3000 -3000 -3000
Total ec (mm) 1.7070 1.6928 1.6702 1.6856
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3.4.2.3 Simultaneous preservation of joint displacement and member force

An important feature of comprehensively controlling structural performance
involves understanding the relationship between structural geometry and force
distribution. In practical considerations for some structures, it is highly
desirable to control both shape and internal stress simultaneously, preserving
members from failure while maintaining their appearance without disturbance.
The present technique is validated on the structure in Fig. 2-3, previously used
by You (1997). The target is to control the displacement of joint 6 by restoring
it to its original position while ensuring that the prestressing level remains
unchanged. Joint 6 was successfully restored to its position in two scenarios. In
Case I, small displacements for joint 6 were restored both numerically and
experimentally, as reported by You (1997). In Case Il, the same cable net
shown in Fig. 2-3 was used, but with assumed displacements of -20 mm and 20
mm in the x- and y-directions, respectively, following the numerical studies of
Xu and Luo (2009), and Saeed (2022).

A. Case I: small displacement

In the first case of simultaneous displacement and internal force preservation,
small displacements were employed for validation. During the prestressing
stage, as studied by You (1997), node 6 was displaced by 2.56 mm in the x-
direction and -4.31 mm in the y-direction as a result of actuating cables vii, viii,
and ix by -5.02, 4.49, and -5.02, respectively. Here, the cable net is indicated
to have the same prestressed amount and nodal displacement as reported by
You (1997), to highlight the differences during the preservation stage alone.
The preservation findings for displacements and internal cable forces are

presented in Table 3-21 and Table 3-22, respectively. The nonlinear technique
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achieved the target with a difference rate of 1.35 % of total actuation while

maintaining the prestressing level above the initial state.

Table 3-21 Displacement of the cable net structure after preservation process
in comparison to the linear technique by You (1997)

Displacement Displacement after preservation (mm)
Node Direction before_ You (1997) present study
No. preservation
(mm) de de de de
5 dxz 0 0.29 0.29 0.17 0.17
dy2 -6.66 -7.26 -13.92 -7.10 -13.76
5 dxs -2.56 -2.78 -5.34 -2.64 -5.20
dys -4.31 -4.19 -8.50 -4.18 -8.49
6 dxs 2.56 -2.56 0 -2.56 0
dys -4.31 4.31 0 4.31 0

Table 3-22 Internal force of the cable net structure after preservation process
technigque in comparison to the linear technique by You (1997)

Linear preservation by You Nonlinear preservation of
CNagIe pr(éztbrfss (1997 present study
' €c (mm) tc (N) Te (N) €c (mm) tc (N) Te (N)
1 61.4 0 80.40 141.8 0 79.7 141.1
2 61.4 0 53.60 115.0 0 53.7 115.1
3 23.5 0 9.80 33.3 0 13.3 36.8
4 17 0 0 17.0 0 0 17.0
5 17 -10.53 | 37.14 54.1 -10.25 36.4 53.4
6 23.5 -0.42 0 23.5 -0.82 0 23.5
7 50 -4.67 11.10 61.1 -4.59 12.8 62.8
8 50 0 17.50 67.5 0 21.8 71.8
9 50 3.79 51.10 101.1 3.49 54.8 104.8
Total ec (mm) 19.41 19.15

B. Case II: large displacement

In the second case, the displacement of joint 6 was set to be (-20 ,20) mm for

(dx, dy) after prestressing, maintaining the same prestress degree in the cables
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as in Case I. The displacements of other free joints, such as joints 2 and 5, were
not the focus of this restoration scenario. The goal was to restore joint 6 to its
original position, achieving zero displacement after preservation while

preventing any reduction or slackening of the member prestress.

The proposed preservation technique was applied to compute the nonlinear
member alteration, using all the cables in the structure as actuators. The set of
member alterations (ec) was calculated and presented in Table 3-23, column 11.
Notably, the internal stress of the members remained unchanged during the
preservation process, with total actuations amounting to 80.78 mm. This
quantity is smaller, with difference ratios of 39% and 2% compared to the
nonlinear studies by Xu and Luo (2009) and Saeed (2022), respectively.
Another set of member alteration (ec*) using the proposed approach with only
four cables, resulting in total actuations of 80.551 mm, as tabulated in Table 3-
23, column 12. Using only cables 5, 6, 8, and 9 as actuators restored joint 6 to
its original position with less total actuation and effort, with a difference ratio
of just 0.28%.

Regarding internal forces, the computed nonlinear member actuation, whether
using all nine members or only four, successfully maintained the desired
prestress level. In Saeed’s (2022) study, the prestress level remained unchanged
but required a larger total actuation with all members as actuators. Conversely,
Xu and Luo (2009) restored joint 6 with 120.14 mm of total actuation, but the
prestress degree was altered, though slackening was prevented. These results,
obtained using the proposed technique, demonstrate the accuracy and precision

of the derived preservation method.
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Table 3-23 Simultaneous preservation of displacement and internal force in
comparison with the studies by Xu and Luo (2009) and Saeed (2022)

=
()
E ~ .
N - [T =) Xu and Luo
S % c_:,’; £ ?) . (2009) Saeed (2022) Present study
g 2| 3 21 oy
Zl O §
d de €c Te €c Te €c ec* Te
(mm)|{ (N) [(mm)| (N) | (mm) | (mm) | (N)
1 |61.38|-14.36| 63.90 |-4.38| 61.38 | 3.90 0 [61.38
2 16138 (11.13| 59.70 | 0.08 | 61.38 | -1.80 0 [61.38
dxe | -20 | O
3 | 2355|952 | 1841 |-3.07| 2355 | 2.98 0 [23.55
6 4 117.0211.80| 13.71 | 5.65| 17.02 -0.36 0 17.02
5 |17.02 |-13.30| 18.33 |-18.62| 17.02 | 17.50 |28.284 (17.02
’ 20 | o 6 | 2355|494 | 28.04 | 5.15| 2355 | -5.20 |-5.153 |23.55
6
y 7 50 |-10.62| 51.04 | 0.01 50 3.17 0 50
8 50 |-16.91| 50.39 |-17.99] 50 15.10 | 19.63 | 50
9 50 |27.56| 46.93 |27.48| 50 -30.77 |-27.484| 50
Total ec (mm)
120.14 82.43 80.78 |80.551

3.5 SUMMARY

This chapter presented the formulation of three nonlinear techniques:
prestressing, analysis, and preservation, considering the geometric nonlinearity
of spatial pin-jointed flexible and rigid structures. The proposed techniques
were developed under the assumption of elastic material behaviour,
accommodating both small and large displacements in pin-jointed elements.
The validation of all proposed techniques was conducted through various
numerical examples, and their results were compared to previously published
numerical and experimental methods. Additionally, some models were
validated using finite element analysis (SAP2000 — version.2023.2.0), which

relies on an improved tangent stiffness matrix. The comparison of results
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demonstrated exceptional agreement with cited studies, indicating that the
proposed techniques, which consider both compatibility and equilibrium in the
deformed configuration, produce highly accurate and dependable results. These
validated methods will be crucial for computing prestress levels, conducting
structural analyses, and implementing preservation processes in the subsequent

chapter on the design and assembly of the experimental model.

The limitation of the derived techniques can include that the assumptions of
linear elasticity, idealised pin-joints, or uniform material properties may not
reflect real-world complexities. Besides, the derived equations might be

sensitive to input uncertainties, leading to errors in the predictions.
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CHAPTER FOUR
DESIGN AND ASSEMBLY OF EXPERIMENTAL MODEL

4.1 INTRODUCTION

An experimental model was constructed and tested at the Structural Lab of the
Civil Engineering Department at the University of Raparin to validate the
theoretical concepts presented in Chapter 3. This chapter describes the model's
design, its various components, the construction process, and the measuring
instruments used during experimentation. The experimental system is a
hyperbolic paraboloid cable net assembly, as shown in Figs. 4-1 and 4-2.
Additionally, this chapter covers the testing procedure and the illustrative

flowchart of the experimental findings.

4.2 HYPERBOLIC PARABOLOID STRUCTURE

A three-dimensional cable net experimental model with a hyperbolic
paraboloid geometry was constructed, as illustrated in Figs. 4-1 and 4-2. The
labelling of the model's members and joint numbers is detailed in Fig. 4-1. The
constructed structure is used for comparison purposes and to test the validity of
the proposed theoretical prestress, analysis and preservation equations. The
assembly consists of 64 cables and 41 joints, supported at its perimeter by 16
joints, leaving 25 inner joints free. The model’s plan diagonal lengths and
height are 1840 mm x 1840 mm x 800 mm, respectively. The nodal coordinates
for the 3D hyperbolic paraboloid model and member lengths are presented in
Table 4-1.
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d) Convex diagonal view

Fig. 4-1 Labelling of members and joints in the 3D experimental model with
hyperbolic paraboloid geometry
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Fig. 4-2 Hyperbolic paraboloid experimental model

The experimental model members are discrete elements, each consisting of four
different pieces, as shown in Fig. 4-3. The joints are steel rings connected to
the cables to allow free rotation, resembling pin connectors. The cable members
have been cut and reconnected via actuators. The actuators comprise three
segments: two aluminium female threaded turnbuckles and a single steel male

threaded jack screw.

Fig. 4-3 Members detail of experimental model
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Table 4-1 Nodal coordinates and member lengths of the hyperbolic
paraboloid 3D model

Node | Coordinates (mm) | Node | Coordinates (mm) Member

No. . y . No. . y 7 M?\Irr;?er length

1 920 | 920 | 400 22 230 | -230 | -45 ol

2 460 | 920 | 200 23 | 460 | -460 | -142 1,64 354.12

3 690 | 690 | 260 24 | 690 | -690 | -270 2,3,8,9

4 920 | 460 | 200 25 | 920 | -920 | -400 |62,63,56,57 33076

5 0 920 0 26 | -920 | 460 | -200 45,6

6 230 | 690 | 90 27 | -690 | 230 | -90 59,60,61 349

7 460 | 460 | 150 28 | -460 0 -5 | 7,10,11,15 | 337.49

8 690 | 230 | 90 29 | -230 | -230 | 50 |12,14,51,53

9 920 0 0 30 0 -460 | -5 |50,54,55,58 33686
10 | -460 | 920 | -200 | 31 | 230 | -690 | -90 13,52 340.29
11 | -230 | 690 | -90 32 | 460 | -920 | -200 | 16,21,44,49 | 343.36
12 0 460 -5 33 | -920 0 0 |17,20,45,48 | 336.19
13 230 | 230 | 50 34 | -690 | -230 | 90 |18,19,46,47 | 329.88
14 | 460 0 -5 35 | -460 | -460 | 150 |22,28,37,43 | 332.72
15 690 | -230 | -90 36 | -230 | -690 | 90 |23,27,38,42 | 329.40
16 920 | -460 | -200 | 37 0 -920 0 |24,26,39,41 | 327.72
17 | -920 | 920 | -400 | 38 | -920 | -460 | 200 25,40 329.09
18 | -690 | 690 | -270 | 39 | -690 | -690 | 260 29,36 350.28
19 | -460 | 460 | -142 | 40 | -460 | -920 | 200 30,35 349.55
20 | -230 | 230 | -45 31,34 339.42
2| o | o | o | ) T | asar

4.2.1 Material Properties

Various materials were used in constructing the hyperbolic paraboloid cable
net model. The members consist of stainless-steel cables, which incorporate
aluminium female right- and left-threaded turnbuckles and steel male right- and

left-threaded jack screws in the middle. The cable is a strand type consisting of
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19 wires. The cable has a modulus of elasticity of 126,000 MPa (see Fig. 4-4)
and a cross-sectional area of 1.5393 mm?, resulting in an axial stiffness (EA)
of 193,951.8 N. The aluminium segments have a modulus of elasticity around
70,000 MPa, with the stress-strain diagram shown in Fig. 4-5. Both the cable
and aluminium samples were tested at the Slemani Construction Laboratory.
The vertical axis of both diagrams represents the tensile stress in N/mm?, and
the horizontal axis which is labelled "Total Extension [%]" represents the
percentage increase in length of the test specimen relative to its original length
during a tensile test (strain). The third segment is a jack screw with a modulus
of elasticity of 200,000 MPa and an EA of 2,389,180 N.
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0.5 1 15 2 2.5 3 3.5
Total Extension [%)]

Fig. 4-4 Stress-strain diagram of (19 wire-strand) cable in tension
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Fig. 4-5 Stress-strain diagram of aluminium in tension

Because each member of the experimental model consists of different
segments, as shown in Fig. 4-6, and each segment has a different cross-section
and elastic modulus, it is necessary to compute the effective axial stiffness for

the combined segments using Eq. 3.47 (Saeed, 2014):

E Aeff. — Lcombined 3 . 47

Lcable + LA/. + Lscrew
EA.,. EA, EA

cable screw

where, EA, is the effective combined axial stiffness of the experimental

members, L

combined

is the actual length of the member that is composed of

combined segments. Z_, |/ EA

‘cable cable !

L, lEA, ,and L |EA_., aretheratios

screw screw

of length to EA for each of the cable, aluminium, and jack screw segments

respectively. EA4 . for all members is listed in Table 4-2.
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.
>

Fig. 4-6 Top view detail of experimental member segments

Table 4-2 Effective combined axial stiffness of experimental members

Member| EAett Member | EAetr. Member| EAett Member | EAef.
No. (N) No. (N) No. (N) No. (N)
1 179811.80 17 162666.37 33 165548.59 49 165034.84
2 166387.23 18 161238.01 34 164950.26 50 163100.19
3 161749.38 19 161238.01 35 165445.81 51 163434.22
4 166282.76 20 163039.52 36 172153.68 52 161987.60
5 166352.14 21 172087.92 37 162664.14 53 164188.74
6 169376.68 22 167726.70 38 160180.24 54 163100.19
7 165663.58 23 158715.67 39 160910.42 55 167620.04
8 162465.38 24 158702.74 40 160898.37 56 159484.24
9 158755.97 25 160458.22 41 158340.67 57 162086.66
10 167620.04 26 161284.35 42 161296.53 58 166440.66
11 163100.19 27 160922.71 43 164189.00 59 171369.53
12 162686.60 28 164574.69 44 166169.93 60 166352.14
13 163226.46 29 170181.03 45 163790.97 61 167045.60
14 161577.91 30 166944.71 46 159457.56 62 162125.97
15 163100.19 31 164188.74 47 159457.56 63 170043.99
16 164659.92 32 159837.54 48 160462.87 64 174389.10
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4.2.2 Joints

Steel rings were used as pin-joint connectors to connect the members together
and to the supports. Cables are connected to the rings using aluminium crimps.
All internal joints connect four members (see Fig. 4-7. a) and have the ability
to displace in the x-, y-, and z-directions. The parametric joints are connected
to the supports via screws, as shown in Fig. 4-7. b. The load hangers pass

through the hole of the ring, as shown in Fig. 4-7. c.

= '
. :
e — —

Load hanger at joint

Flg 4-7 Joint deta|I of the experlmental setup

4.2.3 Cable Members

The experimental model is a space cable net structure consisting of 64

combined flexible members, as shown in Fig. 4-3. The cable members were cut
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in the middle and reconnected via actuators. These cable segments are strand
type, formed from 19 wires with an overall diameter of 1.4 mm. The cables are
flexible members with a high ability to transform tensile force and behave
elastically up to approximately 1700 N (see Fig. 4-4). The cable members need
to remain taut to prevent slack and stay effective. Turnbuckles were utilised to
alter the cable length during the prestressing stage and achieve the desired
tautness. The strength of these cables was determined in the laboratory, and the
stress-strain diagram is shown in Fig. 4-4. During testing, the ends of the cables
were passed through a hole in a reinforced steel segment with 100 mm length
(see Fig. 4-8.b) to fit into the tensile testing machine grips (see Fig. 4-8.a) at

the Slemani Construction Laboratory.

a) Tensile testing machine 33 I b) Cable testing specimen

Fig. 4-8 Tensile testing machine and cable test specimen
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4.2.4 Actuators

To facilitate the geometrical adjustment and prestressing of the structure, it is
imperative to implement some alterations to the cable length. For this reason,
each cable is connected to an actuator. Each actuator is made up of two

aluminium parts and one left and right-handed jack screw as shown in

Fig. 4-3. Another reason was for placing the strain gauge sensors for recording

internal forces within the members.

The detail of the jack screw is shown in Fig. 4-9. It has left- and right-hand
external threads with a 5 mm diameter and is connected to the aluminium
segments at both ends. The turnbuckle body has a spanner width of 5 mm,
allowing a wrench to twist and adjust the tensioning screw, with each wrench

twist providing 1.6 mm of lengthening or shortening.

The aluminium segments were manually made in a very precise process. The
aluminium bars have square cross-sections with internal circular threaded holes

and a net area of 67.5698 mm2. The steps are described as follows:

I. The aluminium bars were cut into smaller pieces, each measuring 70 mm
in length, using a digital electric cutter (see Fig. 4-10).

ii. A 4 mm diameter hole was drilled in the center of each segment parallel
to its length, with the center determined using a laser indicator on the
drilling machine (see Fig. 4-11).

iii.  The holes were threaded using a 5 mm internal thread tap (see Fig. 4-12),
with half of the segments right-threaded and the other half left-threaded.

Iv. A2 mm diameter hole was drilled perpendicular to the length at one end

of each segment to make a connection joint to the cable segments (see
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Fig. 4-12).
< 39 mm > ‘ ’ - 39 mm > | 'v

\\\\\ R

UUUOOU
> <4— (0.8 mm

Measuring threads by pitch Measuring threads per 20 mm = 25 threads

Fig. 4-9 Jack screw detail in the actuator

¢) 70 mm aluminium segments

Fig. 4-10 Cutting phase of aluminium segments
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Fig. 4-11 Center marking and drilling phase of aluminium segments

¢) Turn buckle assembly 2 mm hole for cable connection

Fig. 4-12 Photo illustrating internal left and right threading and assembly of
end joints
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4.2.5 Support System

The hyperbolic paraboloid experimental model is supported by 16-pin supports
positioned at its perimeter. Fig. 4-13 shows the layout of these supports, which
are connected to the cables via bolts allowing free rotation. Each support's base

plate, 5 mm thick, is welded to the layout frame, as depicted in Fig. 4-13.

Pin supports at the perimeter
of the experimental model

Fig. 4-13 Layout of supports in the experimental model

4.2.6 Experimental Measurement

It involved recording the nodal displacements of free joints and the internal
forces of the combined members during the prestressing, analysis, and
preservation phases. Detailed descriptions and recordings of these phases are

provided in the following subsections:
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4.2.6.1 Nodal displacement

The model consists of 41 joints, with 25 of them free to displace in the x-, y-,
and z-directions, resulting in a total of 75 degrees of freedom that need to be
recorded. To achieve this, five digital cameras were utilised to capture the
movement of the free nodes in the x-z and y-z planes of the 3D model (see Fig.
4-1). The used cameras were two Nikon D780 with 24.5-megapixel resolution
and aspect ratio of 3:2, and three Samsung Galaxy Camera 2 with 16-megapixel
and aspect ratios of 4:3, 3:2, and 16:9. Additional lighting sources were
strategically positioned to ensure adequate lighting density for the cameras
during data recording (see Fig. 4-14). A small red-coloured bead as in Fig. 4-15
was affixed to each free node to facilitate easy monitoring of joint movements.
Above all 25 nodes, a reference scaled ruler was attached, intended to serve as
a scale factor during the data collection phase. Fig. 4-14 and Fig. 4-15 provides

further illustration of measuring the displacement of the experimental model.

‘ ‘I‘.‘ . ~ b . '_.
[ e
// | V

JI S

Fig. 4-14 Arrangement of lighting surces and digital camera for
displacement recording
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4

A |

Scaled ruler for
scale factor

Red bead for
displacement monitoring

O ——

Fig. 4-15 Placement of scaled ruler and joint movement monitoring for joints

4.2.6.2 Member force

Measuring the internal forces of the experimental members constitutes the
second criterion in the laboratory data collection process. For this purpose, 64-
channel data logger is used. The device features a touch screen LCD with a
graphical resolution of 800 x 480 pixels as shown in Fig. 4-16. To measure the
axial forces of the combined members in the experimental model, strain gauge
sensors are provided for each member. The sensors were meticulously adhered
to one side of the aluminium segments of the actuators. Specifically, the strain
gauge sensor used was the BX120-3AA high-precision resistance strain gauge
which has a strain gauge factor of 2.08. This strain sensor is very small, with a
wire grid size of 3.0x2.3 mm, and has a nominal resistance of 120 ohms that

varies with the applied force and voltage.
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Fig. 4-16 64-channel data logger for strain measurement

The steps for installing the strain gauge sensors include smoothing the
aluminium surface using fine grade sand paper (P320 & P400), cleaning it by
toner, marking the center line for sensor placement, mounting the strain gauge
on tape, applying standard type of adhesive to the sensor, and finally curing and

pressing it into the surface, more illustration in Fig. 4-17.

a) Aluminum surface % » b) Smoothing surface ¥ v
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d) Center line marking c) mounting & apply adhesive | f) Curing and pressing into surface
Fig. 4-17 Photo illustrating steps for strain gauge sensor placement
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Each strain gauge was welded to a lead wire measuring 150 mm, necessitating
a special extension wire to connect to the data logger device. Due to the
extension wires' length, ranging from 6 to 10 meters, a low-resistance cable
with a double-layer shield with diameter of 0.8 mm (2x0.5 mm?), specifically
designed for data transfer, was used for this purpose as shown in Fig. 4-18. a.
The lead wires were connected to the extension wires using heat shrink wire
connectors (see Fig. 4-18. b). Then, all wires were connected to the bridge strain
gauge as in Fig. 4-18. c, and subsequently, the bridges were connected to the

data logger channels, as depicted in Fig. 4-18. d.

a) Extension wire-double layer shicld

i e

d) 64 channel of bridge in gauge connected to data logger
Fig. 4-18 Connection accessories for data logger device
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The required calibration settings for strain readings were entered into the data
logger setup. The device stores data in CSV format on an external standard
USB memory in micro-strain units. During the phases of prestressing, analysis,
and preservation in the experimental works, the strain readings were recorded
and subsequently converted to axial forces. These measurements were then

used to validate the numerical data.

4.2.7 Parameters of the Study

The parameters for this study are defined as the prestressing degree, loading
cases, and preservation targets. Prestressing force serves as an independent
variable, crucial to the study due to its direct influence on the displacement and
internal forces within pin-jointed spatial structures. Additionally, applied nodal
loads significantly affect the deformability and stress distribution within spatial
assemblies. Furthermore, the restoration of geometry and/or internal forces
within spatial members is essential for ensuring the longevity and optimal

performance of this type of structural system.

Accordingly, the study aims to examine the impact of various prestressing
degrees and loading conditions on the geometric nonlinear behaviour and
overall structural performance. Similarly, it seeks to establish effective

preservation techniques for structures exhibiting nonlinear responses.

4.3 EXPERIMENTAL PROCEDURE

After completing all necessary settings for experimental data collection, the
placement of the cameras was checked to ensure accurate capture of the

targeted nodal displacements. Additionally, all channels were checked for
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strain recording. It was found that 63 channels were working properly;
however, channel number 22 was not functioning and was therefore removed
from data recording. The hyperbolic paraboloid 3D model was then tested
under various conditions, including different degrees of prestressing, different

load cases, and different preservation targets.

The laboratory work began by prestressing the entire structure to the desired
degree in three different scenarios: two symmetric prestressing cases using
different cable members and one asymmetric case. Later, one of the
prestressing cases was chosen to continue for the analysis stage. In the analysis
phase, three load application cases were tested: applying nodal loads at all free
joints in the gravity direction, applying loads in the horizontal direction alone,
and applying loads in both the wvertical and horizontal directions

simultaneously.

The final phase of the experimental work included preservation in three
different scenarios. The first scenario involved restoring the nodal displacement
without considering the internal force, while ensuring that no slack occurred.
The second scenario focused on restoring the cable force of some slackened
members without considering the nodal displacement adjustment that occurred
after applying one of the load cases in the analysis stage. The last scenario
involved the simultaneous control of internal forces while considering the nodal

displacements.

All three phases were already computed theoretically using the derived
equations presented in the previous chapter. The computed theoretical member
alteration (eo) was then carefully applied to the experimental tests by shortening
or lengthening the actuators of the specific combined members, while recording

the member forces and targeted nodal displacements. Finally, the experimental

104



CHAPTER FOUR DESIGN AND ASSEMBLY OF EXPERIMENTAL MODEL

data were compared to the theoretical calculations to validate the derived
formulations. The results are presented in the next chapter. The layout of the

experimental process is illustrated in the flowchart shown in the Fig. 4-19.

44 SUMMARY

This chapter discussed the design and assembly of an experimental model
constructed to validate the theoretical concepts presented in Chapter 3. The
model, consisting of 64 cables and 41 joints, was designed to test the proposed
nonlinear equations. The chapter covered the model’s components, material
properties, joint and cable member details, actuator mechanisms, support
system, and experimental measurement methods. The model will be tested for
the three phases of prestressing, various loadings, and preservation

experimentally in the next chapter, with the results and discussion presented.
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Experimental Process
Prestressing |
‘ f Stage | l
Symmetric Asymmetric
‘ Prestress ‘ Prestress _l
Prestress Prestress Prestress
Case 1 Case 2 Case 3

» Analysis Stage )

' ' !

Load Case 1 Load Case 2 Load case 3

Vertical Load Honzontal Load Vertical+Horizontal
alone alone Loads
Preservation
Stage
| I '
Displacement Internal Force Simultanouse
—» Preservation Preservation <«——» Displacement and

alone ‘ alone Force Preservation

Fig. 4-19 Flowchart illustrating the experimental process
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CHAPTER FIVE
EXPERIMENTAL FINDINGS AND DISCUSSIONS

5.1 INTRODUCTION

This chapter presents the results of the experimental phases, including the
various cases of prestressing, different loading conditions, and scenarios of the
preservation process. The theoretical equations derived and presented in
Chapter 3 are validated through their application to the experimental model and
its outcomes. A comparison between the theoretical and experimental results is

also discussed.

5.2 PRESTRESSING PHASE RESULTS

The response of cable structures concerning load transfer, deformability, and
forces in this type of assembly is primarily influenced by the level of
prestressing. The targeted degree of prestress can always be achieved by
adjusting the required member lengths. The prestressing stage was performed
on the experimental model with three different degrees of prestressing. The first
prestressing case (PC1) and the second prestressing case (PC2) employed an
equal quantity of member actuation for equivalent members but in different
amounts to achieve symmetric member actuation on the model. However,
achieving the same degree of prestressing for equivalent members was not
possible due to differences in the members' axial stiffness, as reported in Table

4-2. For the third prestressing case (PC3), different amounts of member
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actuations were used to achieve asymmetric actuation and degrees of

prestressing.
5.2.1 Symmetric Prestressing Case 1 (PC1)

In the first scenario of the prestressing case, 24 members, as highlighted in Fig.
5-1 were selected to achieve the required degree of prestress. The set of e,
values was determined and initially applied theoretically to the model to reach
the desired level of pretension and to identify whether any cables were
experiencing slack or not. The members at the perimeter of the model were then

shortened by 1.6 mm each, resulting in a total actuation of 38.4 mm.

Actuated members

Non-actuated members

Fig. 5-1 Selected 24 members for prestress application in PC1
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Both proposed Egs. 3.20 and 3.21 used to compute the pretension of the
assembly and the results are presented in columns 3,4, 8, and 9 of Table 5-1.
The outcome of the calculation for the prestress level indicates a low to
intermediate degree, which is very desirable for practical design (Sufian and
Templeman, 1970; Sehlstrom, 2019). This helps maintain the material strength
within the elastic range and prevents slack in the cables. Later, the same amount
of e, set was applied to the experimental model. The tensile strain of the
members was measured via a data logger as presented in Table 5-2, and
multiplied by the axial stiffness of the aluminium segments to provide the
tensile force of the members. The results are presented in Table 5-1 in columns
5 and 10. The experimental results in columns 5 and 10 (Table 5-1) showed a
very close, agreement between the theoretical computation and experimental

measurement.

In theory, cables 1 and 64 showed maximum tensile forces of around 256 N. In
the lab results, both cables recorded slightly greater prestress values, with 259.8
N and 257.5 N for cables 1 and 64, respectively. The least numerical pretension
was computed in cables 22, 28, 37, and 43, with values around 19 N. Similarly,
the same cables produced values close to 19 N in the lab, except for cable 22,

which was not recorded due to a technical issue.

Moreover, based on the presented data in Table 5-1, the maximum discrepancy
rate between the theoretical and experimental prestress values was for cable 62,
with rates of 3.4% and 3.9% using the proposed Egs. 3.20 and 3.21,
respectively. Conversely, the prestress of cable 44 showed 0% and 0.1%
discrepancy using the proposed Egs. 3.20 and 3.21, respectively. The presence
of a 3.9% discrepancy may be attributed to joint looseness or imperfect cycling

wrench twists during the experimental procedure.
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Table 5-1 Theoretical and experimental member actuation and prestressing
degree in PC1

= | S t(N) = | 5 t(N)
2|E¢ . S| 28 :
£ | S g |Present technique _ £ | 3 £ |Present technique _
= & c Experiment| s > Experiment
g.3.20(Eqg. 3.21 Eq. 3.20 |Eqg. 3.21
1 255.58 | 256.05 | 259.86 | 33 204.05 | 204.43 | 202.61
2 | -16 | 89.07 | 89.57 88.48 34 208.92 | 209.31 | 210.31
3 -1.6 | 89.07 | 89.56 88.77 35 216.41 | 216.81 | 214.47
4 | -1.6 |122.99 | 123.13 | 122.67 | 36 219.35 | 219.78 | 219.53
5 243.64 | 244.04 | 24318 |37 | -1.6 | 18.982 | 19.192 18.58
6 | -1.6 | 122,96 | 123.10 | 12281 | 38 82.124 | 82.193 82.08
7 | -1.6 | 39.50 | 39.47 39.36 39 118.87 | 119.01 | 117.96
8 37.57 | 37.54 37.32 40 229.97 | 230.36 | 225.31
9 37.57 | 37.54 37.40 41 118.83 | 118.97 | 119.85
10 | -1.6 | 39.49 | 39.46 39.64 42 82.18 | 82.249 81.02
11| -1.6 | 85.39 | 85.46 84.97 43 | -1.6 | 18.973 | 19.183 18.56
12 121.58 | 121.72 11823 |44 | -1.6 | 156.42 | 156.58 | 156.42
13 239.77 | 240.17 | 238.64 | 45 152.84 | 152,99 | 152.18
14 121.55 | 121.69 118.52 46 148.53 | 148.67 150.09
15| -16 | 8544 | 85.51 83.92 47 148.51 | 148.66 | 146.61
16 | -1.6 | 156.59 | 156.75 155.75 | 48 152.82 | 152.97 150.17
17 153.01 | 153.16 | 14936 |49 | -1.6 | 156.4 | 156.56 | 156.61
18 148.71 | 148.86 | 146.15 |50 | -1.6 | 85.379 | 85.453 83.82
19 148.71 | 148.86 | 14430 |51 121.6 | 121.74 | 118.57
20 153.02 | 153.18 | 150.98 | 52 239.73 | 240.13 | 242.80
21 | -1.6 | 156.62 | 156.77 | 156.04 | 53 121.56 | 121.7 121.25
22 | -1.6 | 18.98 | 19.19 - 54 | -16 | 85.436 | 8551 85.05
23 82.13 | 82.19 80.81 55| -1.6 | 39.557 | 39.53 39.02
24 118.86 | 119.00 | 117.93 | 56 37.628 | 37.598 36.57
25 229.98 | 230.37 | 227.03 |57 37.628 | 37.598 37.72
26 118.83 | 118.97 | 11784 |58 | -1.6 | 39.559 | 39.532 39.55
27 82.18 | 82.25 82.44 59 | -16 | 123.02 | 123.16 | 122.93
28 | -1.6 | 18.97 | 19.18 19.11 60 243.6 244 242.05
29 219.33 | 219.77 | 218.99 |61 | -1.6 |12297 | 123.11 | 121.42
30 216.40 | 216.80 | 215.07 |62 | -1.6 | 89.106 | 89.599 86.05
31 208.91 | 209.30 | 207.54 |63 | -1.6 | 89.112 | 89.605 88.62
32 204.04 | 204.42 | 204.67 | 64 255.53 | 256 257.54
Max. discrepancy ratio 3.9% Min. discrepancy ratio 0.1%
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Although the maximum prestressed force in the experimental recording showed

a difference ratio of around 2% compared to the theoretical value, most of the

experimental results were smaller than the theoretical computations. This can

be attributed to the extension ability and relaxation of the cable type used in the

experimental model as stated by Chen et al. (2024) , as well as the initial

geometrical state before prestressing, as confirmed by Zhang et al. (2023).

Table 5-2 Strain data of the aluminium segments for the experimental PC1

2 5 5 5

E 2 | Microstrain | € 2 | Microstrain | € 2 | Microstrain | € 2 | Microstrain

= = = =
1 54,94 17 31.58 33 42.84 49 33.11
2 18.71 18 30.90 34 44.46 50 17.72
3 18.77 19 30.51 35 45.34 51 25.07
4 25.94 20 31.92 36 46.41 52 51.33
5 51.41 21 32.99 37 3.93 53 25.64
6 25.96 22 - 38 17.35 54 17.98
7 8.32 23 17.09 39 24.94 55 8.25
8 7.89 24 24.93 40 47.64 56 7.73
9 7.91 25 48.00 41 25.34 57 7.98
10 0.81 26 24.91 42 17.13 58 8.36
11 17.96 27 17.43 43 3.93 59 25.99
12 25.00 28 4.04 44 33.07 60 51.18
13 50.45 29 46.30 45 32.18 61 25.67
14 25.06 30 45.47 46 31.73 62 18.19
15 17.74 31 43.88 47 31.00 63 18.74
16 32.93 32 43.27 48 31.75 64 52.34

The results regarding displacement in the x, y, and z directions for theory and

experiments for PC1 are presented in Table 5-3. The theoretical displacements

are calculated directly using the derived Egs. 3.20 and 3.21, and are tabulated

in columns 2-7 in Table 5-3. The experimental displacements are obtained by

computing the difference between the photos taken by digital cameras before
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and after applying member actuations. The cameras need to be fixed in proper
locations to monitor the nodal movement and should not be moved during
photo capturing. In the experimental displacement recording, only specific
joints are observed, particularly the nodes predicted to experience the greatest

displacement during the theoretical computation.

The steps for measuring the displacement using photos are explained in detail
below, utilising the dimensions depicted in Fig. 5-3 for node 39 as an
illustrative example. Considering the photos a and b in Fig. 5-3 captured
parallel to y-z plane:

e Reference line dimension in photo = 18 mm at both a and b in Fig. 5-3.

e Reference line dimension in reality = 25 mm

*. scale factor:E =1.389
18

e Vertical distance (z1) between reference point and node 39 before prestress
=-47.3 mm.

e Vertical distance (z2) between reference point and node 39 after prestress =

-53.4 mm.
o dz=(z, - z,)x scale factor = (-53.4 +47.3)x1.389 =—8.472 mm

e Horizontal distance (yi1) between reference point and node 39 before

prestress = -8.1 mm.

e Horizontal distance (y2) between reference point and node 39 after prestress
=-9.8 mm.

- dy =(y, - y,)x scale factor = (9.8 +8.1)x1.389 =—2.361 mm
Considering the photos ¢ and d in Fig. 5-3 captured parallel to x-z plane:

e Reference line dimension in photo = 13 mm at both a and b in Fig. 5-3.

e Reference line dimension in reality = 15 mm
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*. scale factor=E =1.154
13

e Horizontal distance (xi) between reference point and node 39 before
prestress = -7.2 mm.

e Horizontal distance (x2) between reference point and node 39 after prestress
=-9.2 mm.

. dx =(x, — X, )x scale factor = (-9.2+7.2)x1.154 = -2.308 mm

. Displacement of joint 39 (dx, dy, dz) = (—2.308,-2.361,—8.472)

All other displacements of the selected nodes (3, 7, 13, 18, 19, 23, 24, 29, and
35) were calculated in the same way and are presented in Table 5-3. The
smallest and greatest resultant displacement discrepancies between
experimental and theoretical results in Table 5-3 were for joints 39 and 24, with
discrepancies of 0.6% and 7%, respectively. There is a strong compatibility
between the theoretical and experimental results. Additionally, all the
experimental results showed slightly smaller values, which can be attributed to
similar reasons observed in previous pretension lab results, such as cable
extension and relaxation. Other contributing factors may include the joint
connections between the cables, which may not behave as ideal hinges, as
reported by Zhang et al. (2023).
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a) y-z: before prestress  b) y-z: after prestress

c) x-z: before prestress  d) x-z: after prestress

Fig. 5-2 Displacement measurement in (mm) of joint 39 in y-z and x-z views
for the experimental model
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Table 5-3 Theoretical and experimental displacements in PC1

Theoretical displacement (mm) Experimental displacement
N,\‘l)ge Eq. 3.20 Eq. 3.21 (mm)
dx dy dz dx dy dz dx dy dz
1,2 0 0 0 0 0 0 0 0 0
3 2.287 | 2.291 | -8.500 | 2.303 | 2.306 | -8.537 | 2.308 | 2.222 | -8.889
4,5 0 0 0 0 0 0 0 0 0
6 |-0.831| 2060 | 1660 |-0.833| 2.059 | 1.671 - - -
7 2.339 | 2.340 | -10.268 | 2.344 | 2.345 | -10.262 | 2.273 - -10.000
8 2.064 | -0.829 | 1.660 | 2.063 |-0.830| 1.671 - - -
9,10 0 0 0 0 0 0 0 0 0
11 |-0.354 | 2.047 | 1.028 |-0.352 | 2.047 | 1.029 - - -
12 | -1.113 | 1495 | 2815 |-1.115| 1.494 | 2.823 - - -
13 | 1.340 | 1.330 | -7.293 | 1.341 | 1.331 | -7.277 | 1.370 | 1.176 | -7.059
14 | 1508 |-1.120 | 2.811 | 1.508 |-1.122 | 2.819 - - -
15 | 2.058 |-0.364 | 1.028 | 2.057 |-0.363 | 1.029 - - -
16,17 0 0 0 0 0 0 0 0 0
18 | -1.966 | 1.967 7.905 |-1.981 | 1981 | 7.946 |-1.915 - 7.750
19 |-1.623 | 1.624 | 7.910 |-1.627 | 1.627 | 7.912 |-1.646 | 1.786 | 7.468
20 |-0.313 | 0.308 | 3.054 |-0.312| 0.307 | 3.048 - - -
21 | 0.015 | 0.002 | 2.876 | 0.014 | 0.002 | 2.880 - - -
22 | 0.316 |-0.309 | 3.051 | 0.315 |-0.309 | 3.045 - - -
23 | 1628 |-1.626 | 7.918 | 1.631 |-1.629 | 7.920 | 1.639 |-1.875| 7.500
24 | 1970 |-1.970 | 7.904 | 1.985 |-1.985| 7.945 | 1.986 |-1.667 | 7.333
25,26 0 0 0 0 0 0 0 0 0
27 |-2.051| 0.363 | 1.043 |-2.050 | 0.361 | 1.044 - - -
28 |-1.506 | 1.124 | 2.845 |-1.505| 1.125 | 2.853 - - -
29 |-1.318 |-1.312 | -7.265 |-1.319 |-1.313 | -7.249 |-1.308 | -1.111 | -7.037
30 | 1.121 |-1.496 | 2.843 | 1.122 |-1.496 | 2.851 - - -
31 | 0.364 |-2.049 | 1.050 | 0.363 |-2.049 | 1.051 - - -
32,33 0 0 0 0 0 0 0 0 0
34 |-2.066| 0.829 | 1.667 |-2.065| 0.831 | 1.678 - - -
35 |[-2.330 | -2.330 | -10.272 | -2.334 | -2.335 | -10.266 | -2.297 | -2.167 | -10.000
36 | 0.832 |-2.061| 1.663 | 0.834 |-2.060| 1.674 - - -
37,38 0 0 0 0 0 0 0 0 0
39 |[-2.278|-2.284 | -8512 |-2.294 | -2.300 | -8.550 |-2.308 | -2.361 | -8.472
40,41 0 0 0 0 0 0 0 0 0
Max. discrepancy ratio 7% Min. discrepancy ratio 0.6%
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5.2.2 Symmetric Prestressing Case 2 (PC2)

The second case of symmetric prestressing was applied using 16 members, with
a total actuation of 38.4 mm, as highlighted in Fig. 5-3. The eight members at
the perimeter were shortened by 1.6 mm each, while the other inner members
were altered by -3.2 mm. Theoretical calculations using these e, values were
performed according to derived Egs. 3.20 and 3.21 and are presented in Table
5-4. Similar to PC1, these amounts of actuation were applied experimentally
on the lab model, and the member strains were logged into the data logger. The
resulting tensile forces are presented in columns 5 and 10 in Table 5-4. A good
agreement can be observed between the application of the nonlinear theoretical

equations and the lab results.

Actuated members

Non-actuated members

Fig. 5-3 Selected 16 members for prestress application in PC2
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Table 5-4 Theoretical and experimental member actuation and prestressing
degree in PC2

5| § = F(N) 5§ = f(N)
£| S g| Present technique _ €| S g | Present technique )
S 2 — e = Experiment | S é,:’ — o = Experiment
q q q q
1 331.51 | 333.14 332.60 |33 254.46 | 255.47 255.30
2| -1.6 | 125,53 | 126.42 126.10 |34 267.42 | 268.53 267.66
3|-16 | 12552 | 126.41 126.12 |35 272.92 | 274.06 273.17
4 233.13 | 234.52 234.33 |36 278.46 | 279.65 278.61
5 315.05 | 316.56 316.19 |37| -1.6 | 36.146 | 36.462 36.25
6 233.08 | 234.48 232.71 |38 54.355 | 54.613 54.12
7 7.28 7.19 7.11 39| -3.2 | 230.72 | 232.12 231.76
8 3.72 3.60 3.56 40 292,52 | 293.87 292.90
9 3.71 3.59 3.61 41| -3.2 | 230.64 | 232.04 231.04
10 7.25 7.16 7.20 42 54.421 | 54.681 53.55
11 59.92 60.22 59.87 43| -1.6 | 36.139 | 36.455 36.18
12 232.82 | 234.21 233.39 |44 279.01 | 280.91 280.04
13 314.59 | 316.12 315.30 |45 276.92 | 278.81 278.08
14 232.77 | 234.16 233.72 |46| -3.2 | 271.04 | 272.92 272.44
15 59.97 60.27 59.51 47| -3.2 | 271.02 | 272.89 272.53
16 279.47 | 281.37 280.35 |48 276.87 | 278.76 278.46
17 277.38 | 279.27 277.12 |49 278.96 | 280.86 280.16
18| -3.2 | 271,53 | 27341 272.95 |50 59.891 | 60.192 59.66
19| -3.2 | 27154 | 273.42 272.71 |51 232.89 | 234.29 233.83
20 277.43 | 279.32 278.73 |52 314.47 316 320.70
21 279.53 | 281.43 280.87 |53 232.79 | 234.18 234.03
22| -1.6 | 36.15 36.46 - 54 59.963 | 60.265 59.51
23 54.36 54.62 54.39 55 7.426 7.335 7.23
24| -3.2 | 230.69 | 232.09 231.61 |56 3.8738 | 3.7558 3.67
25 292.54 | 293.89 293.08 |57 3.8751 | 3.7571 3.70
26| -3.2 | 230.63 | 232.03 23154 |58 7.4355 | 7.3445 7.20
27 54.42 54.68 54.19 59 233.21 | 234.6 233.64
28| -1.6 | 36.14 36.45 36.32 60 314.95 | 316.46 314.64
29 278.45 | 279.63 279.01 |61 233.11 | 2345 234.32
30 27291 | 274.04 273.13 |62| -1.6 | 125,58 | 126.48 126.15
31 267.41 | 268.52 267.69 |63| -1.6 | 125.59 | 126.49 125.95
32 254.44 | 255.45 254.38 |64 331.4 | 333.03 332.48
Max. discrepancy ratio 5.2% Min discrepancy ratio 0.02%
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The maximum tensile force was produced in cables 1 and 64 (see Table 5-4),
with a discrepancy rate of 0.33% for Eq. 3.20 and 0.16% for Eq. 3.21. However,
the minimum prestressed forces were in cables 8, 9, 56, and 57, with values
around 3.7 N. The greatest discrepancy was between the experimental result
and the computed result by Eq. 3.20 for cable 56, with an error ratio of 5.2%,
which was the highest among all discrepancies. Similar to the previous case,
the experimental data showed smaller force values due to the same reasons
mentioned in PC1, which are the extension ability and relaxation of the cables.
In addition, the joint connectors and actuator types also give part of error
between experimental and theoretical computations (Zhang et al., 2023),also

not computing the axial stiffness of combined members perfectly.

The theoretical displacement findings from proposed Egs. 3.20 and 3.21 are
tabulated in columns 2-7 in Table 5-5. Both equations provide very consistent
displacement values. The experimental displacements were determined using
the same technique as explained in detail in the previous scenario, and the
results are presented in columns 8-10 in Table 5-5. In the experimental
procedure, not all 75 displacements were monitored. Only the joints that
theoretically exhibited significant displacements were selected for observation.
This approach allowed the cameras to zoom in on fewer points with higher

resolution, thereby reducing error factors.

At nodes 13 and 29, the resultant displacement from the x, y, and z
displacements in Table 5-5 was theoretically calculated around 12 mm by both
proposed equations. In the lab, the resultant displacements were around the
same value with an error ratio of 0.7% for node 13, and 0.8% for node 35. For
all recorded lab displacements, the maximum discrepancy ratio was observed

between the theoretical and experimental resultant displacement of joint 7, with
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a ratio of 1.8%. The minimum discrepancy ratios were determined as 0.1% for
nodes 3 and 35.

Comparing the displacement results between theory and experiment results in
the second case of prestressing showed closeness and efficiency of the
theoretical nonlinear computation equations (Egs. 3.20 and 3.21) and

experimental response of the 3D hyperbolic paraboloid cable net model.

The used actuation values are not optimal for prestressing using 16 members.
These values were chosen to facilitate the lab work, as one full turn of the
turnbuckle provides 1.6 mm of member alteration. This simplification is
particularly useful when the structure needs to be returned to its original
configuration for other prestressing applications. The ease of using a single
cyclic wrench turn to achieve precise member alteration not only streamlines
the experimental procedure but also minimises potential errors associated with

more complex adjustments.

Additionally, the selected members were randomly chosen to be active in the
prestressing process, ensuring a straightforward approach to the initial
configuration. In the course of the experiment, some variations in member
actuation were tested to explore different prestressing configurations. For
instance, applying -3.2 mm (2 cycles) to the outer members and -1.6 mm to the
inner members was tried. However, this actuation led to some members
experiencing slack, which compromised the integrity of the prestressing

process.
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Table 5-5 Theoretical and experimental displacements in PC2

Theoretical displacement (mm) Experimental displacement
N,\‘l)gle Eq. 3.20 Eq. 3.21 (mm)
dx dy dz dx dy dz dx dy dz
1,2 0 0 0 0 0 0 0 0 0
3 2.011 | 2.016 | -8.010 | 2.022 | 2.027 | -8.037 | 2.018 | 2.010 | -8.019
4,5 0 0 0 0 0 0 0 0 0
6 |-3.570|-0545| 7.409 |-3.574|-0.549 | 7.408 |-3.426 |-0.520 | 7.330
7 1.005 | 1.005 | -5.791 | 1.007 | 1.007 | -5.796 | 1.000 | 1.000 | -5.688
8 |-0538|-3564 | 7.410 |-0.542|-3.568 | 7.409 |-0.530 |-3.432 | 7.324
9,10 0 0 0 0 0 0 0 0 0
11 | 2.284 | -0.665 | -4.461 | 2.298 | -0.670 | -4.483 - - -
12 |-1.161 |-1919 | 3.301 |-1.146 |-1.930 | 3.268 - - -
13 | 1.832 | 1.814 | -11.614 | 1.839 | 1.821 | -11.639 | 1.840 | 1.795 | -11.701
14 |1-1.895 |-1.172 | 3.293 |-1.906 | -1.158 | 3.259 - - -
15 |-0.646 | 2.267 | -4.466 |-0.652 | 2.281 | -4.488 - - -
16,17 0 0 0 0 0 0 0 0 0
18 |-1.814| 1.815 | 7.712 |-1.827 | 1.828 | 7.749 |-1.847 |-1.823 | 7.801
19 | 0.035 | -0.033 | 2.495 | 0.032 |-0.030 | 2.514 - - -
20 |-0.817 | 0.808 | 8.269 |-0.820 | 0.811 | 8.282 |-0.830 | 0.830 | 8.194
21 | 0.020 | 0.004 | 3.426 | 0.020 | 0.004 | 3.432 - - -
22 | 0.821 |-0.808 | 8.263 | 0.824 | -0.810 | 8.275 | 0.817 |-0.821 | 8.296
23 |-0.030 | 0.034 | 2501 |-0.026 | 0.030 | 2.519
24 | 1819 |-1.819| 7.710 | 1.832 |-1.832 | 7.748 | 1.811 |-1.809 | 7.735
25,26 0 0 0 0 0 0 0 0 0
27 | 0.660 |-2.269 | -4.437 | 0.665 |-2.283 | -4.459 - - -
28 | 1.899 | 1.179 | 3.352 | 1.909 | 1.165 | 3.319 - - -
29 |-1.800 | -1.788 | -11.564 | -1.807 | -1.795 | -11.588 | -1.798 | -1.788 | -11.462
30 |1.173 | 1917 | 3.349 | 1.159 | 1.928 | 3.315 - - -
31 |[-2270| 0.662 | -4.432 |-2.284 | 0.668 | -4.454 - - -
32,33 0 0 0 0 0 0 0 0 0
34 | 0535 | 3565 | 7.422 | 0539 | 3569 | 7.421 | 0.500 | 3.540 | 7.331
35 |-0.992 |-0.991 | -5.795 |-0.994 | -0.994 | -5.800 |-1.000 |-1.040 | -5.796
36 | 3571 | 0543 | 7416 | 3575 | 0548 | 7.415 | 3.498 | 0.489 | 7.343
37,38 0 0 0 0 0 0 0 0 0
39 |-1.999 | -2.008 | -8.027 |-2.010 | -2.019 | -8.054 | 1.980 |-2.100 | -8.061
40,41 0 0 0 0 0 0 0 0 0
Max. discrepancy ratio 1.8% Min. discrepancy ratio 0.1%
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5.2.3 Asymmetric Prestressing Case 3 (PC3)

In the third case of applying prestress, a total of 96 mm of member shortening
was achieved using 24 members to create asymmetric prestressing, referred to
as PC3. The members highlighted in solid green were each altered by -4.8 mm,
while the members marked with hatched blue were shortened by 3.2 mm as
shown in Fig. 5-4. The e, values (columns 2 and 7 in Table 5-6) were used in
the theoretical computations, resulting in the outcomes presented in columns 3,
4, 8, and 9 in Table 5-6. Among the cables, cables 1 and 64 experienced the

greatest pretension, while cables 28 and 43 exhibited the least pretension.

N\ \
N / N\ A N &
/64 63y, 61 58\, 54 L1 = £ 36
R / \ \, &
Y L o
Actuated members ———— Non-actuated members

Fig. 5-4 Selected 24 members for prestress application in PC3
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Similar to the previous prestress cases, the actuation amounts were applied on
the marked members (see Fig. 5-4) of the lab model. The targeted asymmetric
prestress achieved and recorded as a microstrain by the 64 channels data logger.
These strain values transformed to the axial tensile forces and presented in
columns 5 and 10 in Table 5-6. The members with the greatest and smallest
prestress values were consistent with those predicted by theoretical
computations. The comparison between the theoretical and experimental
results showed a satisfactory agreement, demonstrating the accuracy of the
derived numerical approach. The closeness between the theoretical and
experimental results was tested by computing the Euclidian norm index ratio.
It showed that the Euclidian distance between lab result to computed result by
proposed Eqg. 3.20 was 0.8 % while to proposed Eg. 3.21 was 0.36 %, thus, it
can be concluded that the computed prestress by derived Eqg. 3.21 gave a closer

result to the experimental result.

Displacement results for both the theoretical model and the experimental model
are presented in Table 5-6. The greatest resultant displacement occurred at node
number 18, which measured 27.5 mm in the lab, while theoretical calculations
using Egs. 3.20 and 3.21 yielded displacements of 27.4 mm and 27.9 mm,
respectively. This close agreement highlights the reliability of the theoretical
models. Similar to the other two prestressing cases, nodes expected to undergo
significant deformation, based on theoretical predictions, were closely
monitored using digital cameras to record their displacements. This careful
monitoring ensured accurate comparison data. The maximum resultant
displacement from the X, y, and z displacements in Table 5-7 was observed at
joints 3 and 18, as predicted by the derived Eqgs. 3.20 and 3.21, with values
around 27.5 mm. The experimental resultant displacements for these joints

were close to this value, with a discrepancy of around 1%.
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Table 5-6 Theoretical and experimental member actuation and prestressing
degree in PC3

5| § = F(N) 5§ = f(N)
£| S g| Present technique _ €| S g | Present technique )
S 2 — e = Experiment | S é,:’ — g = Experiment
q q q q
1 736.53 | 745.57 743.77 |33 515.73 | 520.45 519.12
2| -4.8 | 647.04 | 665.60 663.97 |34 534.72 | 539.64 538.13
3| -48 | 647.28 | 665.84 664.13 |35 559.17 | 564.33 562.95
4 406.57 | 410.10 409.03 |36 577.52 | 583.21 581.98
5 646.07 | 652.31 650.85 |37| -4.8 | 254.43 | 267.59 267.04
6 367.95 | 371.32 370.35 |38| -4.8 | 285.71 | 288.69 287.98
7 178.42 | 181.99 181.52 (39| -4.8 | 404.6 | 408.21 407.12
8| -48 | 17442 | 177.99 17750 |40 583.27 | 588.48 587.09
9| -48 | 174.88 | 178.46 178.17 |41| -3.2 | 363.79 | 367.2 366.04
10 178.78 | 182.38 181.75 |42| -3.2 | 24591 | 248.26 247.63
11 291.65 | 294.63 293.89 |43| -3.2 | 120.15 | 12354 123.10
12 403.45 | 406.96 405.93 |44 445.48 | 449.23 448.25
13 624.87 | 630.60 629.02 |45 437.65 | 441.38 440.39
14 364.54 | 367.88 366.97 46| -3.2 | 428.23 | 431.95 430.86
15 252.35 | 254.72 254.03 |47| -3.2 | 429.76 | 433.52 432.46
16 487.39 | 491.64 490.34 |48 439.49 | 443.32 442.12
17 480.12 | 484.38 483.29 |49 446.94 | 450.82 449.81
18| -4.8 | 472.21 | 476.49 475.34 |50 292.02 | 295.03 294.29
19| -4.8 | 473.98 | 478.30 477.05 |51 407.24 | 410.83 409.86
20 482.52 | 486.89 485.80 |52 615.76 | 621.3 619.87
21 489.56 | 493.97 492.82 |53 367.89 | 371.3 370.19
22| -4.8 | 254.21 | 267.36 - 54 252.68 | 255.08 254.47
23| -4.8 | 285.15 | 288.11 287.38 |55 148.64 | 150.86 150.39
24| -4.8 | 402.99 | 406.59 40559 |56| -3.2 | 144.37 | 146.57 146.21
25 584.74 | 589.97 588.38 |57| -3.2 | 144.81 | 147.02 144.97
26| -3.2 | 362.34 | 365.73 364.84 |58 149 151.24 149.39
27| -3.2 | 245.37 | 247.70 247.19 |59 410.44 | 414.06 412.15
28| -3.2 | 119.90 | 123.28 123.05 |60 632.03 | 637.84 635.02
29 611.09 | 618.80 617.32 |61 371.3 | 374.75 372.13
30 571.05 | 576.59 575.15 |62| -3.2 | 352.56 | 358.36 355.09
31 540.95 | 546.08 54477 |63| -3.2 | 352.93 | 358.74 354.45
32 517.15 | 521.93 520.80 |64 679.13 | 685.75 682.87
Max. discrepancy ratio 4.9% Min discrepancy ratio 0.16%
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Table 5-7 Theoretical and experimental displacements in PC3

Theoretical displacement (mm) Experimental displacement
N,\‘l)gle Eq. 3.20 Eq. 3.21 (mm)
dx dy dz dx dy dz dx dy dz
1,2 0 0 0 0 0 0 0 0 0
3 7.413 | 7.439 | -25.375 | 7.491 | 7.518 | -25.532 | 7.421 | 7.447 | -25.200
4,5 0 0 0 0 0 0 0 0 0

6 0.636 | -0.781 | -2.292 | 0.706 | -0.782 | -2.450

7 6.314 | 6.550 | -25.380 | 6.379 | 6.619 | -25.527 | 6.324 | 6.560 | -25.195

8 |-0.583| 1.610 | -4.377 |-0.582 | 1.681 | -4.531

9,10 0 0 0 0 0 0 0 0 0

11 |-1.697 | -0947 | 4.631 |-1.719 |-0.953 | 4.675

12 | -1.245|-2.400 | 3.384 |-1.221 |-2.411| 3.328

13 | 3.178 | 3.821 | -15.785 | 3.198 | 3.853 | -15.807 | 3.185 | 3.831 | -15.605

14 |-2.336 | 0.722 | -0.618 |-2.350 | 0.757 | -0.679

15 |-1.080 | 0.045 | 0.695 |-1.090 | 0.047 | 0.696

16,17 0 0 0 0 0 0 0 0 0

18 |-7.077 | 7.089 | 25.554 |-7.227 | 7.239 | 25.937 |-7.140 | 7.172 | 25.620

19 |-5.022 | 5.236 | 21.716 |-5.082 | 5.302 | 21.821 |-5.024 | 5.261 | 21.559

20 |-2.077 | 2.744 | 12.197 |-2.094 | 2.778 | 12.179 | -2.076 | 2.771 | 12.046

21 | 0.159 | 1.846 | 2.923 | 0.154 | 1.873 | 2.908

22 | 0.615 | 0.097 | 6.937 | 0.615 | 0.113 | 6.919

23 | 2.615 |-2.394 | 14.043 | 2.632 | -2.407 | 14.080 | 2.626 | -2.385 | 13.922

24 | 3.949 | -3.948 | 16.033 | 4.006 | -4.005 | 16.185 | 3.982 | -3.961 | 15.969

25,26 0 0 0 0 0 0 0 0 0

27 | 0.730 | 2.644 | 6.643 | 0.734 | 2675 | 6.701 | 0.754 | 2.669 | 6.641

28 | 2.328 | 3.238 | 7.465 | 2.342 | 3.241 | 7.450 | 2.341 | 3.228 | 7.381

29 | -1.447|-0.750 | -10.418 | -1.453 | -0.746 | -10.424 | -1.444 | -0.746 | -10.295

30 | 1.245 | 2.376 | 3.473 | 1.237 | 2.393 | 3.452

31 | 0.880 | 0.940 | 2.739 | 0.887 | 0.948 | 2.756

32,33 0 0 0 0 0 0 0 0 0

34 | 0895 | 1.102 | 1.627 | 0.902 | 1.075 | 1.557

35 |[-3.663 | -3.432 | -17.592 | -3.695 | -3.461 | -17.673 | -3.655 | -3.425 | -17.446

36 | 0.148 | 0.770 | -0.462 | 0.119 | 0.775 | -0.532

37,38 0 0 0 0 0 0 0 0 0
39 |-4.166 | -4.190 | -16.162 | -4.206 | -4.230 | -16.251 | -4.160 | -4.184 | -16.044
40,41 0 0 0 0 0 0 0 0 0
Max. discrepancy ratio 1.3% Min. discrepancy ratio 0.1%
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The comparison between experimental and theoretical displacements showed a
good correlation, indicating a good level of agreement between the two sets of

results.

5.3 ANALYSIS PHASE RESULTS

For flexible types of space structures, it is necessary to first prestress them to a
sufficient level of pretensioning before subjecting them to carrying loads. From
the previous section, various prestressing scenarios were applied. The analysis
continues with PC1, and the loading cases are subsequently applied to the

model.

The first loading case involved subjecting the model to only gravity loads at
some joints. The second loading case involved applying horizontal loads alone.
Finally, the last case involved applying both horizontal and vertical joint loads

simultaneously.
5.3.1 Vertical Nodal Loading Case (LC1)

The first loading case involved applying a load of 20 N in the z-direction
(gravity) to all joints except joints 3, 7, 35, and 39, as shown in Fig. 5-5.
Theoretical calculations were performed using the derived Eq. 3.40, and the
results are presented in Table 5-8. Columns 6 and 10 show the total prestress
and derived force from the applied loads. These values are presented to indicate
the remaining force inside the members, allowing to determine if any cable
experiences slacking. The maximum remaining force was observed in cables 1
and 64, measuring 279.6 N, while the smallest force was found in cables 10, 7,

55, and 58, with 11.6 N. After the theoretical computations were completed,
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the loadings were applied to the nodal experimental model. The member forces
caused solely by the loadings were measured by the strain gauges and are
presented in columns 8 and 12. The results for both the lab and theoretical
computations showed a well-suited correlation during the analysis process
under load case 1. Based on reported data in Table 5-8, the maximum and
minimum error ratios between the experimental and theoretical internal forces
were 7% and 0% for members 37 and 48, respectively. This 7% error ratio may
be attributed to the prestressing of the cable prior to loading, as the response of
the cable net system fundamentally depends on the degree of prestress rather
than its axial stiffness (Kwan, 1998).

The numerical displacement of the joints after applying vertical loads was
calculated using derived Eq. 3.40, and the results for the analysis stage under
this specific loading condition are presented in Table 5-9. Subsequently, some
specific joints that exhibited greater displacements compared to other loaded
joints were selected for monitoring during the experimental displacement

capturing.

T N mjm -
’ U So. ,‘wm

Fig. 5-5 Experimental model under vertical joint loads
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Table 5-8 Nodal loads, theoretical and experimental member forces for LC1

Nodal
Joint | Load | & Internal Force (N) 5 Internal Force (N)
No. [ M) |ES 9
Px|Py| P: = Theory Experiment = Theory Experiment
1,2 {0]{0] 0 T+t T T T+t T T
3 10(0]0 1 ]279.59| 24.01 23.88 33 |184.87|-19.17| -18.32
45 10101 0| 2 [107.48] 18.41 17.41 34 |189.86|-19.04 | -18.75
6 |0(0]-20] 3 |107.48]| 18.40 18.60 35 |198.32|-18.08 | -18.13
7 (0(0] 0| 4 [227.20]104.21 105.25 36 |201.51|-17.83| -17.38
8 10/0(-20] 5 ]265.31| 21.68 22.29 37 | 68.20 | 49.22 | 45.77
9,10 |0/0] 0| 6 [227.16]104.21 104.73 38 [163.09| 80.96 79.65
11 {0({0[-20] 7 11.62 | -27.88 -27.45 39 |215.46| 96.59 94.72
12 [0]0]-20[ 8 12.55 | -25.02 -24.61 40 |253.80| 23.83 23.16
13 [0(0]-20f 9 12.54 | -25.03 -24.81 41 |215.40| 96.58 95.62
14 [0]0]-20f 10 | 11.61 |-27.89 -27.23 42 1163.19| 81.02 79.83
15 [0]0]-20{ 11 [169.01| 83.62 82.77 43 | 68.17 | 49.19 | 48.46
16,17(010| 0 | 12 ]220.89| 99.32 98.03 44 | 96.51 |-59.91 | -60.22
18 [0]0]-20[ 13 |264.04| 24.27 23.36 45 | 9530 |-57.54| -57.03
19 [0]0]-20| 14 |220.85] 99.31 99.45 46 | 91.39 |-57.14| -56.16
20 |0|0]-20] 15 |169.11| 83.67 81.38 47 | 9138 |-57.13 | -55.68
21 |010]-20] 16 | 96.61 |-59.98 -61.12 48 | 95.28 | -57.54| -57.55
22 10(01]-20] 17 | 95.40 | -57.61 -56.99 49 | 96.48 |-59.92 | -59.35
23 |0|0]-20{ 18 | 91.51 |-57.20 -56.15 50 |169.00| 83.62 82.38
24 10(0]-20{ 19 | 91.51 |-57.20 -56.88 51 |220.92| 99.32 98.95
2526|0101 0 | 20 | 9542 |-57.60 -57.92 52 [264.00| 24.28 24.03
27 |1010]-20] 21 | 96.64 |-59.98 -58.59 53 1220.86| 99.30 | 100.50
28 |010]-20] 22 | 68.21 | 49.22 0.00 54 |169.11| 83.68 82.32
29 |1010]-20] 23 |163.08| 80.96 79.54 55 | 11.63 | -27.93 | -28.01
30 [0]0]-20f 24 |215.45| 96.59 94.96 56 | 12.56 | -25.07 | -24.43
31 [0[{0]-20] 25 |253.80| 23.83 22.81 57 | 12.56 | -25.07 | -24.72
32,33{0(01 0| 26 [215.41] 96.58 96.75 58 | 11.63 | -27.93 | -27.69
34 |0|0(-20{ 27 [163.19| 81.01 80.18 59 [227.231104.21| 103.29
35 |0|0| 0| 28 | 68.17 | 49.19 49.43 60 |265.28| 21.69 20.57
36 {0|0(-20f 29 [201.49|-17.83 -18.26 61 [227.16/104.20| 100.12
37,38(0(0| 0 | 30 |198.30]|-18.09 -16.97 62 [107.52| 18.41 18.03
39 [0{0] 0| 31 |189.86]|-19.04 -17.99 63 [107.52| 18.41 18.52
40,41|10/0] 0 | 32 |184.86|-19.17 -18.68 64 [279.55| 24.03 23.82
Max. discrepancy ratio 7% Min. discrepancy ratio 0.01%
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Fig. 5-6 shows the lab measured values for displacement computation for the
selected joints 31, 34, 35, and 36, which exhibited significant movement before
and after the loading was applied. The displacements were calculated in a

manner similar to that presented in detail in section 5.2.1.1.

The model showed a symmetric vertical nodal displacement for equivalent
joints under the balanced applied vertical joint loads as shown in Table 5-9.
The group of joints 6, 8, 34, and 36 experienced around -8 mm for both
theoretical and experimental vertical movements, with a maximum discrepancy
ratio of 1.2% for joint 36. For the opposite joints 7 and 35, the vertical
displacements were around 4.5 mm, with a 2% error for joint 7. The other
opposite joints 11, 15, 27, and 31 produced vertical displacements of around -
2.85 mm in theoretical calculations, while the experimental results were

slightly greater, with a maximum discrepancy rate of 2.7% at joint 31.

The maximum discrepancy ratio among the determined dz displacements was
2.8%, while the minimum discrepancy ratio was 0.2% for joints 31 and 8

respectively.

Both the theoretical results and the experimental results from the experimental
model response showed good agreement with each other. This consistency is
due to the predictive strength of the derived nonlinear technique in computing

member forces as well as the displacements of the joints under external loads.
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‘e'f %!

-v \—mv.
13

B

b) Nodal measurement after Loading

Fig. 5-6 Joint measurements in (mm) for experimental displacement
computing for LC1
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Table 5-9 Theoretical and experimental displacement under LC1

Displacement (mm) due to load alone

Node No. Present Technique Experiment
dx dy dz dx dy dz
1,2 0 0 0 0 0 0
3 -0.117 -0.117 0.246 - - -
4,5 0 0 0 0 0 0
6 3.307 0.331 -8.067 - 0.316 -8.000
7 -1.116 -1.117 4.304 -1.106 - 4.204
8 0.334 3.311 -8.070 0.336 - -8.054
9,10 0 0 0 0 0 0
11 1.022 -0.153 -2.852 1.071 -0.151 -2.870
12 0.557 0.142 -1.320 - - -
13 -0.226 -0.222 -0.021 - - -
14 0.140 0.562 -1.317 - - -
15 -0.157 1.021 -2.842 -0.126 - -2.904
16,17 0 0 0 0 0 0
18 0.133 -0.131 -0.532 - - -
19 -0.194 0.193 0.531 - - -
20 -0.357 0.349 1.186 - - -
21 -0.001 0.000 -2.916 - - -
22 0.353 -0.352 1.181 - - -
23 0.193 -0.195 0.533 - - -
24 -0.133 0.133 -0.534 - - -
25,26 0 0 0 0 0 0
27 0.154 -1.025 -2.858 0.188 -1.012 -2.834
28 -0.145 -0.566 -1.324 - - -
29 0.223 0.221 -0.034 - - -
30 -0.563 -0.145 -1.330 - - -
31 -1.022 0.154 -2.853 - 0.133 -2.933
32,33 0 0 0 0 0 0
34 -0.335 -3.311 -8.066 -0.369 -3.353 -8.163
35 1.117 1.117 4.303 1.184 1.132 4.340
36 -3.307 -0.331 -8.065 -3.218 0.347 -8.092
37,38 0 0 0 0 0 0
39 0.118 0.117 0.243 - - -
40,41 0 0 0 0 0 0
Max. discrepancy ratio 2.8% Min. discrepancy ratio 0.2%
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5.3.2 Horizontal Nodal Loading Case (LC2)

Horizontal joint loads were applied to the joints located along both diagonal
dimensions of the model. An 80 N load was applied to each of the 12 nodes,
except for the centre joint (joint 21). Nodes 18-24 (except 21) were loaded
parallel to the positive x-axis of the model, while nodes 3, 7, 13, 29, 35, and 39
were loaded parallel to the positive y-axis (see Fig. 5-7). The horizontal loads
were applied using a cable that passed over a smooth pulley with a fixed flange.
There are two rings at both ends of the cable: one attached to the joint rings and

the other used for hanging the loads. The supports of the pulley are movable to

maintain the required horizontal level with the loaded joints, as illustrated in
Fig. 5-8.

—3

Fig. 5-7 Experimental model under horizontal joint loads
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Smooth pulley
with fixed

Levelling

Movable pulley
Cable passed support

over pull

End ring to
hanger load

Fig. 5-8 Detailed experimental setup for horizontal load distribution

Theoretical calculations under the horizontal load condition alone in LC2
yielded the results presented in Table 5-10. It can be observed from the
remaining axial force (T+t) in columns 6 and 10 that some cables, namely
members 2, 8, and 28, experienced slack due to the applied horizontal loads.
This issue will be addressed in the next section (see section 5.2.3). The lowest
remaining cable force, excluding the slackened ones, was in member 7 with a
value of 2.43 N, while the greatest force was observed in member 64 with an
amount of 558.03 N. In the lab, the same joints were loaded similarly to the
theoretical model, yielding the results presented in columns 8 and 12 in Table
5-10. When the slackened cables reached zero tensile stress, they became
inactive and showed zero strain readings on the data logger. This occurs
because cable members cannot transfer compressive stress if they do not have
a sufficient prestressing amount prior to the loading. The compressive axial
force works to reduce the pretension until it reaches zero, after which the cable

becomes inactive in carrying loads.
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Table 5-10 Nodal loads, theoretical and experimental member forces for LC2

Joint NOd?ll\ll)' oad 3 Internal Force (N) 3 Internal Force (N)
No. £ = £ —

Px | Py | Pz = Theory Experiment = Theory Experiment
12,0010 T+t T T T+t T T
3 /0(8|0| 1 |200.70| -55.35 | -55.45 33 |327.32|122.89 | 125.66
451000 2 0 0 0 34 |281.09| 71.78 71.00
6 |0|0|0| 3 |57.04]|-3252| -33.14 35 |231.69| 14.88 15.08
7 |08 | 0| 4 |142.39| 19.26 20.02 36 |183.52| -36.26 | -36.37
8 |00 |0| 5 [249.05| 5.01 5.00 37 |142.89| 123.70 | 124.30
910/ 0| 0| 0| 6 |126.73| 3.63 3.53 38 |200.39|118.20 | 120.33
11 {00 |0 7 | 243 |-37.04| -37.58 39 |200.58| 81.57 83.38
12 |0 0|0 8 0 0 0 40 |341.66|111.30| 113.09
13 101|801 0| 9 |5505| 17.52 18.01 41 |182.67| 63.70 65.27
14 | 0| 0|0 | 10 |56.99 | 17.53 17.92 42 | 74.05| -8.20 -8.68
1500 | 0| 11 |146.21| 60.75 61.47 43 |53.35| 34.17 33.89

16,17/ 0 | 0 | O | 12 |142.27| 20.55 25.37 44 1230.18| 73.60 74.08
18 80| 0 | O | 13 |299.90| 59.73 60.18 45 |220.76| 67.77 68.77
19 80| 0 | 0| 14 |124.96| 3.27 3.34 46 |211.76| 63.09 63.61
20 |80| 0| 0| 15 |19.75| -65.76 | -66.71 47 1264.83|116.17 | 116.43
21 | 0| 0| 0| 16 |123.34| -3341 | -34.19 48 1269.23| 116.26 | 117.93
22 |180| 0| 0| 17 |116.29| -36.87 | -36.93 49 |271.86| 115.30 | 115.68
23 |180| 0| 0| 18 |109.81| -39.05 | -39.28 50 |205.27|119.82 | 121.36
24 180| 0| 0| 19 |163.36| 14.50 14.74 51 |205.99| 84.25 83.76
2526/ 0 | 0 | 0| 20 |166.18| 13.00 12.94 52 |410.24|170.11 | 172.37
27 | 0| 0| 0] 21 |[166.94| 10.17 10.92 53 |188.61| 66.91 69.40
28 | 0| 0|0] 22 | 8545 66.25 - 54 |79.75| -5.76 -6.07
29 | 0 /80| 0| 23 |143.40| 61.21 62.06 55 |82.86 | 43.33 43.63
30 | 0| 0|0]| 24 |140.73] 21.73 20.82 56 |79.61| 42.01 42.14
31 |0 0| 0| 25 |345.44|115.07| 115.36 57 |136.97| 99.37 99.78
32,33 0| 0| 0| 26 |123.37| 4.40 441 58 |140.13| 100.60 | 100.80
34 |10|0|0]| 27 | 1589 | -66.36 | -67.55 59 |209.16| 86.00 87.38
35 |10|8|0]| 28 0 0 0 60 |474.35|230.35| 232.49
36 | 0] 0|0] 29 |516.32|296.55| 299.28 61 [194.03| 70.92 71.47
37,38/ 0 | 0 | 0| 30 |446.60|229.80| 228.68 62 |213.05/ 12345 | 126.51
39 | 0/80| 0| 31 |379.09|169.79| 171.28 63 |270.71)181.11 | 181.07
40,41 0 | 0 | 0| 32 |319.50(115.08| 117.34 64 |558.03| 302.03 | 304.25

Max. discrepancy ratio 7% Min. discrepancy ratio 0.02%

133




EXPERIMENTAL FINDINGS AND DISCUSSIONS

CHAPTER FIVE

Table 5-11 Theoretical and experimental displacement under LC2

Displacement (mm) due to load alone

Node No. Present Technique Experiment
dx dy dz dx dy dz
1,2 0 0 0 0 0 0
3 2.642 4.461 -10.179 - 4.110 -10.026
4,5 0 0 0 0 0 0
6 -4.002 -0.077 9.047 -3.996 -0.053 9.149
7 2.465 5.942 -12.849 2.501 6.163 -12.832
8 0.219 2.261 -5.175 - 2.161 -5.275
9,10 0 0 0 0 0 0
11 -2.564 0.316 5.589 -2.715 0.263 5.592
12 -3.040 0.135 6.068 -2.956 - 6.005
13 1.069 2.975 -2.288 1.134 3.055 -2.256
14 -0.120 2.083 -3.923 - 2.176 -4.028
15 -0.144 3.944 -8.843 -0.117 4.892 -8.952
16,17 0 0 0 0 0 0
18 0.831 -0.743 -1.066 - -7.120 -1.032
19 2.312 -2.303 -5.302 2.224 - -5.297
20 2.746 -2.991 -6.831 2.886 -3.209 -6.910
21 4.284 -0.666 -1.473 4.348 -0.705 -1.339
22 3.531 -2.816 4.337 3.615 -2.890 4.276
23 5.286 -4.190 11.976 5.349 -4.275 11.892
24 9.816 -5.192 22.339 9.730 4.998 22.011
25,26 0 0 0 0 0 0
27 0.141 1.271 2.775 - - -
28 0.343 0.907 1.808 - - -
29 1.767 2.510 3.682 1.961 2.488 3.757
30 -0.827 0.526 -0.983 - - -
31 -1.437 0.291 -2.885 -1.453 0.342 -2.953
32,33 0 0 0 0 0 0
34 0.196 0.100 0.082 - - -
35 1.583 2.081 3.483 1.523 2.153 3.499
36 -1.851 0.068 -4.179 -1.865 - -4.315
37,38 0 0 0 0 0 0
39 1.080 1.152 1.987 - - -
40,41 0 0 0 0 0 0
Max. discrepancy ratio 3% Min. discrepancy ratio 0.1%
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The theoretical results for compressive forces in some members, as shown in
Table 5-9, indicate that, for instance, cable number 1 has an internal
compressive force of 55.35 N due to applied loads. With an initial pretension
of 256.05 N, the remaining force is 200.70 N, which is sufficient to keep the
cable in tension. Among all members, cable 64 experienced the maximum
internal force, recorded as 302.03 N theoretically and 304.25 N experimentally,
yielding an error ratio of 0.7%. Conversely, cable 14, which was less affected
by the applied load, produced internal forces of 3.27 N and 3.34 N in the
theoretical and experimental results, respectively. The maximum ratio of
discrepancy was determined by 7% for member 21, and the zero discrepancy

was for member 63.

There is satisfactory agreement between the theoretical and lab measurements
regarding the results obtained during the analysis stage. Some experimental
member forces were slightly smaller or greater than the numerical forces, while
others were very close to each other. These discrepancies can be attributed to

error sources from the previous steps prior to the analysis phase.

Similar to LC1, the theoretical and experimental displacements are presented
in Table 5-11. For this loading case, among the monitored nodes, joint 24 was
observed to have the maximum resultant displacement of 24.947 mm in theory
and 24.579 mm in the experiment, with an error rate of 1.47%. Conversely,
joint 34 experienced resultant displacements of 0.235 mm in theory, but this

was not recorded experimentally and was neglected due to its small value.

Among the significant vertical displacements, the minimum and maximum
discrepancy ratios were 0.1% and 3% for joints 19 and 36, respectively. The
alignment of theoretical predictions with experimental observations

demonstrates the reliability and accuracy of the analysis approach. Despite the
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small discrepancies between the results, the proposed technique proves to be

very effective for analysing such complex cable net models.
5.3.3 Vertical and Horizontal Nodal Loading Case (LC3)

The third loading condition applied to the model involved placing vertical and
horizontal joint loads simultaneously. The free nodes, excluding joints 3, 7, 35,
and 39, were loaded with -20 N, and joint 8 was loaded with -40 N to prevent
the model from slacking. Only joints 3, 7, 13, 29, 35, and 39 were loaded with
20 N parallel to the positive y-axis of the model. The axial forces were
computed theoretically using Eqg. 3.40 and are presented in Table 5-12. The
same loading was applied to the lab model, and the axial force response is also

presented in Table 5-12.

The maximum compression force was observed in member 16, with a
theoretical value of 73.9 N and an experimental value of 71.7 N which gives
2.9 % of discrepancy ratio. The maximum tension force was observed in
member 6, with a theoretical value of 140.9 N and an experimental value of
138.6 N with 1.6 % error ratio. The maximum and minimum discrepancy ratios

were computed by 7% for member 58 and 0.5% for members 7 and 11.

All the results are sufficiently close to each other, as predicted by the nonlinear
calculated theory, demonstrating the accuracy and reliability of the theoretical

model.

The numerical displacement of the joints, subjected to simultaneous vertical
and horizontal loads as depicted in Fig. 5-9, was calculated using derived Eq.
3.40. The results from the analysis stage for this loading condition are

summarized in Table 5-13. The displacements were determined similarly to the
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displacements of prestress and other analysis cases. The maximum discrepancy
ratio determined for node 11 with the value of 7%, while the minimum

discrepancy was for joint 31 by 0.23%.

The maximum vertical displacement was computed at joint 8. The theoretical
and experimental dz displacements were -17.6 mm and -17.4 mm with the

discrepancy ratio of 1%, respectively.

There was good agreement between the theoretical predictions and the
experimental results from the experimental model, underscoring the accuracy
of the derived nonlinear technique in predicting joint displacements equivalent

to member forces under combined vertical and horizontal loads.

Fig. 5-9 Experimental model under vertical and horizontal joint loads
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Table 5-12 Nodal loads, theoretical and experimental member forces for LC3

(= Nezel Leek = Internal Force (N) & Internal Force (N)
Sz (N) = e9
o Z S Z
Px|Py| Pz = Theory Experiment = Theory Experiment
121000 T+t T T T+t T T
3 /0]20| O 1 ]252.20| -3.38 -3.26 33 [250.09| -8.67 -8.09
4510|101 0 2 |78.00(-11.09| -10.75 34 1259.29| -7.05 -6.45
6 |0]0|-20] 3 |9242| 3.33 3.15 35 ]269.58| -5.94 -5.83
7 |0]20| O 4 1228.36/105.36| 104.69 36 |276.10| -5.60 -5.08
8 |0]|0|-40| 5 |254.03|10.39 9.48 37 ]92.16 | 50.38 48.48
910{ 00| O 6 |263.96(140.97| 138.60 38 [193.68| 82.88 81.42
11 (0 0]-20y 7 | 6.25 |-33.25| -33.40 39 |244.43)| 98.47 94.39
12 {00 |-20f 8 | 7.23 |-30.33| -29.43 40 (320.20| 27.69 26.03
13 {0 |20|-20f 9 | 7.17 |-30.39| -30.61 41 |273.33|127.40| 124.60
14 {0/ 0|-20| 10 | 2.60 |-36.88| -32.75 42 |193.23| 82.37 81.40
15 {0 | 0|-20| 11 |170.79| 85.40 85.80 43 |91.56 | 49.80 48.45
16,17/ 0 | 0 | O | 12 |222.25/100.67| 100.09 44 |132.29|-50.28| -49.23
18 {0 | 0|-20| 13 |253.30| 13.52 15.01 45 |129.53|-48.00| -47.26
19 [0 |0 |-20| 14 |252.17|130.59| 127.80 46 |126.16|-47.66| -47.33
20 | 0|0 |-20| 15 |169.64| 84.20 81.93 47 |140.32|-33.49| -33.10
21 |00 |-20| 16 |82.71|-73.90| -71.68 48 |144.64|-32.87| -31.30
22 |00 |-20| 17 |81.34|-71.68| -71.39 49 |147.40|-35.15| -34.30
23 |00 |-20| 18 |77.14 |-71.58| -69.41 50 [199.84|85.72 83.56
24 100 |-20| 19 |91.12|-57.61| -58.52 51 |252.05/101.52| 102.32
2526/ 0| 0| O | 20 |96.17 |-56.87| -54.81 52 1344.04| 43.01 40.46
27 | 0|0 |-20| 21 |97.40 |-59.24| -57.04 53 ]280.85/130.35| 128.51
28 | 0 -20| 22 |69.42 | 50.44 - 54 1199.83| 85.64 82.18
29 | 0 |20|-20| 23 |165.10| 82.97 78.59 55 |78.61 |-20.01| -19.59
30 | 0|0 (-20] 24 |217.11]98.25 97.71 56 | 78.16 |-17.23| -16.00
31 | 0|0 (-20] 25 |257.53| 27.55 25.73 57 9247 | -2.92 -2.88
32,33/ 0 | 0| O | 26 [246.89|128.03| 125.17 58 ]93.32 | -5.29 -4.91
34 | 0]0(|-20| 27 |164.01| 81.84 80.36 59 ]261.01/106.71| 101.91
35 0120 0 | 28 |68.78 | 49.81 50.15 60 [364.76| 55.39 53.31
36 | 0]0(-20] 29 |211.92| -7.41 -1.27 61 (290.28|136.02| 130.67
37,38/ 0 | 0| O | 30 |208.55| -7.85 -8.14 62 |170.22| 42.26 41.45
39 [ 0]20] O | 31 |200.01| -8.90 -9.00 63 [184.50| 56.53 54.34
40,41 00| O | 32 |195.17| -8.87 -8.31 64 |400.52| 74.89 76.15
Max. discrepancy ratio 7% Min. discrepancy ratio 0.5%
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Table 5-13 Theoretical and experimental displacement under LC3

Displacement (mm) due to applied load alone

Node No. Present Technique Experiment
dx dy dz dx dy dz
1,2 0 0 0 0 0 0
3 0.011 0.032 -0.050 - - -
4,5 0 0 0 0 0 0
6 2.920 0.272 -7.200 - 0.213 -7.234
7 -1.249 -1.018 4.751 -1.136 -1.111 4.667
8 1.260 7.387 -17.599 - 7.337 -17.391
9,10 0 0 0 0 0 0
11 0.683 -0.108 -2.129 0.625 - -2.292
12 -0.026 0.161 -0.145 - - -
13 -0.110 0.173 -0.726 - - -
14 0.895 1.590 -1.993 0.862 1.500 -2.000
15 -0.162 1.061 -2.934 -0.159 1.099 -3.022
16,17 0 0 0 0 0 0
18 0.154 -0.152 -0.546 - - -
19 -0.141 0.021 0.249 - - -
20 -0.338 0.037 0.712 - - -
21 0.381 0.048 -3.239 0.337 - -3.202
22 1.373 -0.125 3.368 1.364 - 3.485
23 0.184 -0.189 0.646 - - -
24 -0.155 0.155 -0.542 - - -
25,26 0 0 0 0 0 0
27 0.185 -1.194 -3.221 0.187 -1.160 -3.270
28 -0.125 -0.934 -2.100 - - -
29 0.590 0.390 0.273 - - -
30 0.280 0.121 0.561 - - -
31 -1.123 0.200 -3.004 -1.190 0.215 -3.011
32,33 0 0 0 0 0 0
34 -0.360 -3.544 -8.584 -0.313 -3.529 -8.627
35 1.344 1.286 4.427 1.302 1.276 4.464
36 -2.610 -0.135 -6.497 -2.651 -0.156 -6.406
37,38 0 0 0 0 0 0
39 0.321 0.338 0.648 - - -
40,41 0 0 0 0 0 0
Max. discrepancy ratioll 7% Min. discrepancy ratio|  0.23%
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5.4 PRESERVING PHASE RESULTS

The derived nonlinear direct technique, using Egs. 3.44 and 3.45, was validated
through experimental control of nodal displacements alone, internal bar forces
alone, and both nodal displacements and internal bar forces simultaneously on
the complex structural model of a 3D hyperbolic paraboloid cable net. This
phase was applied to the lab model in three different cases, each with distinct
controlling targets. The detailed description of these applications is provided in

the following subsections:
5.4.1 Nodal Displacement Preservation Case (DPC1)

The first preservation scenario (DPC1) was applied to PC1 to control the
noticeable deformation that occurred during the prestressing process. The target
was to reduce the nodal displacement for some nodes that exhibited the greatest
vertical movement. Controlling the internal forces was not a priority, but the
pretension of the members needed to be maintained without violation or

slacking.

Some nodes, namely 7, 13, 19, 23, 29, and 35, showed remarkable vertical
displacements during prestressing, with values of -10.27, -7.29, 7.91, 7.92, -
7.26, and -10.27 mm, respectively. Thus, these nodes were selected as the
targeted nodes that required restoration to reduce their displacements.
Numerical calculations were performed to determine the required targeted
vertical displacement for each selected node and to find the necessary e, values
for the preservation process. Ten members were allowed to be used as actuators
during the preservation for displacement. These members were chosen after

using a sensitivity technique to identify which members had the greatest impact
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on restoring these displaced joints. Each member was examined separately;
thus, these are not representing optimal actuators to provide the best

preservation process.

The set of actuations was determined using the technique, and then these values
were adjusted to a new set to be more practical and measurable in the lab.
Therefore, actuators 5 and 60 were shortened by 1.6 mm, and the other eight
actuators (8, 9, 23, 27, 38, 42, 56, 57) were lengthened by 1.6 mm. The
alteration of 1.6 mm was chosen because it corresponds to one cycle of twisting
the jack screw, which is easier for lab work and for returning the model to its
original state after modification. The resulting numerical displacements during
the preservation process are presented in Table 5-14 with the total actuation of
16 mm. These displacements were then added to the prestressed displacements
to give the combined displacements after both prestressing and preservation, as
shown in columns 5-7 in Table 5-14. The data presented for the theoretical
preserved displacements are computed from derived Eq. 3.44. The output of
proposed Eq. 3.45 is not presented because both equations yielded very similar

values.

In the lab, the same amount of member actuation was applied to the specified
members with the same values. The targeted joints were monitored during the
experimental nodal displacement restoration, and the recorded data for
displacements are presented in columns 8-10 in Table 5-14. The preserved
experimental displacements, combined with the prestressed experimental

displacements, are presented in columns 11-13 in Table 5-14.

Fig. 5-10 shows the illustrative profile for the nodal movement at the original

configuration, prestressed configuration, and preserved configuration. It can be
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clearly seen that the targeted joints have been raised to the desired position. The
theoretical preserved displacements and combined displacements show an
exceptional correlation with the experimental adjusted displacements, which
proves the efficiency of the derived nonlinear equations. The selected set of e,
did not violate the member forces, and no slack was noticed in both the

theoretical and lab models.

O Position at original shape
# Position after prestressed shape
- Position aftre preserved shape
400 k\ A
= ; o
E ” »1‘ - 7
= 260 N -
S ,
7 150 6 o
£ N ¥
5 50 N & b
b o "
- — ~
“ 0 0
| 3 13 21 29 35 9 i1
Nodal Numbers

Fig. 5-10 Nodal movement for the targeted displacements in DPC1

From Fig. 5.10, node 21 deviated significantly from its original position
because it was not indicated as a targeted joint to maintain its location.
Additionally, the targeted joints were adjusted to be close to their original
positions, but not fully restored to those positions. Achieving full restoration
would have required more effort, more actuations, and a greater number of
actuators. The maximum raised displacements were at joints 7 and 35, with
theoretical values of 7.18 mm and experimental values of 7.04 mm with a 1.9%
error ratio and 6.96 mm with a 3% error ratio, respectively. Similarly, the
lowered joints 19 and 23 were indicated to reach -6.55 mm in theory. In the
experiment, they approached -6.12 mm with a discrepancy rate of 6% for joint
19 and -6.2 mm with a discrepancy rate of 5% for joint 23. The maximum error

ratio for the adjusted joints was recorded as 6.5% between the theoretical and
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experimental preserved displacements at node 19, while the minimum error

ratio was 0% at the restored nodes 13 and 29.

Table 5-14 Theoretical and experimental preserved and combined
displacements for DPC1

Preserved
Displacement
(mm)

Node

Combined

displacement of
prestress and
preservation

Preserved
Displacement
(mm)

Combined
displacement of
prestress and
preservation

Present technique

Experiment

dx | dy | dz dx

dy

dz

dx | dy | dz

dx dy dz

-0.08|-0.08| 0.14 | 2.20

2.21

-8.36

-1.68|-0.11| 3.84 | -2.51 | 1.95

5.50

-0.58|-0.58| 7.18 | 1.76

1.76

-3.09

-0.11|-1.68| 3.84 | 1.95

-2.51

5.50

11 | 2.21 |-0.21|-5.05| 1.86

1.84

-4.02

12 1 0.52 |-0.34|-0.92| -0.60 | 1.15

1.89

13 {0.17 | 0.17 | 3.49 | 1.51

1.50

-3.80

14 1-0.34| 0.51 |-0.92| 1.16

-0.61

1.89

15 [-0.21|2.21 |-5.05| 1.85

1.84

-4.02

18 | 0.04 |-0.04|-0.03|-1.93 | 1.93

7.88

19 | 1.82 |-1.82|-6.55| 0.20

-0.20

1.36

20 | 0.52 [-0.52|-0.10| 0.20

-0.21

2.95

21 | 0.00 | 0.00 | 5.15 | 0.02

0.00

8.03

22 |-0.52|0.52 |-0.10| -0.20 | 0.21

2.95

23 |-1.82|1.82 |-6.55| -0.20 | 0.20

1.37

24 |1-0.04|0.04 |-0.03| 1.93

-1.93

7.87

27 10.21 |-2.21|-5.04| -1.84 | -1.85

-4.00

28 | 0.34 |-0.51|-0.91|-1.16 | 0.61

1.93

29 |-0.17|-0.17| 3.49 | -1.49 | -1.48

-3.77

30 |-0.51|0.35 [-0.91| 0.61

-1.15

1.93

31 |-2.21]0.21 |-5.04| -1.85 | -1.84

-3.99

34 1011|168 |3.84|-195]| 2.51

5.50

351058058 | 718 |-1.75 | -1.75

-3.10

36 | 1.68 | 0.11 | 3.84 | 2.52

-1.95

5.50

39 | 0.08 | 0.08 |0.14 | -2.19 | -2.20

-8.38

Max. discrepancy ratio

6.5%

Min. discrepancy ratio 0.0%
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5.4.2 Member Force Preservation Case (FPC2)

For the second objective of preservation, which involves controlling the
member forces alone, the validation was checked using LC2 to address the
slack in the members when horizontal forces were applied. In the second load
case, some members, specifically cables 2, 8, and 28, became slack due to the
presence of insufficient pretension when prestressed. When the horizontal
nodal loads were applied, these cables experienced compressive forces greater
than their pretension, rendering them inactive. For this reason, these cables

need to be controlled and re-tensioned to become active again.

Theoretical calculations began by determining the desired pretension force for
the slackened members and identifying the necessary member alterations to
achieve this target. Referring to Table 5-10 (column 6), cables 2, 8, and 28
showed zero values. It can also be observed that the remaining pretension forces
for cable 7 were 2.43 N and for cable 27 were 15.89 N. Therefore, these were
also included among the targeted force preservations. Subsequently, eight
members were specified to take on the role of actuators (see column 2 in Table
5-15) with a total actuation of 16 mm. The member forces during the
controlling (tc) process were computed and are presented in columns 4 and 8 in
Table 5-15. Finally, the remaining internal force (T+t+t;) was calculated to
ensure all members were kept in tension and that slackening of different cables

was prevented.

For the experimental model, the set of selected members’ actuation were given
to the model. The response of the cables recorded via the data logger and
tabulated in columns 5 and 10 in Table 5-15. The t¢ results from the experiment
were very close to the numerical calculation for the preservation of internal

force to overcome the slack members. In the theoretical computation, as an
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example, it was requested from the proposed Eq. 3.45 to achieve a pretension
of 54 N for cable 2. The computation attained 53.42 N by determining the
necessary member actuation. In the laboratory, following actuation, a

measurement of 54.05 N was recorded, with a discrepancy ratio of only 1.1%.

The maximum and minimum discrepancy ratios between the numerical
computation and experimental forces were 2.8% and 0.02% for the members

43 and 55 respectively.

The selected members (2, 3, 7, 8, 27, 28, 36 and 43) as actuators provided
satisfactory results; however, selecting different members might have yielded
better results or required less efforts during the preservation process.
Additionally, the member actuations were chosen to be easy for lab application.
The theoretical results presented in Table 5-15 were calculated using from Eq.
3.45, which provided closer results to the lab data, with a Euclidian norm ratio
of only 1.2%. In comparison, the computed forces using Eq. 3.44 in this case
showed I>-norm ratio of 9.3%. Despite these considerations, the technique
remains highly effective and accurate for controlling the internal member

forces in such a complicated model.
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Table 5-15 Theoretical and experimental internal force for FPC2

. Internal Force (N) . Internal Force (N)
S €o Present . S 5| e Present :
%Eog (mm) technique S ég (mm) technique S E

T+t+tc tc tc T+t+tc tc te
1 255.06 | 54.36 54.83 33 382.28 | 54.96 55.56
2 |-16| 5342 |5342 54.05 34 337.70 | 56.61 57.19
3 |-1.6| 11251 | 55.47 56.02 35 292.16 | 60.47 60.95
4 165.50 | 23.11 23.31 36 | -1.6 | 253.94 | 70.42 71.37
5 295.61 | 46.56 46.83 37 148.98 | 6.09 6.27
6 139.93 | 13.20 13.24 38 214,97 | 14.58 14.67
7 |-16| 21.74 |19.31 19.59 39 223.52 | 22.94 23.01
8 |-16| 17.65 | 17.65 17.74 40 384.03 | 42.37 42.68
9 70.64 | 15.59 15.76 41 196.38 | 13.71 13.76
10 72.64 | 15.65 15.76 42 104.47 | 30.42 30.46
11 161.01 | 14.80 15.03 43 |-3.2 | 11052 | 57.17 58.92
12 164.76 | 22.49 22.66 44 250.25 | 20.07 20.20
13 344.56 | 44.66 45.06 45 240.02 | 19.26 19.32
14 137.76 | 12.80 12.95 46 229.83 | 18.07 18.10
15 53.01 | 33.26 33.50 47 281.71 | 16.88 16.93
16 139.37 | 16.03 16.05 48 285.78 | 16.55 16.65
17 131.55 | 15.26 15.31 49 288.90 | 17.04 17.18
18 12458 | 14.77 14.85 50 220.33 | 15.06 15.10
19 177.60 | 14.24 14.36 51 229.52 | 23.53 23.66
20 180.33 | 14.15 14.26 52 453.36 | 43.12 43.53
21 181.87 | 14.93 14.98 53 203.03 | 14.42 14.54
22 91.54 | 6.09 - 54 110.25 | 30.50 30.89
23 157.87 | 14.47 14.66 55 90.18 | 7.33 7.33
24 163.19 | 22.46 22.65 56 86.51 | 6.91 6.96
25 388.90 | 43.46 43.75 57 143.75 | 6.78 6.85
26 135.92 | 12.55 12.59 58 147.10 | 6.97 6.98
27 | -1.6 | 49.32 |33.44 33.85 59 232.99 | 23.83 24.02
28 | -3.2| 5287 |52.87 54.34 60 518.01 | 43.66 43.89
29 570.72 | 54.40 54.98 61 208.77 | 14.74 1491
30 500.17 | 53.57 53.99 62 225.02 | 11.97 12.00
31 431.75 | 52.66 53.17 63 282.72 | 12.01 12.03
32 372.04 | 52.54 52.91 64 603.06 | 45.03 45.30
Max. discrepancy ratio 2.8% Min. discrepancy ratio 0.02%
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5.4.3 Simultaneous Preservation Case (SPC3)

The validation of the derived Egs. 3.44 and 3.45 was also examined by
simultaneously controlling both the internal force and nodal displacement. The
same case as in FPC2 was used, but this time with an additional emphasis on
displacement. In the theoretical computation, both targets for member forces
and the selected nodal displacements were determined, and the necessary set of

eo Vvalues was requested to achieve these targets.

After the model was subjected to prestressing and external horizontal loads, its
form was disturbed. Fig. 5-11 (a and b) shows the nodal positions of the joints
on the concave and convex diagonal curves of the model. At the original
position, the equivalent joints were at the same level. However, after
prestressing and loading, they were no longer at the same height. Thus, the
target was to restore these opposite joints to the same level. Additionally, the

slackened cables required fastening and re-tensioning.

The calculation for attaining the stated targets identified the set of member
actuations shown in the Table 5-15 with a total actuation of 51.7 mm. The
members 2,3, 7, 8, 9, 10, 22, 24, 25, 28, 37, 38, 39, 43, 46, 47, 56, 57, 62, 63,
and 64 were permitted to be used during the preservation process. The
outcomes of the vertical displacements for both Eqgs. 3.44 and 3.45 are
presented in Table 5-16 in columns 4 and 5. Columns 2 and 3 in the Table 5-16
show the combined vertical displacement from the previous phases of
prestressing and loading. The targeted joints for this preservation process are
3,7,13, 29, 35, and 39 on the concave diagonal curve, and joints 18-24, except
central joint 21, are on the convex diagonal curve of the model, as shown in
Fig. 5-11.
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a) Concave diagonal —0~ Position before prestress and loading

—#— Position after prestress and loading

—&— Position aftre preservation
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-0~ Position before prestress and loading
b) Convex dlugonal & Position after prestress and loading
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Fig. 5-11 Nodal movement for the targeted displacements in SPC3

For further clarification on the preservation of vertical displacement, the
coordinates of two opposite joints, 7 and 35, are used as an example. In Fig.
5-12, the original vertical (z) coordinates for both joints were 150 mm. After
prestressing and loading, the z-coordinate of node 7 became 126.89 mm, and
the z-coordinate of node 35 became 143.22 mm. The target was to bring both
coordinates to the same level, and after achieving the target, they became
approximately 123.5 mm theoretically. The experimental results showed that
node 7 approached 123.58 mm, with a discrepancy ratio of 0.25%, and node 35
reached 124.17 mm, with a discrepancy ratio of 0.38%.
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# Node 7 = Node 35

143.22
123.26 123.69

Vertical coordinates (mm)

Original Position after Preserved
position PCI1+LC2 position

Fig. 5-12 Coordinate position of nodes 7 and 35 before and after vertical
displacement preservation

The theoretical internal forces during the preservation process were also
computed and are tabulated in Table 5-18. The closeness between the computed
theoretical preserved forces (tc) using derived Egs. 3.44 and 3.45 with the
experimental tc examined, showing that the Euclidian norm ratio between the
theoretical result of Eq. 3.44 and experimental tc was 3.2% while it was 0.49%
with the theoretical result of Eg. 3.45. The combined internal forces for the
model, calculated before performing the restoration stage and after the
slackened cables were restored, are presented in Table 5-18. This is done to
ensure that the slackened members are properly tensioned and that other

members are prevented from slackening or overloading.

After the numerical calculations were set and the required member actuations
identified, the lab model was examined to achieve the displacement targets. The
experimental vertical displacements were recorded in the same manner as in
the previous phases and are presented in columns 6 and 9 in Table 5-16. The

maximum ratio of discrepancy between the theoretical and experimental
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combined displacements were determined as 6% at node 29, while the

minimum ratio was at node 18 by 0.4%.

Table 5-16 Theoretical and experimental vertical displacements before and
after preservation process in SPC3

Before preservation After preservation
»|Combined displacement|  Preserved Displacement Combined displacement
§ PC1+LC2 (mm) (mm) PC1+LC2+SPC3 (mm)
Theory | Experiment |Eq. 3.44|Eq. 3.45|Experiment|Eq. 3.44|Eq. 3.45|Experiment

dz dz dz dz dz dz dz dz
3| -18.72 -18.91 2.52 2.41 2.45 -16.20 | -16.31 | -16.46
6| 10.72 - -13.36 | -13.51 - -2.64 | -2.79 -
7] -23.11 -22.83 -3.63 | -3.68 -3.59 -26.74 | -26.79 | -26.42
8| -3.50 - -5.84 | -5.93 - -9.34 | -9.43 -
11 6.62 - 1.89 1.90 - 8.51 8.52 -
12| 8.89 - 0.96 0.94 - 9.85 9.83 -
13| -9.56 -9.32 1.79 1.86 1.82 -7.77 | -7.70 -7.50
14/ -1.10 - 2.08 2.09 - 0.98 0.99 -
15 -7.81 - 3.11 3.09 - -4.70 | -4.72 -
18| 6.88 6.72 20.51 | 20.85 21.13 27.39 | 27.73 27.85
19| 261 2.17 11.97 | 12.02 11.94 1458 | 14.63 14.11
20| -3.78 - 9.29 9.22 - 5.51 5.44 -
21 141 - 2.02 1.96 - 3.43 3.37 -
22| 7.38 - -1.63 | -1.76 - 5.75 5.62 -
23| 19.90 19.39 -5.83 | -5.84 -5.67 14.07 | 14.06 13.72
24| 30.28 29.34 -2.89 | -2.42 -2.56 27.39 | 27.86 26.78
27| 3.82 - 3.88 3.92 - 7.70 7.74 -
28| 4.66 - 3.01 3.01 - 7.67 7.67 -
29| -357 -3.28 -2.78 | -2.74 -2.69 -6.35 | -6.31 -5.97
30| 1.87 - -0.34 | -0.35 - 1.53 1.52 -
31| -1.83 - 0.01 | -0.01 - -1.82 | -1.84 -
34 1.76 - -9.42 | -9.55 - -7.66 | -7.79 -
35 -6.78 -6.50 -19.53 | -19.64 | -19.33 | -26.31 | -26.42 | -25.83
36| -2.51 - -8.96 | -9.06 - -11.47 | -11.57 -
39| -6.56 - -9.92 | -10.02 - -16.48 | -16.58 -

Max. discrepancy ratio 6% Min. discrepancy ratio 0.4%
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Initially, the slackened members recorded zero strain until they were re-
tensioned, after which they recorded strain values. The member strains were
transformed into axial forces and are presented in Table 5-17 (columns 4 and
8). For instance, in computing the member force of cable 2 in theoretical and
recording experimental values, this cable experienced slack due to an
insufficient pretension force that produced in prestressing stage (see column 6
in Table 5.11), and producing compression force from the applied loads.
Therefore, it needed to overcome this compression force first and then acquire
a pretension value. During the adjustment, the technique computed 78.6 N
using Eq. 3.45, which became the total pretension force due to zero force at the
previous stage. Similarly, during lab strain recording, it showed zero strain until
it passed the compression value and then recorded a tension force of 77.43 N.
Referring to Table 5-17, the maximum discrepancy between the theoretical
computation by Eq. 3.45 and experimental t. was 2.8% for cable 3, while the

minimum error was for cables 13 and 41 with zero percent.

In Table 5-18, the collected experimental axial forces before and after the
preservation process are shown alongside the theoretical values for comparison.
The lab results regarding both the displacements and internal member forces
exhibited a good correlation with the theoretical results. This level of agreement
not only validates the accuracy of the theoretical models but also demonstrates
the robustness of the experimental procedures. The consistent results across
both theoretical and experimental data further confirm that the present approach
to adjusting nodal displacement and internal stress is highly effective for
complex space structures. These structures, which exhibit geometric nonlinear
responses to disturbance sources, benefit greatly from this precise and reliable

method of analysis and adjustment.
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Table 5-17 Theoretical and experimental internal force before and after
preservation process in SPC3

Preserved internal force (N) Preserved internal force (N)
Member e Member ke
No. No.
:E 24 3E25 Experiment 3I,E 24 3E25 Experiment
1 249.91 | 256.30 257.01 33 191.43 | 197.45 197.82
2 74.24 | 78.60 77.43 34 195.57 | 201.70 202.49
3 7453 | 78.87 76.61 35 197.96 | 204.05 203.59
4 147.67 | 149.56 149.64 36 218.33 | 226.80 226.42
5 239.25 | 245.04 244.63 37 419.42 | 440.95 440.61
6 117.02 | 118.62 118.67 38 64.61 | 65.45 65.38
7 167.01 | 170.40 169.11 39 142.90 | 144.70 145.35
8 164.69 | 168.06 166.32 40 212.38 | 217.73 216.85
9 168.27 | 171.67 170.35 41 111.06 | 112.58 112.58
10 171.57 | 175.02 174.92 42 31.22 | 3114 31.30
11 59.41 | 60.18 60.11 43 128.95 | 143.18 140.53
12 142.61 | 144.41 144.82 44 58.80 59.11 59.06
13 221.55 | 226.96 226.95 45 57.09 57.41 57.44
14 111.05 | 112.55 113.07 46 51.69 51.96 52.00
15 34.95 | 34.89 34.99 47 56.70 | 57.01 57.13
16 93.48 | 94.22 94.12 48 61.54 | 61.89 61.74
17 91.62 | 92.37 92.08 49 62.95 | 63.27 62.93
18 86.98 | 87.69 87.67 50 64.76 | 65.60 65.67
19 86.38 | 87.07 87.15 51 142.86 | 144.62 144.44
20 89.64 | 90.35 90.09 52 212.59 | 217.97 218.21
21 91.00 | 91.71 91.60 53 112.13 | 113.62 114.00
22 424.66 | 446.27 - 54 32.09 | 32.03 32.12
23 58.08 | 58.83 58.70 55 273.82 | 278.49 280.39
24 141.90 | 143.70 144.03 56 274.18 | 278.87 280.85
25 218.05 | 223.44 224.40 57 273.02 | 277.68 275.50
26 109.20 | 110.70 111.28 58 273.14 | 277.78 280.97
27 33.26 | 33.19 33.31 59 152.67 | 154.55 155.08
28 125.10 | 139.35 137.67 60 238.52 | 244.44 244.72
29 273.24 | 283.05 282.70 61 122.66 | 124.27 124.29
30 206.67 | 212.87 212.69 62 181.94 | 187.78 187.96
31 200.83 | 206.94 207.13 63 181.78 | 187.63 187.28
32 194.73 | 200.73 200.46 64 262.17 | 268.93 268.61
Max. discrepancy ratio 2.8% Min. discrepancy ratio 0.0%
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Table 5-18 Theoretical and experimental combined internal force before and

after preservation process in SPC3

Combined Internal Combined Internal
Member | eo Force (N) Member | e Force (N)
No. (mm) | Theory | Experiment No. (mm) | Theory |Experiment
T+t+tc T+t+te T+H+H: T+t+e
1 457.00 461.42 33 524.77 526.09
2 -1.1 78.60 77.43 34 482.79 483.80
3 -1.1 135.91 132.24 35 435.74 433.14
4 291.95 292.33 36 410.32 409.58
5 494.09 492.81 37 -4 583.84 583.49
6 245.35 245.01 38 -4.8 265.84 267.79
7 -1.1 172.83 170.89 39 -2.8 345.28 346.69
8 -2.4 168.06 166.32 40 559.39 555.25
9 -2.4 226.72 225.76 41 295.25 297.70
10 -1.6 232.00 232.48 42 105.19 103.64
11 206.39 206.55 43 -3.2 196.53 192.98
12 286.68 288.42 44 289.29 289.56
13 526.86 511.17 45 278.17 278.39
14 237.51 234.93 46 0.8 263.72 265.70
15 54.64 52.20 47 -1.6 321.84 320.17
16 217.56 215.68 48 331.12 329.84
17 208.66 204.51 49 335.13 335.22
18 197.50 194.54 50 270.87 270.85
19 250.43 246.19 51 350.61 346.77
20 256.53 250.47 52 628.21 633.38
21 258.65 258.56 53 302.23 304.65
22 -4 531.71 - 54 111.77 111.10
23 202.23 201.57 55 361.35 363.04
24 -0.8 284.43 282.78 56 -5 358.47 359.56
25 -2.4 568.88 566.79 57 -5 414.65 413.00
26 234.07 233.53 58 417.91 421.32
27 49.08 48.20 59 363.71 365.39
28 -3.2 139.35 137.67 60 718.79 719.26
29 799.37 800.97 61 318.30 317.18
30 659.47 656.44 62 -1.8 400.83 400.52
31 586.03 585.95 63 -1.8 458.34 456.97
32 520.23 522.47 64 0.8 826.96 830.40
Total eo (mm) 51.7
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55 SUMMARY

This chapter presented a comprehensive validation of the theoretical models
developed in Chapter 3 through a series of experimental tests on a hyperbolic

paraboloid 3D cable net model. The key findings are:

e Prestressing Phase Summary: The experimental results for three
prestressing scenarios (symmetric and asymmetric) closely aligned with
theoretical predictions. Minor discrepancies arose due to factors such as
cable extension and relaxation, non-ideal hinge behaviour at joints, and
inaccuracies in calculating the combined axial stiffness of the members. The
maximum discrepancy was observed in PC2, with a 7% error in prestressed

force and a 5.2% error in resultant displacement.

e Analysis Phase Summary: The model was subjected to vertical, horizontal,
and combined loading conditions. The experimental data showed a strong
correlation with theoretical calculations, validating the accuracy of the
derived equations. The discrepancies noted were primarily due to the initial
prestressing conditions and the inherent characteristics of the model. The
maximum error ratios were computed in LC1 among all loading cases, with

7% for internal force and 2.7% for resultant displacement.

e Preservation Phase Summary: The preservation techniques were tested in
three scenarios: nodal displacement control, member force control, and
simultaneous control of both. The experimental outcomes demonstrated that
the derived nonlinear equations effectively maintained structural integrity,
preventing slack and overloading in the cable members. It was confirmed in
SPC3 that the derived Eq. 3.45 provided results closer to the experimental
values regarding internal force, with a Euclidean norm index ratio of 0.49%,

while Eq. 3.44 showed an />-norm distance of 3.2%.
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Overall, the experimental findings confirmed the robustness and practical
applicability of the theoretical models for managing the behaviour of pin-

jointed spatial structures under various prestressing and loading conditions.
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CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The conclusions of the present study can be reported as the following:

1.

10.

The derived equations express a system of algebraic nonlinear equations as
a function of joint displacements.

The 'fsolve' function in MATLAB can be employed for solving the derived
nonlinear equations.

The derived nonlinear prestressing methods are applicable, efficient and
reliable for prestressing simple and complex space cable structures.

The proposed prestressing technique can numerically compute the desired
degree of prestressing for spatial assemblies by accounting for the nonlinear
amount of required member alteration.

The applied prestressing approach is accurate in computing the targeted
prestress when it is predetermined to find the required member actuation.
The present prestressing technique is equivalent to software solvers when
the amount of member actuation is pre-indicated.

The slack of the cables can be prevented through the required member
actuation.

The proposed nonlinear prestressing equations, similar to those used for
flexible structures, can successfully calculate the resulting axial force
formed from the lack of fit of rigid members in space truss systems.

The proposed analysis technique is applicable for both flexible and rigid
members of spatial pin-jointed systems.

The proposed analysis technique can accurately calculate the internal stress
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11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

of the members, considering geometric nonlinearity.

The proposed analysis technique is very fast and accurate for simple and
complex assemblies with nonlinear geometrical response under any loading
condition.

The proposed preservation technique effectively computes the amount of
nonlinear member actuation needed for the preservation process to achieve
a desired target.

The proposed preservation approach is applicable for preserving the nodal
displacements and restoring or minimising the disturbed geometry after the
prestressing procedure and/or external loads.

The derived preservation technique is applicable for restoring the member
force of slackened members in flexible structures or reducing the tensile and
compressive forces in rigid member systems.

The derived preservation technique can preserve the nodal position of joints
and internal force simultaneously for all pin-jointed structures based on the
requested target.

The proposed preservation technique is accurate in redistributing the
internal stress of the spatial structure to prevent slacking or overloading of
the members.

Achieving the desired target, whether it is nodal control alone, internal force
control alone, or simultaneous control of displacement and force, depends
on the amount of actuation and the sufficient number of actuators.

The location of the actuators has a direct effect on the preservation process
and the required amount of total actuation for the process.

Bar sensitivity technique determined the effect of selective members on the
nodal displacement and member forces which relies on the resulting
coefficient of the bar sensitivity technique.

Placing the actuators within active members allows the target to be achieved

easily with minimal total actuation.
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21. Determining the correct target during the preservation stage can strongly

affect the ease of achieving the desired adjustment with less effort.

6.2 RECOMMENDATIONS FOR FUTURE WORK

1. Generalising the geometric nonlinear techniques for analysing not only

pin-jointed structures but also frame systems.

2. Deriving a more advanced technique for identifying the optimal
locations for actuator placement, whether for prestressing applications or

adjustment processes.

3. Integrating the proposed techniques, particularly the preservation

technique, into machine learning and intelligent control systems.

4. Linking the displacement monitoring using digital photos to image

processing software for faster displacement computation.

5. Developing the proposed nonlinear analysis technique for dynamic

analysis.

6. Testing the applicability of the proposed nonlinear analysis technique for

thermal load.
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Ome of the crucial aspects of the design of structural space systems is the degres of prestressing since it is mvolved
in the load transferring, deformability and charges. The prestress state can be reached via required member
alteration. This paper presents an efficient nonlinear numerical approach based on the force method for pre
stressing the spatial nonlinear structures to the desired level through computing nonlinear actuation as a function
of external nodal displacements. Two equations are derived for indicating the required amount of member

alteration &, and prestressing level by using Taylor's series and Pade approximation methods. This technique can
be applied to both rigid and flexible spatial strctures. The present technique is validated based on three no

merical

ples, and the

l findings are in well agreement with the compared methods. The results

show that the new approach requires less effort and makes greater economic sense. Mareover, the member forces
with concern 1o nonlinear ¢, of doubledayer space grid structure by imposing lack of fit of some members

successfully obtained.

1. Introduction

Space structures are characterized by lightweight, cost-effective, and
swiftness in an erection. Due to their structural effectiveness, spatial
cystema are intended for claims such a2 structures with wide-gpan roofs
or deployable mech reflectors [1]. The capability to allow internal stress

ithout having 1 loads iz fund | to moet spatial structures.
Prestress iz required to attain these structures’ desired form, stability,
and function. Por structures with rigid geometry, the existence of
prestrese, which iz impoced wia the ber's fit deficiency, can
noticeably improve the design, essentially when buckling iz the main

industrial, and hanical di Iz, such az i hni dy-
namic relaxation method, and force density method. Hmeve.r, these
methods establiched limitz on member strezzes and nodal dizplacements
but typically do not certain the prestressing degree (31

Pell and Calladine [S] proposed an algorithm to bring com-
plete detailing ;bouxdsemodeafum-exomzwcul deformation and all
;he.umofmndnmm&amdpnrhmwudmhpedby

Feﬂegrmo [6], which deals with both 1 anu.l I
modes distincdy: in addition, they classified the blies a2
an ind dent state of zelf- and mech modes. In the study

bwa:nanJ Pellegrino (7], bazed on the linear force method, an al-

fmlureolthurmemben.\r\hxle.far:heﬂgnbkwpg, is waz prop ‘wb:hwnuxdtommu:nmfmdggeeoi
eazential to achieve the required 1 config [2]. Cinquini pre:uex.e\ndnoen,buedonthg?me Method, linear and partially
demu[]numJﬂm:hemtawﬁcmtutml«' igning a 'foxeounuoﬂm hubeen-lone[u 10], which iz a
cablemtwmmn:be.gvelofpnmnbecmuoﬁh:dmnmﬂme part of achieving the reg d ofp N theless, the
on itz load-carrying . exp and g ical imulated ling algorith wndevelopedlry)(umdl.uo[ll];wi:h

figuration. Also, the 1i; ity develops more noticeable with taking care of | sability, the optimization model was used for

Jedmmg pretenzion [4]. Hence, the indi

prestress has an essential effect in the design stepa.
Numerous studies have been publizhed to find out the optimal pre-

strezsing level of pin-jointed zpatial structures. Az well, many fonn

of the preliminary

finding the force of tenzegrity structure. Later, Li, Jiang [12] used two
different form-finding techniques on deployable mesh reflector antenna
to indicate the cable pte:m w© u:ufv the xeq\ured exterior accuracy.
Even though a2 p ithm by lation for negati

finding techniques have been proposed to attain desired h 1,
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ABSTRACT
This work proposes an mproved numerical methodologzy based on the flexibility method to study the geometric nonlimeanty of space
cable structures. The proposed approach makes use of the Pade approxamation to enhance the performance of computation. The
transformation to the Pade amranzement 15 particularly successful in quickly speeding up convergence and obtammg the solution when
working with complex shuctures that demonstrate geometrically nonlinear properties. In contrast to previous approaches. the suggested
method directly solves the problem by formulating an alzebraic system of nonlinear equations using the Pade approximation. To ammive
at an analynical solution. some of the most well-established methods that make use of iterative techmgues include dynamic relaxation.
finite element analysis, and munimum total potential energy. A comprehensive evaluation of the proposed techmique’s precision and
liability was conducted using six different numenical examples. The recommended method's accuracy. consistency, and computational
efficiency are shown by carefully companng the results with those of techniques that have been around for a long time. This work
conmmbutes to the advancement of numerical approaches for the analysis of complex structural behavior by providing a reliable and

efficient alternative. Moreover, this work 15 beneficial for both academics and professionals working m the field

= T

e G X

Eeyword:: Cable Net Smucture; Spatial Saucture; Geometric Nonlinearity; Static Analysis; Force Method: Nonlinear Analysis.

1. Introduction

Sources of nonhneanty n structures can be classified into three
categonies: material nonlmeanty. boundary nonlineanty, and
geometric nonlineanty. Cumently, large space structures are
requested. mainly m which the cable member structures are the
mam element i assembly. Csbles provide interesting
perspechves to form attractive spatial gnd structures with high
flexability. It 15 noteworthy that cable nets show great stuctural
flexibibity and nonlinear response under loading conditions.
However. the most challenging aspect of cable structure analy=is
15 the zbsence of flexwral ngidity, which results mn high
displacements. Consequently. geometric nonlineanty 1s required
to be considered in the analysis of cable structures. The geometnic
nonlineanties ongmate when the structwral deformation 15
experiencing 2 noficeable strain to make the cable’s stress
sufficient to produce a state of equilibrium i deformed states.
The effictency of cable structures depends on prestressing to
aftain a desirable appearance and function with the requwed
stability. The mnserted prestressing effort offers advances mn

* Corresponding axthor
E-maii address: naimadeen_gasredinar.edi ord (Instactor).
Peer-reviewed under the responsibility of the Untversity of Gamiian.
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structural inflexibility, the lesseming of structural distorhion, and
the redistnbution of intemal stress, proffermg a2 more cost-
effective structure!’ 7. Az Kwanl® stated, the behavior (mitial
stiffness) of cable nets depends on the prestressing rather than 1ts
axial stffness. So, any mmprovement mn finding new analysis
techniques for such structures 1s demanded.

Vartous recent methods for analyzmg cable structures have been
thoroughly reviewed™'”). Most recent methods insist on
algonthmic procedures, computer operation aspects, and
programming, which contnbute to their prorated complexity. In
contrast, the vital attention in deriving the proposed technique in
this paper 15 the lucidity of the essennial charactenstics of cable
structures. Therefore, the essential emphases of this paper are: 1)
to propose a new method for analyzing simple and complex cable
structures under static loadings; and 1) to compare and evaluate
this approach with several highly nonlinear structural problems.

Vartous recent methods for analyzing cable structures have been
reviewed. which recently exist thoroughly*", and are used for
both the static and dynamic analysis of structural cables. The
susceptibiliies of these solution approaches are dizsimilar from
each other. Most of them are very complex and require sufficient
expenence to use. In this section. four of these popular
approaches are desceribed briefly.
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Abstract:

Cable-net structures are used for many structural purposes, such as stadiums,
roofs, bridges. . .etc. They are lightweight structures that can be used in unique
construction at an effecuve cost Geometnical nonlinearity govems the
performance of cable net systems. This particular system can equilibrate apphed
loads by undergoing significant deformations with small strains. Therefore, the
cable-net structures require to attain a suitable degree of preswessing to prevent
cables from slacking and to obtain specific zeometry and functon. The effective
numerical approach is applied for conputing the desired level of prestress for a
three-dimensional cable-net model and a conical cable-net model The targeted
prestress is achieved considering the nonlinear behavior of cables. The nonlinear
member vanation 1s mtroduced as a second-order fimcnion of displaced joints.
Then used in determuning the desired prestress. Two numerical examples are
conducted using the present techmique and the nonlinear analysis of SAP2000.
Both of the analysis outcomes for the models showed a very well sgreement with
reaching the targe:. However, using the Euclidean norm index with a value of
0.0809 mm the first example confirmed that the cwrent techmique is more
approachable to the desired prestress. In addition, when the value of acation is
pre-determined and used in computing the degres of prestress, both the present

approach and SAP2000 software work equivalently, as seemed i the second
exanple, which showed 0.04% of the maximmm difference m the prestress
computation.

Keywords: Cable-ner. Prestress; Geomemic Nonlmearity, Seif-Equilibrate;
Force Method.

1. Introduction

Cable-net structures are tensile structures whose stability is dependent on the axial tensile force alone.
The majonty of cable-net structures are kinematically indeterminates; therefore, they rely on their
geometrical flexibility follow-on their self-equilibrated state [1]. Prestressing is essential n cable-net
systems to attain the looked-for shape, stiffness, and stability [2]. Moreover, the level of prestressing
has a direct influence on indicating the load tolerance capability, expenses. and shape deformation [3].
The cable-net form is generally deternuned via its nodal positions, and it has highly flexible geometry.
Thus, taking info account the geometnc nonlinearity during the prestressing 1s crucial [4-7].

Many research publications have been conducted to find out the opfimal degree of prestressing for
vanous tensile structures. Pellegrino [8] developed an approach based on the linear force method,
assuming small deformation, to find out the prestressed mechanism and the loading conditions that
have an effect on causing cable looseness. Kwan and Pellegrino [9] used the least squares analysis
technique to calculate the state of prestress in particular and opfimal situations with preselected
actuators equal to the number of self-stress states. However, You [10] prestressed cable structure by
altering the member length of the cables, and similarly controlled the nodal positions by charging the

P3
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presented and applied to the double-layer spherical modal This numenxcal
approach takes into consideration the geometrical nonlinear response of the pin-
jomnted rigid systems. The presented method performs a practical way of
employing the large deformation withm the elastic limit for analyzing space
structurss. In the proposed technigue the nonknsar geometrical response of the
assembly i modeled and analyzad as a system of algebraic nonlinear equations
The Pade approximation method is conducted in the derivation to give a high rate
of convergent ratio in solving the nonlinear equations. The result is validated
using the nonlmear finite element software SAP2000 and the linear force method.
The discrepancies between the proposed technique and SAP2000 analysis results
for external nodal displacement difference and intemnal element force difference
are computed and compared with the linear technique outcomes. The Euclidean
norm index is also used to test the pracision of calculated monlinear nodal
displacements. The findings showed more closenass to nonlinear SAP2000 results
than the linsar method.

Keywords: Geometric Nonlinearity; Nonlinear Analysis; Statical Analysis;
Spherical; Force Method.

1. Introduction

Spheres are always considered umique and elegant geometry for structures [1, 2]. Architects and
engineers have built a vanety of spherical forms all over the world. Many spherical buildings can be
seen as landmarks, such as Al Wasl Plaza mn Dubai m UAE as shown m Figure 1 [3]. Due to the
geometrical charactenstics of spheres, they are used to afford a wide span as a lightweight structure
with economical choice. When they are affected by specific external loads, they face notable
deformation [4, 5]. Therefore. they require a very precise computation dunng the analysis and design
process considenng their geometrical nonhinear behavior [6].

Many nonlinear analysis techniques have been established for analyzing the nonlinear static and
dynamic responses of structures. In the early stages when researchers considered the geometnic
nonlinearnity behavior, they applied techniques of incremental stiffness, Newton Raphson. and iteration
procedure [7]. The dynamic relaxation method 1s one of the popular methods conducted in dealing
with geometrically nonlinear static analysis at a steady state [8-13]. Improving the tangent stiffness
matrix mn the fimite element method 15 another way for performing nonhinear analysis with geometrical
considerztion [14-17]. Minimum potential energy 15 an additional different method depending on
mimmizng the totzl potential energy of the entire set to provide the equilibnum state [18-21]. The
further analysis technique is the nonlmear force method (NFM). In this approach, the three basic
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APPENDIX

APPENDIX

MATLAB Codes for computing prestressing, analysis, and preservation

A: MATLAB Code for Numerical Prestressing of Illustrative Example in
3.2.5 by fsolve

function F=TripleLink (X) % TripleLink: name of saved m. file

%Copy and paste the below calling function to Command Windows.
$clc; clear all; [result, fval]l=fsolve(@Triplelink,
[zeros (1,5)]);result’

%coor: matrix for the coordinates of the members of triple link
structure

coor=|[ 0 800 0 1 1 1 g %$Node no.1l
0 300 0 O 0 1 g %Node no.2

-400 0 0 1 1 1 5 %$Node no.3

400 0 0 1 1 1 12 $Node no.4

$conn: connectivity matrix between coors to create the cables

1 2 0 %Cable no. 1
2 3 0 %Cable no. ii
2 4 0]; %Cable no. iii

conn=|

SEA: Define the axial stiffness of the cables

EA=10000*ones (1,3);

o\°

nD: no. of degree of freedom
% nB & nJ to calculate number of cables and joints automatically

[nD al=size(find(coor(:,4:6)==0));

[nB a]=size (conn);

[nJ a]=size (coor);

% data structure for coor

dx=zeros (1,nJd);

dy=zeros (1,ndJ) ;

dz=zeros (1,nd);

t=zeros (1,nB);

%Need to copy data from X into the non-zero dx's, dy's & dz's, and t's

dx (2)=X(1);

dy (2)=X(2) ;
t=X(3:5);
act=[ -1 sei

0 %eil

O] 7 %eill

Al
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o)

% to create nB compatibility & flexibility equations.

F=zeros (1, (nD+nB)) ;

for i=1:nB,
jl=conn(i,l); j2=conn(i,2
x21=(coor (j2,1)-coor(j1,1
y21=(coor(j2,2)-coor(jl,2
z21=(coor (j2,3)-coor(j1,3
L=sqrt (x21°2+y21°2+221"2) ;

) -
)
) .

)
)
)
)

o)

% Combined compatibility and flexibility equations (to solve in one
step)

F(i)= (4*L*x21* (dx(j2)-dx(j1))+4*L*y21* (dy(j2)-dy(J1))+...
4*L*z21%* (dz (32) -dz (J1)) -2*L* ((dx (j2) -dx (j1)) "2) ~-...
2*L* ((dy (j2)-dy (1)) "2) -2*L*((dz(J2)~
dz (31))"2))/ (4* (L"2) = (2*x21* (dx (j2)-dx (j1)))—...
(2xy21*(dy(32)-dy(J1)) - (2*221*(dz (J2)-dz (J1)))+...
((dx(32)-dx(31))"2)+((dy(J2)-dy(J1))"2)+...
((dz(j2)-dz(31))"2)))+t (1) *L/EA (1) +act (1) ;

if t(i)<0; t(i)=0; end % to indicate the slackened cables
end

% nD equilibrium equations; it will generate 3*nJ equations

G=zeros (1, (3*nJd)) ;

for i=1:nB,
jl=conn(i,1);
j2=conn (i,2);
x21=(coor (j2,1)-coor(jl,1));
y21=(coor (j2,2)-coor (J1,2));
z21=(coor(j2,3) -coor (j1,3));
L=sqrt (x21"2+y21"2+z21"2) ;
dx21=(dx (j2)-dx (1)) ;
dy21l=(dy(32)-dy(31));
dz21=(dz (j2)-dz(31));

COSALPHA= ( (4*x21*L72) - (4*dx21*LA2) = (2% (x217°2) *dx21) - (2*x21*y21*dy21) -
(2*%%21*z21*dz21)) /...

((4*L"3) - (6*L*x21*dx21) - (6*L*y21*dy21) - (6*L*z21*dz21)) ;

COSBETA= ( (4*y21*172) - (4*dy21*LA2) = (2% (y217°2) *dy21) - (2*y21*x21*dx21) -
(2*%y21*z21*dz21)) /...

((4*L"3) - (6*L*x21*dx21) - (6*L*y21*dy21) - (6*L*z21*dz21)) ;

COSGAMA= ( (4*z21*L 2) - (4*dz21*L"2) - (2* (22172) *dz21) - (2*z21*x21*dx21) -
(2*%z21*y21*dy21)) /...

((4*L"3) - (6*L*x21*dx21) - (6*L*y21*dy21l) - (6*L*z21*dz21)) ;

A2
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if coor(jl,4)==0,
G(3*(jJ1-1)+1)=G(3*(j1-1)+1) - t(i)* COSALPHA;
end;

if coor(jl,5)==0,
G(3*(j1-1)+2)=G(3*(j1-1)+2) - t(i)* COSBETA;
end;

if coor(jl, 6)==0,
G(3*(j1-1)+3)=G(3*(j1-1)+3) - t(i)* COSGAMA;
end;

if coor(jz2,4)==0,
G(3*(§2-1)+1)=G(3*(§2-1)+1) + t(i)* COSALPHA;
end;

if coor(j2,5)==0,

G(3*(J2-1)+2)=G(3*(j2-1)+2) + t (i) *COSBETA;
end;
if coor(j2,6)==0,

G(3*(j2-1)+3)=G(3*(j2-1)+3) + t (i) *COSGAMA;
end;

end;

for i=1:ndJ,

G(3*(1-1)+1)=G(3* (i-1)+1);
G(3*(1i-1)+2)=G(3*(i-1)+2);
G(3*(1-1)+3)=G(3*(i-1)+3);

end;

% now put the nonzero G in F
B=coor(:,4:6)'; F(nB+1l:nB+nD)=G(find (B==0)) ;
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B: MATLAB Code for Numerical Analysis by fsolve

function F=AnalysisSpaceCableNet (X)
% lst Run ; 2nd copy and paste the next written line into (Command
Windows) to call the fsolve function

%clc; clear all;[result, fval]=fsolve(@AnalysisSpaceCableNet,

[zeros (1,139)]) ;result (76:139) ';clc;d=result(:,[1:75])"',t=result(:,[76
:139]) "

[o)

% coor: deformed nodal coordinates of the model (coor after prestress)

coor=[920 920 400 1 1 1 g $Node no.1l
460 920 200 1 1 1 g %$Node no.2
692.29 692.29 251.50 0 0 0 2 $Node no.3
920 460 200 1 1 1 8 %$Node no.4

0 920 0 1 1 1 8 %$Node no.5
229.17 692.06 91.66 0 0 0 g $Node no.6
462 .34 462.34 139.73 0 0 0 g $Node no.7
692.06 229.17 91.66 0 0 0 2 %$Node no.8
920 0 0 1 1 1 8 %$Node no.9
-460 920 -200 1 1 1 8 %$Node no.10
-230.35 692.05 -88.97 0 0 0 g %$Node no.11
-1.11 461.49 -2.18 0 0 0 g $Node no.12
231.34 231.33 42.71 0 0 0 8 %$Node no.13
461.51 -1.12 -2.19 0 0 0 8 $Node no.14
692.006 -230.36 -88.97 0 0 0 8 $Node no.15
920 -460 -200 1 1 1 8 %$Node no.1l6
-920 920 -400 1 1 1 8 $Node no.17
-691.97 691.97 -262.10 0 0 0 8 $Node no.18
-461.62 461.62 -134.09 0 0 0 8 $Node no.19
-230.31 230.31 -41.95 0 0 0 8 %$Node no.20
0.01 0.00 2.88 0 0 0 g $Node no.21
230.32 -230.31 -41.95 0 0 0 8 $Node no.22
461.63 -461.63 -134.08 0 0 0 8 $Node no.23
691.97 =-691.97 -262.10 0 0 0 8 $Node no.24
920 -920 -400 1 1 1 g %$Node no.25
-920 460 -200 1 1 1 8 %$Node no.26
-692.05 230.36 -88.96 0 0 0 8 $Node no.27
-461.51 1.12 -2.16 0 0 0 ; %$Node no.28
-231.32 -231.31 42.74 0 0 0 8 %$Node no.29
1.12 -461.50 -2.16 0 0 0 g %$Node no.30
230.36 -692.05 -88.95 0 0 0 g $Node no.31
460 -920 -200 1 1 1 8 %$Node no.32
-920 0 0 1 1 1 ; %Node no.33
-692.07 -229.17 91.67 0 0 0 8 $Node no.34
-462.33 -462.33 139.73 0 0 0 8 %$Node no.35
-229.17 -692.06 91.66 0 0 0 g $Node no.36
0 -920 0 1 1 1 8 %$Node no.37

-920 -460 200 1 1 1 8 %$Node no.38
-692.28 -692.28 251.49 0 0 0 8 %$Node no.39
-460 -920 200 1 1 1 g %$Node no.40
-920 -920 400 1 1 1 1; %Node no.41l

Q

% conn: (connectivity matrix)connection between the nodal coordinates
of the model

[o)

% conn(i,3) the present prestress of the members

conn=[1 3 255.58 ; % Cable No. 1
2 3 89.07 ; % Cable No. 2
3 4 89.07 ; % Cable No. 3
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38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
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o

EA=[179811.80;
169376.68;
163100.19;
164659.92;
172087.92;
161284.35;
164188.74;
172153.68;
158340.67;
159457.56;
163434.22;
159484.24;
167045.60;

% Load Case 1

—

OO OO o
~

=20 g

=20 g

=20 g
=20 ¢
-20 ;
=20 ¢
=20 ¢

-20 ;
=20 ¢
=20 ¢
=20 ¢
=20 ¢
-20 ;
=20 ¢

=20 ¢
-20 ;
=20 ¢
=20 ¢
=20 ¢

=20 ¢

=20 ¢

cNoNoNoNoNoNoNoNoNoNolNoloNoNoNoNoNoloNolNolNoNoNoNoNoNoloNoNoNoNoNoNoNoNolNoNolNolNeNv)
cNeoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoNoNololNoNoNoNoNoNoloNolNoNoNoNoNoNoNoNolNolNoNeNe)

OO O O o
~

s EA: effective axial

166387.
165663.
162686.
162666.
167726.
160922.
159837.
162664.
161296.
159457.
161987.
162086
162125.

(vertica

8 % N
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
% Node

o° d° A A A O A OO A A A A A A A A A A AN AN A A AN A A A A AN AN A A A A A A° A o° o°

o\

stiffness of the members

23; 161749.
58; 162465.
60; 163226.
37; 161238.
70; 158715.
71; 164574.
54; 165548.
14; 160180
53; 164189.
56; 160462.
60; 164188.

.66; 166440.

97; 170043.
1 loading)

ode 1

38;
38;
46;
01;
67;
69;
59;

.24;

00;
87;
74;
66;
99¢

166282.
158755.
161577.
161238.
158702.
170181.
164950
160910.
166169
165034.
163100.
171369.
174389.

76;
97;
91;
01;
74;
03;

.26;

42;

.93;

84;
19;
53;
107 ;

166352.
167620.
163100.
163039.

160458

166352

14;
04;
19;
528

.22
166944.
165445.
160898.
163790.
163100.
167620.
.14;

71;
81;
37;
97;
19;
04;
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size(conn); [nJ al=
dy's & dz's

0));[nB aj

and number of joints

:6)

:, 4

’
’
’

of degree of freedom, nB & nJd To calculated automatically
zeros (1,nd) ;

size (find (coor (

no.
size (coor) ;

zeros (1,nd) ;

data structure for coor
zeros (1,nd) ;

nD:
number of members (bars)
%Need to copy data from X into the non-zero dx's,

[nD a]

dx
dy
dz

%
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o)

% nD equilibrium equations; originally, buildup 3*nJ equations
G=zeros (1, (3*nJd)) ;

for i=1:nB,
jl=conn(i,1l); j2=conn(i,?2
x21=(coor (j2,1)-coor(jl,1
y21=(coor (j2,2)-coor(jl,2
z21=(coor (j2,3)-coor (j1,3
L=sqrt (x21"2+y21"2+2z21"2) ;
dx21=(dx (j2)-dx(31));
dy2l=(dy(j2)-dy(j1));
dz21=(dz (32)-dz(31));

) .
)
)

)
)
)
)

COSALPHA= ( (4*x21*L 2) + (4*dx21*L"2) + (2* (x2172) *dx21) + (2*x21*y21*dy21) + (
2%x21%221%dz21)) /. ..
((4*L73) + (6*L*x21*dx21) + (6*L*y21*dy21) + (6*L*z21*dz21) ) ;

COSBETA= ( (4*y21*LA2) + (4*dy21*LA2) + (2% (y2172) *dy21) + (2%y21*x21*dx21) + (2
*y21*z21*dz21)) /...
((4*L"3)+(6*L*x21*dx21)+ (6*L*y21*dy21l)+ (6*L*z21*dz21)) ;

COSGAMA= ((4*z21*L"2)+ (4*dz21*L"2)+ (2* (22172) *dz21)+(2*z21*x21*dx21)+ (2
*z21*y21*dy21)) /...
((4*L"3)+(6*L*x21*dx21)+ (6*L*y21*dy21l)+ (6*L*z21*dz21)) ;

if coor(jl,4)==0,
G(3*(3J1-1)+1)=G(3*(Jj1-1)+1) - (t(i)+conn(i,3))*COSALPHA;
end;

if coor(jl,5)==0,
G(3*(j1-1)+2)=G(3*(J1-1)+2) - (t(i)+conn(i,3))*COSBETA;
end;

if coor(jl,6)==0,

G(3*(J1-1)+3)=G(3*(j1-1)+3) - (t(i)+conn(i,3))*COSGAMA;
end;
if coor(j2,4)==0,

G(3*(j2-1)+1)=G(3*(jJ2-1)+1) + (t(i)+conn(i,3))*COSALPHA;
end;

if coor(j2,5)==0,

G(3*(j2-1)+2)=G(3* (J2-1)+2) + (t(i)+conn(i,3))*COSBETA;
end;
if coor(j2,6)==0,

G(3*(j2-1)+3)=G(3* (J2-1)+3) + (t(i)+conn(i,3))*COSGAMA;
end;

end;

for i=1:nd,
(3*(1-1)+1)=G(3* (1-1)+1) -

% now put the nonzero G in F
B=coor(:,4:6)"'; F(nB+1:nD+nB)=G(find (B==0)) ;
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C: MATLAB Code for Numerical Displacement preservation by fsolve

function F=DisplacementPreservationSpaceCableNet (X)
% Run the calling function with the commands

%clc; clear all; [result,

fval]=fsolve (@DisplacementPreservationSpaceCableNet,

[zeros (1,139)]) ;result';clc;d=result(:, [1:75])"',e0=result(:,[76:139])"

conn=[1 3
2 3 0

3 4
2 6
3 7

o O O

of the model

0;

’

o oo

o\

’

o

o\

Cable No.
Cable No.
Cable No.
Cable No.
Cable No.

s w N

% coor: deformed nodal coordinates of the model (coor after prestress)
coor=[920 920 400 1 1 1 g $Node no.1l
460 920 200 1 1 1 8 %$Node no.2
692.29 692.29 251.50 0 0 0 g %$Node no.3
920 460 200 1 1 1 8 %$Node no.4
0 920 0 1 1 1 8 %$Node no.5
229.17 692.06 91.66 0 0 0 8 %$Node no.6
462 .34 462.34 139.73 0 0 0 8 %$Node no.7
692.06 229.17 91.66 0 0 0 g %$Node no.8
920 0 0 1 1 1 8 %$Node no.9
-460 920 -200 1 1 1 8 $Node no.10
-230.35 692.05 -88.97 0 0 0 8 %$Node no.1l1
-1.11 461.49 -2.18 0 0 0 8 $Node no.12
231.34 231.33 42.71 0 0 0 g $Node no.1l3
461.51 -1.12 -2.19 0 0 0 g %$Node no.14
692.06 -230.36 -88.97 0 0 0 8 $Node no.15
920 -460 -200 1 1 1 8 %$Node no.1l6
-920 920 -400 1 1 1 8 %$Node no.17
-691.97 691.97 -262.10 0 0 0 g %$Node no.18
-461.62 461.62 -134.09 0 0 0 g $Node no.19
-230.31 230.31 -41.95 0 0 0 8 %$Node no.20
0.01 0.00 2.88 0 0 0 8 $Node no.21
230.32 -230.31 -41.95 0 0 0 8 $Node no.22
461.63 -461.63 -134.08 0 0 0 g %$Node no.23
691.97 =-691.97 -262.10 0 0 0 8 %$Node no.24
920 -920 -400 1 1 1 g %$Node no.25
-920 460 -200 1 1 1 8 %$Node no.26
-692.05 230.36 -88.96 0 0 0 8 $Node no.27
-461.51 1.12 -2.16 0 0 0 g %$Node no.28
-231.32 -231.31 42.74 0 0 0 ; %Node no.29
1.12 -461.50 -2.16 0 0 0 g %$Node no.30
230.36 -692.05 -88.95 0 0 0 8 $Node no.31
460 -920 -200 1 1 1 8 $Node no.32
-920 0 0 1 1 1 8 %$Node no.33
-692.07 -229.17 91.67 0 0 0 8 $Node no.34
-462.33 -462.33 139.73 0 0 0 g %$Node no.35
-229.17 -692.06 91.66 0 0 0 8 $Node no.36
0 -920 0 1 1 1 8 $Node no.37
-920 -460 200 1 1 1 8 %$Node no.38
-692.28 -692.28 251.49 0 0 0 8 %Node no.39
-460 -920 200 1 1 1 g %$Node no.40
-920 -920 400 1 1 1 1; %Node no.41
% conn: (connectivity matrix)connection between the nodal coordinates
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WO U YU WRERP O WO -JFOWW-TIO P WNREODWOREdWNEFEOWOOWJIOU P WNDE OO WNDEO

0 ~J Oy

12
13
14
15
11
12
13
14
15
16
18
19
20
21
22
23
24
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
27
28
29
30
31
32
33
34
35
36
37
34
35
36
37
38
39
40
39
40
41

ecNeoNoNoNoNoNoNoNoNoNololoNoNoNoNoNoloRoloNoNoNoNoNoNoloNoNoNoNoNoNoBololNoNoNoNoNoNoNoloNolNoNoNoNoNoNolNoloNoNoNoNolNolNe)

o° 0 0 A A A IO A° A A A A A A A A A A AN AN AN A AN A A A AN AN AN AN AN A A A AN AN AN AN AN AN A AN A AN AN AN AN AN A A A A AN A A O° O o°

o\

Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable
Cable

No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.
No.

o J O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
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o

s BEA:

EA=[179811.
169376.
163100.
164659.
172087.
161284.
164188.
172153.
158340.
159457.
163434.
159484
167045.

[o)

s nD: no.

[nD a]
size (coor);

80;
68;
19;
92;
92;
35;
74;
68;
67;
56;
22;
.24;
60;

effective axial

166387

165663.
162686.
162666.
167726.
160922.
159837.
162664.
161296.
159457.
161987.
162086.
162125.

stiffness of the members

.23;
58;
60;
37¢g
70;
71;
54;
14;
53;
56;
60;
66;
97;

number of members (bars)

=size (find (coor(:,

161749.
162465.
163226.
161238.
158715.
164574.
165548.
160180.
164189.
160462.
164188.
166440.
170043.

of degree of freedom,

38;
38;
46;
01;
67;
69;
59;
24;
00;
87;
74;
66;
99;

nB &

)); [nB al

166282.
158755.
161577.
161238.
158702.
170181.

164950

160910.
166169.
165034.
163100.
171369.
174389.

76;
97;
91;
01;
74;
03;
.26;
42;
93;
84;
19;
53;
101;

166352.
167620.
163100.
163039.

160458

166352

14;
04;
19;
528

.22
166944.
165445.
160898.
163790.
163100.
167620.
.14;

71;
81;
37;
97;
19;
04,

nd To calculated automatically
and number of joints

=size (conn); [nJ al=

[o)

% data structure for coor
dx=zeros (1,nd) ;
dy=zeros (1,nJ);
dz=zeros (1,ndJd) ;

%Need to copy data from X into the non-zero dx's,

dy's & dz's

dx (3)=X(1); y(3)=X(2); dz (3)=X(3);
dx (6) =X (4); y(6)=X(5); dz (6) =X (6) ;
dx (7)=X(7); y (7)=X(8); dz (7)=X(9);
dx (8)=X(10) ; y(8)=X(11); dz (8)=X(12) ;
dx (11)=X(13) ; y(11)=X(14); dz(1l1l)=X(15);
dx (12)=X(16) ; y(12)=X(17); dz(12)=X(18);
dx (13)=X(19) ; y(13)=X(20); dz(13)=X(21);
dx (14)=X(22) ; y(14)=X(23); dz(14)=X(24);
dx (15)=X(25) ; y(15)=X(26); dz(15)=X(27);
dx (18)=X(28) ; y(18)=X(29); dz(18)=X(30);
dx (19)=X(31) ; vy (19)=X(32); dz(19)=X(33);
dx (20)=X(34) ; vy (20)=X(35); dz(20)=X(36);
dx (21)=X(37) ; y(21)=X(38); dz(21)=X(39);
dx (22)=X(40) ; y(22)=X(41); dz(22)=X(42);
dx (23)=X(43) ; vy (23)=X(44); dz(23)=X(45);
dx (24)=X(46) ; y(24)=X(47); dz(24)=X(48);
dx (27)=X(49) ; y(27)=X(50); dz(27)=X(51);
dx (28)=X(52) ; y(28)=X(53); dz(28)=X(54);
dx (29)=X(55) ; vy (29)=X(56); dz(29)=X(57);
dx (30)=X(58) ; vy (30)=X(59); dz(30)=X(60);
dx (31)=X(61); y(31)=X(62); dz(31)=X(63);
dx (34)=X(64) ; v (34)=X(65); dz(34)=X(66);
dx (35)=X(67) ; y(35)=X(68); dz(35)=X(69);
dx (36)=X(70) ; y(36)=X(71); dz(36)=X(72);
dx (39)=X(73) ; v (39)=X(74) ; z (39)=X(75);
eO=X(76:l39);%eO:requlred member actuation for displacement preservation

0(1:4)=0;e0(6)=0;e0(7)=0;

(lO 22)=0;e0(24:26)=0;

0(28:37)=0;e0(39: 4l)=O,

0(43:55)=0;e0(58)= 0(59)=0;e0(61:64)=0;

All
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% nB compatibility & flexibility equations (matrix)
F=zeros (1, (nD+nB)) ;
for i=1:nB

jl=conn(i,1l); j2=conn(i,2);

x21=(coor(j2,1)-coor (j1,1));

y21=(coor (j2,2)-coor(jl,2));

z21=(coor (j2,3)-coor(j1,3));

L=sqrt (x21"2+y21"2+z21"2) ;

% Eg. 3.38
F(i)= (x21*(dx(j2)-dx(j1)))/L+.
(y21*(dy(j2)-dy(j1)))/L+.
(z21*(dz (J2)-dz (j1)))/L-...
(((dx(J2)-dx(J1))"2))/(2*L) -
(((dy(3j2)-dy(jl))~2))/(2*L)-
(((dz(J2)-dz(31))"2))/(2*L)+...
(((x21)72)*((dx(J2)-dx(J1))"2))/(2*(L"3))+..
(((y21)"2)*((dy(j2)-dy(j1))"2))/ (2*(L"3))+..
(((z21)72)*((dz(J2)-dz(j1))"2))/ (2*(L"3))+...
(x21* (dx (§2) -dx (31) ) *y21* (dy (32) -dy (31))) / (L 3) +.
(%x21* (dx (J2)=-dx (j1)) *z21* (dz (j2)-dz (J1)))/ (L"3)+...
(y21* (dy (32) -dy (1)) *2z21* (dz (32) -dz (j1))) / (L*3) -e0 (i) ;
end

% nD equilibrium equations; originally, buildup 3*nJ equations
G=zeros (1, (3*nJd));
for i=1:nB,

jl=conn(i,1l); j2=conn(i,2);

x21=(coor (j2,1)-coor(jl,1)); y2l=(coor(j2,2)-coor(jl,2));

z21=(coor (j2,3)-coor (j1,3)); L=sqrt(x21°2+y2172+z21"2);

dx21=(dx(32)-dx(31)); dy2l=(dy(j2)-dy(3jl)); dz2l=(dz(j2)-dz(31));
COSALPHA= ( (x21-dx21) *L) / ( - (x21*dx21) - (y21*dy21) - (z21*dz21));
COSBETA=( (y21-dy21) *L)/( (x21*dx21) (y21*dy21)-(z21*dz21)) ;
COSGAMA= ( (z21-dz21) *L) / ((L - (x21*dx21) - (y21*dy21) - (z21*dz21)) ;

if coor(jl,4)==0,

G(3*(j1-1)+1)=G(3* (j1-1)+1) - t(i)* COSALPHA;
end;

if coor(jl,5)==0,

G(3*(jJ1-1)+2)=G(3* (J1-1)+2) - t(i)* COSBETA;

end;
if coor(jl,6)==0,

G(3*(jJ1-1)+3)=G(3*(j1-1)+3) - t(i)* COSGAMA;
end;

if coor(j2,4)==0,
G(3*(j2-1)+1)=G(3*(J2-1)+1) + t(i)* COSALPHA;
end;
if coor(j2,5)==0,
G(3*(j2-1)+2)=G(3*(jJ2-1)+2) + t(i)*COSBETA;
end;
if coor(j2,6)==0,
G(3*(j2-1)+3)=G(3*(J2-1)+3) + t(i)*COSGAMA;
end;
end;
for i=1: nJ
G(3*(1i-1)+1)=G(3* (i-1)+1)
G(3* (4 ) 2)=G(3*(i-1)+2);
G(3* (1-1)+3)=G(3* (1i-1)+3);
end; % now put the nonzero G in F
B=coor(:,4:6)"'; F(nB+1:nB+nD)=G(find (B==0)) ;
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D: MATLAB Code for Numerical Force preservation by fsolve

function F=ForcePreservationSpaceCableNet (X)
% Run in the Command Windows

%clc; clear all;[result, fval]=fsolve (@ForcePreservationSpaceCableNet,
[zeros (1,203)]) ;result';clc;d=result(:,[1:75])"',t=result(:,[76:139])"',

eO=result(:, [140:20371)"

%coor: deformed nodal coordinates of the model after prestress and
loading
coor=[920 920 400 1 1 1 g $Node no.1l
460 920 200 1 1 1 g %Node no.2
693.01 693.09 249.77 0 0 0 g %$Node no.3
920 460 200 1 1 1 g %$Node no.4
0 920 0 1 1 1 8 %Node no.5
222.68 692.20 106.43 0 0 0 g %Node no.6
464.25 467.33 127.85 0 0 0 ; %$Node no.7
692.28 231.08 87.33 0 0 0 g %$Node no.8
920 0 0 1 1 1 8 %Node no.9
-460 920 -200 1 1 1 g %$Node no.10
-233.10 692.46 -82.96 0 0 0 g %Node no.1l1
-4.63 461.81 5.19 0 0 0 ; %Node no.12
232.04 234.23 39.07 0 0 0 2 %Node no.13
461.46 1.23 -6.81 0 0 0 g %Node no.14
691.93 -226.64 -97.32 0 0 0 g %Node no.15
920 -460 -200 1 1 1 g %Node no.16
-920 920 -400 1 1 1 8 %$Node no.17
-691.27 691.36 -263.07 0 0 0 2 %$Node no.18
-459.62 459.60 -139.08 0 0 0 8 %Node no.19
-228.09 227.75 -48.07 0 0 0 g %Node no.20
3.33 -0.40 2.54 0 0 0 g %Node no.21
233.23 -232.50 -35.42 0 0 0 g %Node no.22
465.45 -464.44 -123.65 0 0 0 ; %Node no.23
692.49 -692.41 -261.15 0 0 0 g %Node no.24
920 -920 -400 1 1 1 8 %Node no.25
-920 460 -200 1 1 1 g %Node no.26
-691.98 231.68 -86.10 0 0 0 g %Node no.27
-461.32 1.95 -0.56 0 0 0 ; %Node no.28
-230.02 -229.23 45.70 0 0 0 g %Node no.29
0.13 -461.13 -3.48 0 0 0 8 %Node no.30
229.04 -691.79 -91.62 0 0 0 g %Node no.31
460 -920 -200 1 1 1 8 %$Node no.32
-920 0 0 1 1 1 8 %Node no.33
-691.93 -229.12 91.69 0 0 0 g %Node no.34
-460.99 -460.47 143.10 0 0 0 8 %Node no.35
-231.21 -692.06 87.11 0 0 0 g %Node no.36
0 -920 0 1 1 1 8 %$Node no.37
-920 -460 200 1 1 1 ; %Node no.38
-691.37 -691.30 253.24 0 0 0 8 %Node no.39
-460 -920 200 1 1 1 8 %Node no.40
-920 -920 400 1 1 1 1g $Node no.41
% conn: (connectivity matrix)connection between the nodal coordinates

of the model

conn=[1 3 0; % Cable No. 1
2 3 0 ; % Cable No. 2
3 4 0 ; % Cable No. 3
2 6 0 - % Cable No. 4
3 7 0 ; % Cable No. 5
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of degree of freedom, nB & nJd To calculated automatically

no.
number of members (bars)

nD:

oe

and number of joints

size(conn); [nd al=

==0)); [nB a]=

:6)

size (find (coor(:,4

size (coor) ;

[nD a]

data structure for coor

%

zeros (1,nd) ;

zeros (1,nd) ;

dx=

zeros (1,nd) ;

dy=

dz=

dy's & dz's

%Need to copy data from X into the non-zero dx's,

..........................................
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% nB compatibility & flexibility equations (matrix)
F=zeros (1, (nD+nB)) ;
for i=1:nB

jl=conn(i,1l); j2=conn(i,2);

x21=(coor (j2,1)-coor(j1,1));

y21=(coor (j2,2)-coor(jl,2));

z21=(coor (j2,3)-coor(jl1,3));

L=sqrt (x21"2+y21"2+z21"2) ;

F(i)= (x21* (dx(j2)-dx(j1)))/L+.
(y21* (dy(32)-dy(j1)))/L+.
(z21*(dz (§2) -dz (1)) ) /L—. ..
(((dx(j2)-dx(31))"2))/(2*L) -
(((dy(j2)-dy(31))"2))/(2*L)-.
(((dz(j2)-dz(J1))"2))/(2*L) +...
(((x21)72)* ((dx(32)-dx(j1))"2))/(2*(L"3))+..
(((y21)72)*((dy(32)-dy (3J1))"2)) / (2*(L"3) ) +..
(((z21)72)*((dz (J2)-dz (J1))"2))/(2*(L"3))+...
(x21* (dx(j2) -dx(j1)) *y21* (dy(32)-dy(31)))/(L"3) +.
(x21* (dx (§2) -dx (1)) *z21* (dz (32) -dz (F1))) / (L"3) +. ..
(y21* (dy (j2)-dy(31l))*z21*(dz(j2)-dz(j1)))/(L"3) +t(i)*L/EA(i)+e0(i);

end

% nD equilibrium equations; originally, buildup 3*nJ equations
G=zeros (1, (3*nJd));

for i=1:nB,

jl=conn(i,1l); j2=conn(i,2);

x21=(coor (j2,1)-coor(jl,1)); y2l=(coor(j2,2)-coor(jl,2));

z21=(coor (j2,3)-coor (j1,3)); L=sqrt(x21°2+y2172+z21"2);

dx21=(dx(32)-dx(31)); dy2l=(dy(j2)-dy(3jl)); dz2l=(dz(j2)-dz(31));
COSALPHA= ( (x21-dx21) *L) / ( - (x21*dx21) - (y21*dy21) - (z21*dz21));
COSBETA=( (y21-dy21) *L)/( (x21*dx21) (y21*dy21)-(z21*dz21)) ;
COSGAMA= ( (z21-dz21) *L) / ((L - (x21*dx21) - (y21*dy21) - (z21*dz21)) ;

if coor(jl,4)==0,

G(3*(j1-1)+1)=G(3*(J1-1)+1) - t(i)* COSALPHA;
end;

if coor(jl,5)==0,

G(3*(jJ1-1)+2)=G(3*(j1-1)+2) - t(i)* COSBETA;
end;
if coor(jl,6)==0,

G(3*(jJ1-1)+3)=G(3*(J1-1)+3) - t(i)* COSGAMA;
end;
if coor(j2,4)==0,

G(3*(j2-1)+1)=G(3* (j2-1)+1) + t(i)* COSALPHA;
end;

if coor(j2,5)==0,

G(3*(j2-1)+2)=G(3*(j2-1)+2) + t (i) *COSBETA;
end;
if coor(j2,6)==0,

G(3*(j2-1)+3)=G(3*(J2-1)+3) + t(i)*COSGAMA;

end;

end;

for i=1:ndJd,
G(3*(1-1)+1)=G(3*(1i-1)+1)
G(3*(1-1)+2)=G(3* (i-1)+2);
G(3*(1-1)+3)=G(3*(i-1)+3);

end; % now put the nonzero G in F

B=coor(:,4:6)"'; F(nB+1:nB+nD)=G(find (B==0)) ;
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