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ABSTRACT 

The world's population has exponentially grown, which has an effect on 

usage of vehicles by individuals and leads to an increase in the number of cars 

in urbans. With the direct relationship between population and car usage, traffic 

management has become an important issue to be solved. For this purpose, an 

intelligent traffic signaling with a rapid urbanization is required to overcome 

the traffic congestions, and reduce cost and time of traveling. To overcome 

these problems, emerging computer vision and deep learning are vital 

candidates to handle this issue because they take an important role for 

managing and controlling traffic signals with great success. Nevertheless, 

detecting and distinguishing between objects are helpful for counting vehicles 

and other objects which avoid crowds and controlling signals in the traffic 

areas. Besides, detecting emergency vehicles and giving the priority to them is 

required for intelligent traffic signaling system.  

The main objective of this study is to design and implement an efficient 

system for traffic signal systems based on custom vehicle detection.  

Furthermore, the proposed system involves four phases; the first one is 

capturing images from both simulated and real time cameras from the roads. In 

the second phase, different image preprocessing algorithms are performed to 

the captured images as a pre-processing step. In addition, the deep learning 

techniques are applied to detect objects such as (regular car, police car, 

ambulance, and firefighter, etc..). In the last phase, the proposed system is 

tested to evaluate the performance accuracy of the detected vehicles.  

A modified transfer learning approach has been applied to the DenseNet201 

model for multiple classifications, including non-emergency cars, ambulances, 

police, and firefighters. The approach involves freezing the architecture of the 

model's layers. A high accuracy rate is obtained with this model and reaches 

98.6%. Also, various optimization methods, including (Adam, Adamax, 
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Nadam, and RMSprob) are used to improve the detection performance based 

on the best optimizer selection and yielded an accuracy of 98.84%. In addition, 

a modified version of YOLOv5 was proposed for vehicle detection, which aims 

to enhance the mean average precision (mAP) detection by 3%. Finally, the 

proposed system was simulated to reduce the waiting time at traffic signal. The 

experimental results demonstrate a significant reduction in waiting time, 

ranging from 30 to 100 seconds depending on the status. 
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1. INTRODUCTION 
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1.1 Overview 

In recent years, there has been a notable increase in the number of cars  (Jain 

et al., 2019) leading to a widespread problem of traffic congestion (Biswas et 

al., 2019) that presents various challenges worldwide. Consequently, there has 

been a rise in car accidents and a worrying escalation in yearly CO2 emissions 

(Coelho et al., 2005), both of which threaten the sustainability of future 

transportation (Guo et al., 2019). Moreover, effective traffic management 

heavily relies on the deployment of manpower (Kumaran et al., 2019a). Traffic 

control systems, operating on a time-dependent basis, have been designed to 

facilitate smooth traffic movement in all directions. However, it is important to 

note that the transition of traffic signals from green to red during turns may 

sometimes cause traffic congestion in one direction, with minimal 

improvement in traffic flow in the opposite direction (Malhi et al., 2011). 

Congestions resulting from traffic signals could have adverse effects on the 

transportation economy, primarily due to increased fuel consumption (Lakshmi 

and Kalpana, 2017) and time expenditure (Jing et al., 2017). Additionally, road 

congestion contributes to environmental issues such as noise and air pollution 

(Qadri et al., 2020). Moreover, accidents occurring in congested traffic 

conditions can lead to injuries or even fatalities (Lakshmi and Kalpana, 2017). 

Conversely, reducing congestion offers economic, environmental, and social 

benefits. Among various solutions in urban settings, signalized intersections 

have been identified as effective means for addressing prevalent bottlenecks, 

thus playing a significant role in urban traffic management (Wei et al., 2019). 

To this end, the concept of smart cities revolves around Intelligent 

Transportation Systems (ITS), which are pivotal in modern urban planning 

(Yuan et al., 2019, Zhang et al., 2011). Throughout history, transportation 

systems have been vital components of national infrastructure. Research 

indicates in 2011, approximately 40% of the global population was spent at 
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least an hour commuting daily (Zhang et al., 2011).  Consequently, managing 

the increasing number of vehicles has become increasingly challenging without 

the assistance of technology (Veres and Moussa, 2019). 

Furthermore, emergency vehicles are crucial in critical situations, but 

traffic congestion can be a significant threat to patients' lives, causing more 

than 20% of fatalities during ambulance transport. In densely populated areas, 

traffic jams are frequent during peak hours, slowing down emergency vehicles 

such as police cars, ambulances, and firefighters and worsening life-threatening 

situations. To address this problem, it is essential to prioritize these vehicles 

and introduce an automated traffic system that can recognize and clear their 

path (Roy and Rahman, 2019).  

In general, in order to make the optimization problem manageable, several 

assumptions have to be made. The main problem here that arises is that these 

assumptions deviate and sometimes do so significantly from the real world. 

Meanwhile, many factors have effects on drivers in real word traffics such as 

driver’s preference interactions with vulnerable road users (e.g., pedestrians, 

cyclists, etc.), weather and road conditions (Wei et al., 2019). Also, this system 

needs to accurately detect emergency vehicles among regular ones. Advanced 

techniques like Convolutional Neural Networks (CNNs) based on deep and 

transfer learning have shown great potential in computer vision, delivering 

results comparable to, and sometimes even better than, human expertise. 

Computer vision is crucial in effectively managing and regulating traffic 

signals  (Kumaran et al., 2019a), contributing to significant success (Jeon et al., 

2018). In general, in busy urban areas, the best way to control traffic flow is by 

using intelligent traffic signal systems(Kumaran et al., 2019a). These systems 

can estimate density, detect and recognize traffic signals, identify emergency 

and police vehicles, and detect accidents. Even though a better infrastructure 
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can improve the traffic flow(Wang et al., 2018), quieter intersections are 

usually managed by human controllers or automated systems (Kumaran et al., 

2019a). Cameras are already present in many congested areas for various 

purposes, but they can be utilized for analyzing traffic scenes with specific 

hardware, instead of replacing existing closed-circuit television (CCTV) 

cameras. These cameras are commonly used for security and vehicle detection. 

This multi-functional use of cameras optimizes resources and enhances overall 

traffic management efficiency (Khan and Ullah, 2019). 

Besides on computer vision, deep learning techniques have capability to 

distinguish vehicle classes, and counting number of vehicles for different 

classes in a traffic video (Asha and Narasimhadhan, 2018). Scientists and 

researchers have proposed many approaches for traffic density estimation 

which will be done by using images acquired from live cameras positioned near 

the traffic junction and several machine learning algorithms (Ikiriwatte et al., 

2019). 

1.2 Urban Traffic Light System 

Usually, each traffic light contains three color lights: green, yellow and red 

lights. These lights are positioned in the four directions—north, south, east, and 

west—at intersections (Huang and Chung, 2009b). Figure 1.1 illustrates a 

typical intersection formed by two perpendicular and parallel lanes. The traffic 

signal comprises three signal lights: red (R), yellow (Y), and green (G), and 

additionally features five lights: red (R), yellow (Y), a left turn arrow 

illuminated during green (GL), a right turn arrow illuminated during green 

(GR), and a straight-ahead arrow illuminated during green (GS) (Huang and 

Chung, 2009a). 



5 

 

 
Figure 1.1 Four lanes intersection (Manguri et al., 2023) 

The configuration of traffic lights can lead to different phase transitions 

based on the interactions among the number of signal lights (Huang and Chung, 

2009a). A state diagram in Figure 1.2 displays the sequence of 4 phase 

transitions. The diagram shows a cycle that starts in phase 1 and ends in phase 

4, providing an alternative series of operations. During phase 1, the southern 

traffic light enables the GL, GR, and GS signals, allowing vehicles to turn left, 

right, or go straight in the southbound direction. Similarly, during phase 4, the 

GL, GR, and GS signals are activated at the southern traffic light, allowing 

vehicles to turn left, right, or go straight in the southbound direction. The 

system follows predetermined timing intervals with fixed durations. 
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Figure 1.2 Phase Transitions (Huang et al., 2005) 

 

Internationally, drivers understand traffic lights. A green signal allows 

vehicles in that lane to proceed while all other directions show red, signaling to 

stop (Wei et al., 2019). The management of traffic lights and monitoring of 

traffic conditions using computer vision technologies require CCTV cameras 

at intersections. Figure 1.3 shows a simulation of traffic control at a crossroad 

(Manguri, 2016). 

 
Figure 1.3 Crossroad Model and Cameras (Manguri et al., 2023) 
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1.3  Problem Statement 

The global population is rapidly increasing and is projected to exceed 8 

billion by 2023 and reach 10 billion by 2056  (Chamie, 2020). As a result, 

existing transport infrastructures are being strained, leading to worsened traffic 

congestion (Ariffin et al., 2021). This congestion has significant consequences, 

including high financial costs (Lee and Chiu, 2020) and decreased quality of 

life (Ghazali et al., 2019). One critical issue that arises from this situation is the 

inadequate response of traditional traffic systems to emergency vehicles, such 

as ambulances, fire trucks, and police cars. These vehicles often experience 

delays due to congestion, which can hinder their ability to quickly reach 

emergency scenes. The challenge lies in developing traffic systems that 

effectively prioritize emergency vehicles by coordinating traffic signals to stop 

non-priority traffic, ensuring safe and uninterrupted passage. Addressing this 

problem is crucial for improving emergency response times and overall public 

safety. 

1.4 Research Objectives  

This study aims at designing and implementing an efficient traffic signaling 

system based on custom vehicle detection. 

The objectives include: 

1. Saving time by reducing waiting time at intersections, especially for 

emergency vehicles. 

2. Density estimation and counting cars on the road for reducing traffic 

congestion. 

3. Changing side signal to green signal in case of detection ambulance, 

firefighters and police cars. 
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4. Testing the proposed system and evaluating its performance with other 

related works. 

1.5 Research Contributions  

Researchers mostly use deep learning architecture for vehicle classification 

and detection. However, in this study, a transfer based deep learning system 

using Densely Connected Convolutional Networks with 201 Layers 

(DenseNet201) was used as a main contribution to this work. The significant 

key contributions of the proposed model are as follows: 

1. Testing varying dimensions of input images (64*64, 128*128, and 

224*224) to select the optimal image size for the training phase. 

2. Applying data augmentation to make the datasets balanced among 

emergency vehicles’ types (police, ambulance, and firefighters).    

3. Modifying some layers in DenseNet-201 to improve performance 

accuracy. 

4. Testing other deep learning models such as (MobileNet, VGG-19, 

ResNet-101, etc.) on the same datasets to produce a fair comparison.  

5. Choosing the best optimizer that increases the detection accuracy of the 

model. 

6. Applying You Only Look Once version 5 (YOLOv5) for controlling real 

time signaling. 

7. Modifying the YOLOv5 to improve the model accuracy. 

8. Proposing a mathematical formulation for optimizing traffic signaling.  

9. Designing and implementing an integrated system for smart traffic 

signaling based on Arduino.  

1.6 Research Challenges and Limitations 
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Collecting data from real traffic area officially requires a permission from 

traffic police center. Due to the non-availability of public datasets, a customized 

dataset has been created. The main challenge of the intersection traffic signal 

control (TSC) problem is to determine an optimal configuration of traffic 

signaling system that allows a maximum traffic flow in a network. Creating a 

standard dataset for emergency vehicles is not feasible due to the lack of 

standardized colors, sizes, and other characteristics. In this regard, an accurate 

system for traffic congestion reduction is required to build, which is the main 

goal of this study. 

Furthermore, deep learning methods such as Region-based Convolution 

Neural Network (R-CNN), Fast R-CNN, and Faster R-CNN necessary large 

amount of training data and computational power. The limitation of Faster R-

CNN was its inference time. Moreover, SSD (Single-Shot Detection) and 

YOLO (You Only Look Once) were developed to solve the Faster R-CNN 

limitation. Generally, SSD and YOLOv5 methods have fast detection speed and 

high efficiency but a low accuracy. 

1.7 Dissertation Structure 

 The rest of this dissertation is organized as follows: 

Chapter Two: Literature Review and Theoretical Background: 

 In this chapter, a comprehensive review has been done based on recent 

researches and describes the theoretical background of all traffic signal phases 

(custom dataset preparation, data preprocessing, train DenseNet201 model, 

object detection, and system evaluation). 

Chapter Three: Methodology, Research Design, Materials and Methods: 

The proposed method and used materials are given in chapter three. 

Chapter Four: Implementation, Results and Discussion:  
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 This chapter provides an implementation of the developed intelligent traffic 

signaling system. Also, it discusses the obtained results. 

Chapter Five: Conclusions and Future Works:  

 The summary of this study can be found on the chapter five, as well as 

suggestions for future work. 
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2.1 Introduction 

This chapter provides the theoretical background of this study such as object 

detection and its techniques are discussed. Furthermore, literature review of the 

recent studies carried out on computer vision for managing and controlling 

traffic signals in this chapter. 

2.2 Theoretical Background 

Traffic signaling control can be categorized into several types based on the 

technology and methods used. This study provides detailed information on 

common types of traffic signaling control. However, it is important to note that 

some traffic signaling control systems, such as Pedestrian Signals, Traffic Signs 

and Road Markings, Traffic control for construction zones, Railway Crossings, 

and Traffic Roundabouts, are not directly related to this study. 

2.1.1 Fixed-Time Traffic Signals 

Fixed-time control involves the use of predetermined green and cycle 

durations that remain constant, regardless of variations in traffic volumes 

throughout the day. This approach primarily assigns more green time to the 

busiest traffic movements based on historical data. Some fixed-time systems 

may incorporate distinct preset time intervals for morning rush hours, evening 

peak hours, and other periods of high traffic. Nevertheless, this method is not 

well-suited for handling unexpected shifts in traffic demand. To address this 

limitation, vehicle-actuated traffic signals are implemented. Traditional 
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vehicle-actuated signals essentially respond to the need for green time and 

green extension based on vehicle detection, provided it falls within 

predetermined limits and as long as traffic flow allows for accurate 

measurement. The cycle duration becomes variable, and consequently, adjacent 

signalized intersections can only be coordinated in specific scenarios 

(Wahlstedt, 2013). 

2.1.2 Actuated Traffic Signals 

The actuated control method allows for dynamic modification of the green 

time duration and total cycle length in response to real-time traffic needs. These 

needs are determined using loop detectors or other conventional traffic sensors. 

Within this control scheme, critical parameters such as minimum green time 

(MinGT), maximum green time (MaxGT), and cycle duration can be adjusted 

based on actual traffic conditions, often using data collected by loop detectors 

(Shirvani Shiri and Maleki, 2017, Zheng et al., 2010, Zhang and Wang, 2010, 

Viti and Van Zuylen, 2010). Furthermore, actuated signal phase timing 

schemes are constrained by their inability to accurately adapt to changing traffic 

conditions. This means that parameters such as MinGT, MaxGT, and cycle 

length are still determined using predefined values. These values rely on a 

limited amount of traffic data and recommended experimental values (Nie et 

al., 2021). 

2.1.3 Adaptive Traffic Signals 

The adaptive traffic control system, known as UTOPIA, is designed to 
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optimize traffic flow while granting selective priority to public transport, all 

without compromising travel times for private vehicles (Wahlstedt, 2013, 

Samadi et al., 2012). UTOPIA represents an innovation in Urban Traffic 

Control (UTC) and is characterized by its hierarchical, adaptive, distributed, 

and open traffic control system (Taranto, 2012). 

Hierarchical: UTOPIA employs goal-related coordination and incorporates 

cooperative control. 

Adaptive: The system continually monitors real-time traffic conditions and 

adjusts signal plans to ensure rapid responses to changes in traffic demand. 

Distributed: This approach involves problem decomposition, forward-

looking strategies, strong interaction, and a focus on terminal costs. The 

network optimization is broken down into coordinated junction problems, 

which are addressed by the intersection units (SPOT) in collaboration with the 

central system. 

2.1.4 Traffic Control by Law Enforcement 

Law enforcement officers are entrusted with the duty of manually regulating 

traffic, particularly in situations such as events, emergencies, or construction 

zones. They rely on hand signals and stop signs to provide guidance and 

exercise control over the flow of vehicles. 

2.1.5 Smart Traffic Signals 

The definition of a Smart Traffic Light (STL) involves using sensors, 

cameras, and artificial intelligence to control the flow of traffic. This novel 
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method depends on the traffic light playing a central role in overseeing the 

movement of vehicles and reducing congestion on the roads. To meet the 

criteria of being labeled as a smart traffic light, it must incorporate a mechanism 

for automatically adjusting signals in real-time. 

Various techniques can be employed for developing smart traffic signals, 

including the installation of cameras at traffic intersections. These cameras 

capture images of the vehicles on the road from a preset distance away from 

the traffic signal. Subsequently, image analysis techniques are applied to assess 

the number of vehicles present on the road. The information derived from this 

analysis is then transmitted to the traffic light, enabling it to adjust signals (red, 

yellow, or green) accordingly (Choudekar et al., 2011).  

Under the concept of STL, sensors are used on the sides of roads and 

vehicles are interconnected. The collected data undergoes analysis, and based 

on this information, concert commands are generated. These commands are 

then transmitted to the traffic light, facilitating a responsive adjustment of 

signals to optimize traffic flow (Hussain et al., 1995).  

2.2 Deep and Transfer Learning Models  

Deep learning, a subset of AI, is specialized in building substantial neural 

network models proficient in making accurate decisions from data. Its strength 

lies in situations marked by complex data and access to large datasets (Kelleher, 

2019). Therefore, conducting training with a wide range of potential outcomes 
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can reduce the chances of making errors during testing (Dong et al., 2021). But 

the current moment, the limitation on neural network complexity was tied to 

available computing power. However, progress in big data analytics has 

empowered the development of more intricate neural networks. As a result, 

computers can now rapidly observe, learn, and respond to complex situations 

more swiftly than humans (Kuutti et al., 2020).  

 

 

Figure 2.1 Scale driving Deep Learning progress (Dong et al., 2021). 

Figure 2.1 illustrates how the performance of the Deep Neural Network 

improves as the data size increases (Dong et al., 2021).  

The main focuses of deep learning techniques in the ITS including  Density 

estimations, traffic signal control, accident detection, traffic sign detection and 

recognition, etc.(Dong et al., 2021). 

Deep learning neural networks use both data inputs and weights, which can 

be numerical or learned by machines, then multiplied by inputs. They adjust 

themselves based on differences between predicted output and training inputs. 
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Additionally, they make use of activation functions, mathematical equations 

controlling neuron activity, and bias, in algorithms skews results by either 

encouraging or discouraging certain ideas. These elements collectively mimic 

the human brain (Kelleher, 2019, Chen et al., 2021), allowing for precise 

recognition, classification, and description of data objects. As a result, multiple 

layers serve as the backbone of all neural network types, working together to 

construct a neural network model (Dong et al., 2021), however, the exact 

number of layers can vary. 

Input layer: Depicts the dimensions of the input vector. 

Hidden layer: Intermediate nodes that partition the input space into distinct 

boundaries. An activation function generates an output based on weighted 

inputs. 

Output layer: Represents the final output of the neural network. 

 

Figure 2.2 Multi-Layer Neural Networks (Ozturk and Fthenakis, 2020) 
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2.2.1 Deep Learning Factors 

 Deep learning techniques encompass various factors such as: 

2.2.1.a Neural Network Architecture 

The Neural Network Architecture is defined as arrangement and 

composition of layers, nodes, and interconnections within the network. The 

Architecture relies on three primary elements that emulate the usual procedures 

of feature extraction, matching, simultaneous inlier detection, and model 

parameter estimation. These components are designed to be trainable in an end-

to-end manner. To enhance performance, it usually requires a larger network 

capacity. A high-performing network architecture often encompasses a wide 

range of potential setups concerning the number of layers, hyperparameters 

within each layer, and the layer types. This complexity makes a thorough 

manual search impractical, relying significantly on expert knowledge and 

experience to craft successful networks. As a result, the automated and 

intelligent construction of networks remains an ongoing challenge yet to be 

resolved (Zhong et al., 2018). 

2.2.1. b Activation Functions 

Another crucial element within a neural network involves activation 

functions, modeled after the firing mechanism of human neurons—signaling 

either activation or inactivity. These functions serve to establish nonlinear 

connections between input and output, mirroring the structure of the human 

brain due to their nonlinearity, multiple nodes, and layers, thus earning the term 



19 

 

"neural network." Several activation functions, as illustrated in Figure 2.3, 

exist, including commonly used ones like Sigmoid, Hyperbolic tangent, and 

Relu. Their primary function lies in transforming and abstracting data into a 

format more conducive to classification (Dong et al., 2021). 

 

Figure 2.3 Activation Functions (Dong et al., 2021). 

2.2.1. c Parameter learning 

As a traditional machine learning classifiers, deep learning classifiers also 

require learning parameters utilizing mathematical tools such as gradient 

descent. The gradient descent algorithm is particularly valuable for parameter 

learning in convex functions, which possess a single absolute minimum or 

maximum. Convex functions simplify parameter learning, while nonconvex 

functions require mathematical techniques to transform them into convex ones. 

Neural network optimization is considered a non-convex optimization problem, 

implying the existence of multiple optimum points (minima/maxima). Learning 

occurs by minimizing the error between predicted and actual values (Dong et 

al., 2021). 
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2.2.1. d Optimization algorithms 

Optimization algorithms, crucial in improving neural network performance, 

play a significant role in adjusting a model's hyperparameters in a standard 

fashion. Hyperparameters, such as the learning rate, direct the update method, 

defining the optimizer's behavior. Any two optimizers can be distinguished by 

the combination of their hyperparameters and update rule (Fatima and Journal, 

2020).  

In the Deep Learning models, loss function is provided (could be considered 

as the function we aim to optimize for our specific problem). This, coupled with 

the optimization algorithm, becomes a mandatory parameter for compiling our 

model. The optimizer's function involves adjusting the weights and learning 

rate of our model's nodes during training to effectively minimize the loss 

function. In essence, the primary objective of an optimizer is to decrease the 

training error (Fatima and Journal, 2020). All optimizers use a mathematical 

formula to update the weights, along with specific learning rate values. 

𝑤𝑥
′ = 𝑤𝑥− ∝ (

𝜕𝑒𝑟𝑟𝑜𝑟

𝜕𝑤𝑥
)                                              2.1 

Where wx
′  denotes the updated weights while wx represents the old weights, 

and ∝ indicates the learning rate. The term (
∂error

∂wx
) represents the derivative of 

the error concerning the weights. Different algorithms implement adjustable 

learning rates.  

I. Root Mean Square Propagation (RMSprop) 
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RMSprop, despite its widespread use, is an optimizer that was never 

officially published. Geoff Hinton, a prominent figure in backpropagation, 

introduced it during his online course on Neural Networks for machine 

learning. RMSprop and Adadelta emerged concurrently but separately, aiming 

to address the diminishing learning rates observed in Adagrad. RMSprop, a 

gradient-based optimizer, diverges from considering the learning rate as a fixed 

hyperparameter, opting for an adaptive learning rate that is adjusted 

dynamically during training. 

II. Adaptive Moment Estimation (Adam) 

Adam is one of the most popular optimizers and is closely related to 

RMSprop and Adagrad. It is known for its high efficiency, adaptability, and 

fast convergence. Adam uses the L2 norm or Euclidean norm for optimization. 

Like RMSprop, it incorporates squared gradients to adjust the learning rate. 

Additionally, it leverages momentum by calculating the moving average of the 

gradient, which is similar to Stochastic Gradient Descent with momentum. The 

name "Adam" stems from "adaptive moment estimation," signifying its 

computation of individual learning rates for diverse parameters. This is 

achieved by calculating the first and second moments of gradients and adjusting 

the learning rate for each weight in the network. 

III. Adamax 

Adamax could be described as an Adam optimizer variant that utilizes the 

infinity or max norm for optimization. In scenarios where data exhibits 
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traditional noise in gradient updates, such as datasets with multiple outliers, 

Adamax tends to outperform Adam. 

IV. Nesterov-accelerated Adaptive Moment Estimation (Nadam) 

Nadam amalgamates Adam and NAG (Nesterov Accelerated Gradient) 

techniques. It incorporates Nesterov to update the gradient a step ahead, hence 

named "Nesterov-accelerated Adaptive Moment Estimation." Nadam finds 

utility in handling noisy or highly curved gradients. Accelerating the learning 

process, it speeds up by aggregating the exponential decay of moving averages 

from the previous and current gradients.  

In addition, there are other optimization techniques available that were not 

detailed in this study due to the good results obtained from tests, such as 

Stochastic Gradient Descent (SGD), Adaptive Gradient Algorithm (Adagrad), 

and AdaDelta. 

2.2.1. e Data Preprocessing 

Preparing data involves converting raw information into a format suitable 

for training machine learning models, which is a time-consuming process. In 

the case of image data, preprocessing typically encompasses basic 

transformations like cropping, filtering, rotating, or flipping images. Presently, 

data scientists manually determine, based on their expertise, which 

transformations and their sequence are best suited for a specific image dataset. 

This manual approach not only poses a bottleneck in real-world data science 

projects but can also result in suboptimal outcomes. Relying on intuition or 
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trial-and-error methods to explore various image transformations might hinder 

the discovery of the most effective ones (Minh et al., 2018). 

2.2.1. f Hyperparameter Tuning 

Optimizing or tuning hyperparameters is a core technique for improving the 

performance of machine learning models. Hyperparameters are parameters that 

are adjusted during the learning process to fine-tune and optimize the model's 

performance. Various constraints, weights, or learning rates may be required 

for the same machine learning model to effectively capture different patterns in 

data. These adjustable parameters, known as hyperparameters, are determined 

through a process of trial and error to ensure that the model performs at its best 

in carrying out the machine learning task (Pon et al., 2021). 

 

2.2.2 Deep Learning-Based Classification Techniques  

 

Image classification refers to sorting an entire image into predefined classes 

or categories, like determining if an image depicts a cat or a dog. Conversely, 

object detection not only categorizes objects within an image but also pinpoints 

their positions by outlining bounding boxes around them. Object detection 

offers a more detailed comprehension by identifying and localizing multiple 

objects within an image, whereas image classification concentrates on 

assigning a single label to the entire image. 

2.2.2.a Image Classification 

Image classification is an essential part of image processing. Its objective 
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involves assigning images to predefined categories (Lillesand et al., 2015). 

There are two primary types of classification: supervised and unsupervised 

classification. Image classification involves a two-step procedure: training and 

testing. During training, the framework extracts distinctive attributes from the 

images to form a unique representation for each class. This process is repeated 

for all classes, depending on the nature of the classification problem—be it 

binary or multi-class (Jaswal et al., 2014, He et al., 2016, Liu et al., 2015, He 

and Sun, 2015). During the testing phase, the aim is to classify test images into 

the classes for which the system was trained. The class assignment is based on 

the partitioning between classes, considering the training features (Aggarwal 

and vision, 2018).  

In recent decades, CNNs have demonstrated significant potential across 

various domains within the computer vision community (LeCun et al., 2015). 

Also, many techniques are available for image classifications such as 

DenseNet, ResNet, Mobile Net. VGG, Inception, AlexNet, and etc. The used 

deep learning techniques during this study to standardize the proposed dataset 

are detailed below: 

I. VGG Networks 

The VGG network is a convolutional neural network architecture known for 

its depth and simplicity. The VGG network is composed of very small 

convolutional filters, comprising 13 convolutional layers and three fully 

connected layers (Simonyan and Zisserman, 2014). Its design emphasizes 
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simplicity in constructing the system. The VGG network is primarily a deep 

convolutional neural network created with careful consideration of the optimal 

layer depth to avoid excessive network complexity (Haque et al., 2019). The 

architecture of the VGG network is illustrated in Figure 2.4. 
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Figure 2.4 VGG network Architecture (Tammina and Publications, 2019) 

II. ResNet 

Deep residual networks show significant performance in computer vision 

and image processing tasks like image classification and segmentation. These 

networks resemble a set of filters, utilizing smaller convolutional filters to 

simplify the overall network architecture. ResNet is structured with a series of 

1x1 and 3x3 convolutional layers, functioning as filters (He et al., 2016). These 

layers play a crucial role in reducing network complexity while extracting high-

level features. The network's output relies on a wealth of information used to 

activate fully connected layers, effectively preserving extensive information 

that pinpoints the precise location of objects (Haque et al., 2019). Figure 2.5 

shows the Basic ResNet Architecture. 

 

Figure 2.5 ResNet Network Architecture (Cai et al., 2021) 

 

III. MobileNet 

The MobileNet model uses depthwise separable convolutions, which are a 

type of factorized convolution. This convolution splits a standard convolution 

into two parts: a depthwise convolution and a 1×1 pointwise convolution. In 

MobileNets, the depthwise convolution applies a single filter to each input 
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channel, and then the pointwise convolution combines the outputs from the 

depthwise convolution. Unlike a standard convolution that filters and combines 

inputs in one step, the depthwise separable convolution separates this process 

into two layers: one for filtering and one for combining. This factorization 

significantly reduces both computational load and model size (Howard et al., 

2017). The architecture of MobileNet presented in Figure 2.6. 

 

Figure 2.6 MobileNet Architecture (Shobeiri et al., 2021) 

IV. DenseNet 

The evolution of DenseNet201 proposes the remarkable potential of the 

dense architectural framework to achieve cutting-edge outcomes. This 

advancement is particularly evident in scenarios where a modest growth rate is 

adopted, resulting in the perception of feature maps as a comprehensive 

network-wide resource. As a result, each sequential layer enjoys unfettered 
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access to the entirety of feature maps stemming from preceding layers. The 

incremental contribution of K feature maps to the global network state 

transpires within each layer, defining the cumulative input feature maps at the 

1th layer as: 

(𝐹𝑀)𝑙 = 𝐾0 + 𝐾(𝑙 − 1)             2.2 

where, 𝐾0 signifies the input layer's channels. The enhancement of 

computational efficiency is portrayed in Figure 2.7, wherein a (1*1) 

convolutional layer precedes each (3*3) convolutional layer, thereby curtailing 

the volume of input feature maps. Serving as a bottleneck layer, the (1*1) 

convolutional layer engenders the production of 4K feature maps. For 

classification purposes, the incorporation of two dense layers housing 128 and 

64 neurons, respectively, is realized. The modified feature extraction network, 

encompassing a truncated DenseNet201 architecture, is augmented by a 

sigmoid activation function for binary classification, thereby supplanting the 

conventional softmax activation function is employed within the established 

DenseNet201 framework (as depicted in Figure 2.7). The sigmoid function's 

definition is as follows: 

 

𝑦 =
1

1+𝑒−(∑ 𝑤𝑖∗𝑥𝑖𝑖 )                         2.3 

 

Where y is the output of the neuron, 𝑤𝑖  𝑎𝑛𝑑 𝑥𝑖represent the weights and 

inputs, respectively. 
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Figure 2.7 DenseNet201 architecture (Jaiswal et al., 2021) 

 

2.2.3 Deep Learning-Based Object Detection Techniques  

 

Object detection is a highly researched subject in the field of computer 

vision. Numerous methods have been developed to address the growing 

demand for precise models in object detection (Hu et al., 2004). The Viola-

Jones framework (Viola and Jones, 2001) gained popularity primarily for its 

successful implementation in solving face-detection challenges (Padilla et al., 

2012). Subsequently, it was adapted for various subtasks such as pedestrian 

(Ohn-Bar and Trivedi, 2016) and car (Sun et al., 2006) detections. In recent 
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times, with the rise of CNN (Krizhevsky et al., 2012, Szegedy et al., 2015, 

LeCun et al., 1998, He et al., 2016) and GPU-accelerated deep-learning 

frameworks, an innovative perspective emerged in the development of object-

detection algorithms (Hinton et al., 2006, Hinton and Salakhutdinov, 2006). 

Works like Overfeat (Sermanet et al., 2013), R-CNN (Girshick et al., 2014), 

Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), R-FCN (Dai 

et al., 2016), SSD (Liu et al., 2016), and YOLO (Redmon et al., 2016) 

significantly elevated the performance benchmarks in this field.  

2.2.3.a YOLO 

YOLO is an object detection technique known for its efficiency and 

accuracy in real-time object detection tasks. YOLO distinguishes itself from 

earlier methods used in object detection. Unlike previous practices that 

repurpose classifiers for detection tasks, YOLO reframes object detection as a 

regression challenge to predict bounding boxes and class probabilities within 

an image. This method employs a single neural network to directly generate 

these predictions from entire images in a single evaluation. As the entire 

detection process operates within a single network, it allows for direct 

optimization specifically for detection performance. 

The unified architecture is highly efficient in terms of speed. The standard 

YOLO model is capable of processing images in real-time at 45 frames per 

second. In comparison, a smaller version of this network, called Fast YOLO, 

achieves an impressive speed of 155 frames per second while also improving 
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the mean average precision (mAP) compared to other real-time detectors. 

Though YOLO may demonstrate more localization errors when compared to 

cutting-edge detection systems, it is less prone to making false positive 

predictions in the background (Redmon et al., 2016). 

The YOLOv5 network is shown in Figure 2.8 and comprises three main 

segments: the backbone, neck, and head (output result). The backbone, 

positioned immediately after the input image, primarily handles feature 

extraction. Following this, the CNN's neck processes data to perform resolution 

feature aggregation, and the final predictions based on object resolution are 

generated in the head (Khasawneh et al., 2023, Kateb et al., 2021). 

Figure 2.8 The YOLOv5 network framework (Guo and Zhang, 2022) 
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In the backbone part, the input image, initially sized at 640 × 640 × 3, is 

transformed by the focus layer for space-to-depth conversion. Using the slice 

operator, this process reshapes the image to 320 × 320 × 12, creating a feature 

map. This map is then passed through the convolution operator, which utilizes 

32 convolution kernels, resulting in a feature map of size 320 × 320 × 32. The 

Convolutional Layer (CBL) involves the application of the convolutional 

kernel to the input layer, resulting in Conv2D outputs, batch normalization 

(BatchNormal), and LeakyRELU activation (Zhou et al., 2021). BottleneckCSP 

plays a pivotal role in feature extraction from the map and stands out for its 

ability to diminish information gradient duplication during neural network 

optimization, constituting a substantial part of the entire YOLOv5 network's 

parameters (Wu et al., 2021). 

The research explores the variations in width and depth of the 

BottleneckCSP segment, which led to the development of four YOLOv5 

models: YOLOv5s (small network), YOLOv5m (medium-sized network), 

YOLOv5l (large network), and YOLOv5x (very large network) (Glučina et al., 

2023, Zhou et al., 2021) (See Figure Y). The Spatial Pyramid Pooling (SPP) 

module enhances the network's receptive field and captures additional features 

of diverse scales. YOLOv5 also integrates a bottom-up pyramid structure based 

on the feature pyramid network (FPN) (Chen et al., 2022). The FPN layer is 

essential for transmitting semantic features and enhancing the robustness of 

bottom-up positioning features. It aggregates features from various layers to 
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improve the network's performance and its ability to detect targets at multiple 

scales. This is evident towards the end of the image, where the classification 

results and object coordinates are shown (Glučina et al., 2023). 

2.3  Simulation Model Components  

The simulation model requirements for a smart traffic system based on 

Arduino and computer vision vary. They include a range of essential 

components that are crucial for the system to operate effectively and efficiently 

which include Arduino UNO board, a breadboard, LED Traffic Light Module 

Board, three 220-ohm resistors, and jumper wires for connectivity. 

2.3.1 Arduino Board 

The Arduino microcontroller is a platform that is open-source and designed 

to be easily programmed and updated at any time. Originally intended for 

professionals and students, it enables the creation of devices that can interact 

with the environment using sensors. 

Arduino microcontrollers feature both inputs and outputs that enable the 

acquisition of information, and based on the received data, Arduino can 

generate the output signal.  

The Arduino platform comprises two main components: hardware and 

software. The hardware component involves the use of the Arduino 

development board, while the software component involves the Arduino IDE 

(Integrated Development Environment) for code development. Arduino utilizes 
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either 8-bit Atmel Alf and Vegard's RISC processor (AVR) microcontrollers or 

32-bit Atmel Advanced Reduced Instruction Set Computing (RISC) Machine 

(ARM) microcontrollers. These microcontrollers can be easily programmed 

using the C or C++ language within the Arduino IDE (Ismailov et al., 2022). 

There are several advantages to choosing Arduino microcontrollers over 

other options, as highlighted by Massimo Banzi, the Co-founder of Arduino 

(Ismailov et al., 2022): 

 Active User Community: Arduino has a vibrant user community 

where individuals can share their experiences and seek help when 

encountering issues. This collaborative environment promotes 

problem-solving and knowledge-sharing among users.  

 Inexpensive Hardware: Arduino microcontrollers are known for 

their affordability, making them a perfect choice for beginners who 

want to start projects without spending too much money.  

 Growth of Arduino: Another benefit is that the Arduino platform 

itself is free to use through the official website, and users only need 

to invest in Arduino hardware.  

 Multi-platform Environment: The Arduino Integrated Development 

Environment (IDE) is compatible across multiple platforms, 

including Microsoft, Linux, and Mac OS X, which further expands 

the user base and accessibility of the platform. 

Various types of Arduino boards are available (As shown in Table 2.2), each 
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differs from others in terms of their microcontroller types, crystal frequencies, 

and the presence of auto-reset functionality. 

Table 2.1 Different Types of Arduino Boards 

Arduino 

Board 

Microcontroller 

Type 

Crystal 

Frequency 

Auto-Reset 

Availability 

Memory 

Type 

Arduino Uno ATmega328P 16 MHz Yes Flash: 32 KB 

Arduino 

Mega 2560 

ATmega2560 16 MHz Yes Flash: 256 KB 

Arduino Nano ATmega328P 16 MHz Yes Flash: 32 KB 

Arduino Due ATSAM3X8E 84 MHz Yes Flash: 512 KB 

Arduino Pro 

Mini 

ATmega328P 16 MHz No Flash: 32 KB 

Arduino 

Leonardo 

ATmega32U4 16 MHz Yes Flash: 32 KB 

 

For this study, the Arduino Uno has been selected as it meets the 

requirements of the traffic signaling model in terms of processing power, size 

and form factor, cost, features and connectivity. 

2.3.2 LED Traffic Light Signal Module 

The LED traffic light signal module is a digital traffic light module that 

provides a signal output. This module is known for its high brightness, making 

it perfect for creating models of traffic light systems. Additionally, it is small 
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in size, easy to wire, and comes with a targeted design and customizable 

installation options.  

2.3.3 Breadboard or Prototyping Board 

A breadboard or prototyping board is an essential tool for assembling 

circuitry, allowing you to connect LEDs, resistors, and microcontroller 

elements. It provides a convenient and adaptable platform designed specifically 

for testing and prototyping electronic circuits. 

2.3.4 Jumper Wires 

Jumper wires are used to establish connections between components on a 

breadboard or prototyping board. They provide a versatile and easily adaptable 

method for interconnecting circuitry. 

2.3.5 Camera 

Cameras are essential components in smart traffic systems where they are 

responsible for managing traffic signals. By continuously capturing images of 

roads and lanes, they provide valuable data that allows for precise control of 

traffic signals. 

2.3 Literature Review 

In efforts to improve the control and monitoring of traffic signaling, 

scientists and researchers have put forth numerous methodologies drawing 

upon machine vision techniques. The architecture of traffic signal control and 

monitoring based on computer vision includes various stages, such as image 

acquisition, preprocessing, and the application of advanced computer vision 
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techniques like density estimation, traffic sign detection and recognition, 

accident detection, emergency vehicle detection, and the like. This section 

explores selected papers during recent years that introduce proposed methods 

for controlling and monitoring traffic signals. 

(Kumaran et al., 2019b) introduced a smart traffic signal control system that 

utilizes computer vision algorithms. They also proposed a new method for 

traffic signal timing based on traffic flow, using the Temporal Unknown 

Incremental Clustering (TUIC) model to cluster moving vehicles according to 

optical flow features. Test results show that their approach leads to reduced 

waiting times and increased throughput compared to other signal timing 

algorithms. (Jing et al., 2017) conducted a thorough review of adaptive traffic 

signal control in congested traffic conditions. Their system effectively reduces 

urban traffic congestion by minimizing delays. They evaluated performance by 

comparing different methods based on prior research findings. Moreover, they 

developed a systematic framework for adaptive traffic signal regulation that 

uses linked cars to inform future research paths. More research is required to 

create more widely applicable adaptive traffic signal control algorithms for a 

connected car environment. 

In real-time wireless network simulation, (Faraj et al., 2020) proposed an 

intelligent microcontroller circuit-based system for controlling cars in traffic 

congestion. This system is both efficient and cost-effective, offering an 

improvement over traditional traffic signal systems in terms of managing and 
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controlling traffic flow. Notably, it can dynamically adjust the timing of traffic 

light signals and rapidly respond to road traffic conditions, particularly during 

peak hours, with the aim of reducing congestion. The implementation 

incorporates hardware components such as a server, cameras, and a 

microcontroller board, along with a wireless network infrastructure connecting 

traffic lights. Experimental findings demonstrate enhanced accuracy when 

utilizing YOLOv3 as a machine learning tool and OpenCV as a preprocessing 

algorithm. Additionally, the system successfully reduces average waiting times 

at traffic intersections by over 55%. 

An efficient reinforcement learning approach for traffic management 

systems introduced by (Joo et al., 2020). Their method tackles the issue of 

traffic congestion through an adaptive Traffic Signal Control (TSC) technique, 

designed to optimize the number of cars crossing an intersection and distribute 

signals evenly across roads using Q-learning (QL). Their research findings 

indicate that this proposed method outperforms other studies utilizing QL in 

terms of reducing waiting times and minimizing the standard deviation of the 

shortest queue lengths. 

(Sharma et al., 2021) presented an intelligent framework for traffic light 

control systems using deep learning techniques. Their method combines the 

YOLO deep learning model to identify objects in a video stream with the 

Simple Online and Real-time Tracking algorithm (SORT) to track these objects 

across consecutive frames. Their primary focus is on tackling the intricate 
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traffic conditions found on roads in India. The system was tested in real-time 

traffic situations, showing positive results. Additionally, they efficiently 

managed traffic issues at a low cost by adjusting signal timings dynamically 

based on the current road conditions. In cases of heavy traffic congestion in 

interconnected road networks, the system successfully reduced the risk of total 

jam. To address this challenge, (Sun et al., 2020) recommended a predictive 

model using the Hidden Markov Model (HMM) to predict congestion patterns 

in highly congested traffic areas. This model establishes a connection between 

observed external traffic conditions and hidden internal traffic conditions in 

these busy zones. By refining and analyzing floating vehicle trajectory data, the 

HMM was adjusted to forecast congestion patterns. Experimental results 

indicate a predictive accuracy of up to 83.4%, outperforming moving average 

and autoregressive models by 5.8%. These findings highlight the effectiveness 

and feasibility of this method in predicting congestion patterns. 

(Ke et al., 2018) have demonstrated an innovative method for detecting road 

congestion in intelligent transportation systems, using multidimensional visual 

characteristics and CNN. The approach starts by determining foreground object 

density with a gray-level co-occurrence matrix. Next, the Lucas-Kanade optical 

flow, along with a pyramid scheme, is used to evaluate the speed of moving 

objects. Subsequently, a Gaussian mixture model is applied for background 

modeling, enabling accurate identification of the main foreground amidst 

potential foreground candidates through CNN. The efficacy of the proposed 
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technique is confirmed through thorough quantitative and qualitative 

evaluations, showing significant improvements over existing road-traffic 

congestion detection methods due to the integration of multidimensional 

features via CNN. Regarding traffic flow optimization, this section is 

subdivided into density estimation, traffic sign detection and recognition, 

accident detection, and emergency vehicle detection. 

2.3.1 Density Estimation  

Estimating traffic density is essential for automating traffic signal control 

and reducing congestion at intersections. The following section provides an 

overview of the different methods researchers use to estimate traffic density: 

(Garg et al., 2016) presented a method for estimating traffic density through 

vision, which is a fundamental component in traffic monitoring systems. In 

response to the limitations of current techniques, such as inaccuracies in vehicle 

counting and tracking, vulnerability to lighting changes, occlusions, and 

congestion, the authors developed strategies to address these challenges. They 

also tackled the issue of high computational complexity found in holistic 

approaches, which hindered real-time implementation. To overcome this 

hurdle, they suggested a block processing method for calculating density in 

busy road segments. This method involves two main steps: first, identifying 

Regions of Interest (ROI), creating Blocks of Interest (BOI), and establishing 

background; second, using an iterative process that includes updating the 

background, detecting occupied blocks, removing shadow blocks, and 
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estimating traffic density. The effectiveness of the proposed methods was 

assessed and verified using the TrafficDB dataset. 

According to (Biswas et al., 2017), density estimation is conducted through 

car counting, employing the Background Subtraction (BS) method and the 

OverFeat framework. The accuracy of the proposed system is assessed through 

manual car counting, and a comparative study is carried out before and after 

the implementation of the OverFeat framework. The results show a significant 

improvement in accuracy, with an average accuracy of 96.55% achieved after 

integrating the OverFeat framework, compared to 67.69% for Placemeter and 

63.14% for BS, respectively. Additionally, this study demonstrates the 

versatility of the OverFeat framework, as it is shown to have other applications 

beyond density estimation. Furthermore, the study examines the advantages 

and limitations of the BS method, analyzing six individual traffic videos from 

various perspectives, including camera angles, weather conditions, and time of 

day, in conjunction with the OverFeat framework. 

(Biswas et al., 2019), applied SSD and MobileNet-SSD to estimate traffic 

density using fifty-nine individual traffic cameras. They evaluated the strengths 

and weaknesses of these frameworks by comparing their accuracy with 

manually estimated density. The experiments showed that the SSD framework, 

in particular, demonstrated significant potential in traffic density estimation, 

achieving high detection accuracy rates of 92.97% for SSD and 79.30% for 

MobileNet-SSD. 
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K.-H. N et al (Bui et al., 2020), developed a method that uses advanced 

computer vision technologies to analyze traffic flow by extracting data from 

video surveillance. The technique involves collecting data from video 

surveillance to estimate traffic density at intersections. YOLO and DeepSORT 

techniques were utilized to detect, track, and count vehicles, allowing for the 

calculation of road traffic density. The effectiveness of the method was tested 

using real-world traffic data obtained from CCTV footage gathered over a day. 

A new technique for estimating traffic density utilizing a macroscopic 

approach has been developed by Kurniawan et al. (2017). The method 

proposed comprises two main components: background construction and a 

traffic density estimation algorithm. Background construction involves 

identifying non-moving vehicles in front of or behind others, while the image 

background is determined using edge detection techniques. Density estimation 

is achieved by calculating the ratio between the number of Regions of Interest 

(ROI) containing objects and the total number of ROI. 

(Eamthanakul et al., 2017) introduced an image processing technique for 

congestion detection comprising three components: (1) image background 

subtraction to distinguish vehicles from the background, (2) application of 

morphological techniques to eliminate image noise, and (3) calculation of 

traffic density based on the obtained image from CCTV. The outcomes of this 

process are subsequently transmitted to the transport plan database.  

Finally, Table 2.2 presents a summary of various studies on traffic density 
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estimation. 

Table 2.2 Summary of Different Studies on Traffic Density Estimation 

 

2.3.2 Traffic Sign Detection and Recognition 

Recognition of traffic signs is integral to driver assistance systems and 

intelligent autonomous vehicles, contributing significantly to road safety. 

Additionally, it can facilitate the automation of traffic signals, thereby helping 

to prevent intersections from being crossed when signals indicate red. 

Novel approaches proposed in (Kaplan Berkaya et al., 2016) for the 

Reference(s) Algorithm(s) Dataset(s) Accuracy % Contribution(s) 

(Garg et al., 

2016) 
Block Variance 

The 

TrafficDB 
93.70 

Traffic density 

estimation with the 

low computational 

cost. 

(Biswas et 

al., 2017) 

Background 

Subtraction, Over 

Feat framework, 

and Place meter 

ImageNet 96.55 

Defining ROI by 

Over Feat 

framework 

(Biswas et 

al., 2019) 

Detection (SSD) 

and MobileNet-

SSD 

Data 

collected 

from cameras 

with different 

places 

92.97 (SSD), 

79.30 ( 

MobileNet-

SSD) 

New path opened for 

real time traffic 

density estimation  

(Bui et al., 

2020) 

YOLO and 

DeepSORT 

Collected 

data from 

CCTV 

87,88 (Day, 

Congestion) 

93,88 (Day, 

Normal) 

82,1 (Night, 

Normal) 

Detecting, tracking 

and counting 

vehicles 

(Kurniawan 

et al., 2017) 

ROI and edge 

detection 
- N/A 

New technique 

developed for 

estimating traffic 

density. 

(Eamthanak

ul et al., 

2017) 

Background 

subtraction and 

Morphological 

techniques 

- N/A 

Traffic density 

estimated. 
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detection and recognition of traffic signs. Specifically, a novel technique called 

the circle detection algorithm has been developed to identify traffic signs. In 

addition, RGB-based color thresholding technique was proposed by Kaplan 

Berkaya et al. (2016). Moreover, three algorithms, namely histogram of 

oriented gradients, local binary patterns, and Gabor features, were utilized 

within a Support Vector Machine (SVM) classification framework to recognize 

traffic signs. The effectiveness of these methods for both detection and 

recognition was assessed using the German Traffic Sign Detection Benchmark 

(GTSDB) dataset. According to the experimental findings, the proposed system 

surpassed existing literature and could be employed in real-time operations. 

(Yang et al., 2016) presented a method for detecting and recognizing traffic 

signs, consisting of three primary steps. Firstly, they use thresholding of HSI 

color space components to segment the image. Secondly, they use blobs 

extracted from the previous step to detect traffic signs. A significant aspect of 

their approach in the initial step is the use of invariant geometric moments for 

shape classification instead of machine learning algorithms. Thirdly, they 

propose a novel recognition method inspired by existing features. They extend 

the Histogram of Oriented Gradients (HOG) features to the HSI color space 

and combine them with LSS features to create the descriptor. They test Random 

Forest (RF) and SVM classifiers in conjunction with the new descriptor. The 

effectiveness of the proposed system is evaluated using the GTSDB and STS 

datasets, and its performance is compared with that of existing techniques. 
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Salti et al. (2015), combined solid image analysis and pattern recognition 

techniques to identify traffic signs in mobile mapping data. Unlike other 

existing systems that use sliding window detection, their system focuses on 

extracting regions of interest. Despite facing challenges like varying 

illumination, partial occlusions, and large scale variations, the system showed 

strong performance. It targeted the detection of three main categories of traffic 

signs - mandatory, prohibitory, and danger signs - following the experimental 

setup of the recent GTSDB competition. The system not only excelled in the 

online competition but also proved effective when tested on a demanding 

dataset of Italian signs in mobile mapping, indicating its potential for successful 

real-world deployment. 

(Du et al., 2017) developed a robust and efficient classifier-based detector 

aimed at achieving fast performance. They introduced two algorithms for 

detection and classification. Firstly, they proposed aggregate channel features, 

which are based on three types of features: color features, gradient magnitude, 

and gradient histograms. Secondly, they presented a boosted trees classifier for 

a multi-scale and multi-phase detector, based on the Real AdaBoost algorithm. 

Experimental results from this study demonstrated high average-recall and 

speed when evaluated on the Daimler, Laboratory for Intelligent & Safe 

Automobiles (LISA), and Laboratório de Robótica e Automação (LaRA) 

datasets. 

Real-time detection and recognition of traffic signs are crucial for improving 
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the intelligence of smart vehicles. To tackle this challenge,  (Shao et al., 2018) 

proposed a new approach with two main steps. Firstly, images captured from 

the road scene are converted into grayscale images. Then, Simplified Gabor 

Wavelets (SGW) filters are used to optimize the parameters of the grayscale 

images. Additionally, traffic signs are delineated using edge detection to 

prepare the data for the following step. In the second stage, the maximally 

stable extremal areas approach is used to identify the region of interest, and the 

superclass of traffic signs is classified using SVM. CNN is used for subclass 

classification of traffic signs, using input from simplified Gabor feature maps 

and the same parameters used in the detection phase. Finally, the proposed 

method is assessed on the GTSDB and Chinese Traffic Sign Dataset (CTSD) 

datasets, with experimental results showing rapid processing speed at 6.3 

frames per second and high accuracy of 99.43%. 

(Kaplan Berkaya et al., 2016), introduced innovative approaches to improve 

traffic efficiency by enhancing object recognition and problem detection using 

colorful graphics. They improved two digital image processing methods, the 

Circle Detection Algorithm and RGB, which rely on simple image 

segmentation techniques to boost traffic sign detection capabilities. 

Additionally, they developed a classification framework called the SVM by 

integrating three main attributes - Gabor features, histogram of oriented 

gradients, and local binary patterns - into the intelligent system. The 

effectiveness of their proposed technique was confirmed using the GTSDB 
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datasets. Practical results showed that their technique significantly 

outperformed the methods mentioned in the paper and performed consistently 

in real-time operations.  

A new method for detecting and identifying traffic signs, as suggested in 

(Ellahyani et al., 2016) consists of three main steps. Firstly, the image is 

segmented based on color space components using Hue-Saturation-Intensity 

(HIS) thresholding. Next, blobs identified in the previous step are used to detect 

traffic signs. Finally, the recognized traffic signs are classified in the last step. 

In their research, two different methods are used for sign classification. 

Initially, forms are classified using invariant geometric moments rather than 

machine learning methods. New recognition features are then suggested, 

drawing inspiration from current ones. The HSI colour space, obtained from 

HOG features, is merged with local self-similarity (LSS) features to provide 

the descriptor for the new approach. Finally, the suggested method's efficacy is 

evaluated and tested against the German Traffic Sign Recognition Benchmark 

(GTSRB), German Traffic Sign Detection Benchmark (GTSDB), and Swedish 

Traffic Signs (STS) datasets. 

The CNN machine learning algorithm is known for its high effectiveness in 

object recognition, thanks to its superior recognition rate and efficient 

execution time. In a study by (Shustanov and Yakimov, 2017) traffic sign 

recognition was implemented using CNN, where different CNN architectures 

were compared. The training was conducted using the TensorFlow library, and 
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a massively parallel architecture was adopted for multithreaded programming 

with Compute Unified Device Architecture (CUDA). The entire process of 

detecting and recognizing traffic signs was carried out in real-time on a mobile 

Graphics Processing Unit (GPU). The method's efficiency was then assessed 

using the GTSRB dataset, resulting in an impressive classification accuracy of 

99.94% for images. 

Table 2.3 provides a summary of various studies that focus on different 

approaches for detecting and recognizing traffic signs. 

Table 2.3 Summary of Various Studies on the Detection and Recognition of 

Traffic Signs. 

Reference(s) Algorithm(s) Dataset(s) Accuracy % Contribution(s) 

(Yang et al., 

2016) 

HSI, HOG,  LSS 

and SVM 

GTSDB,  

CTSD 

98.24 

(GTSDB), 

98.77 ( CTSD) 

Developed Circle 

detection algorithm 

and an RGB-based 

color thresholding 

technique. 

(Kaplan 

Berkaya et 

al., 2016) 

HOG, LSS, 

Random Forest 

and SVM 

GTSDB 

 

97.04 

In the first step, 

machine learning 

algorithms not used 

classify shapes instead 

of this invariant 

geometric moments 

have been used. 

Second, method has 

been proposed for the 

recognition. 

(Salti et al., 

2015) 

ROI, HOG, SVM 

and Context 

Aware Filter 

GTSDB 

99.43 

(Prohibitory) 

95.01 

(Mandatory) 

97.22 (Danger) 

On-line detecting 

mandatory, 

prohibitory and 

danger traffic signs 

 

(Du et al., 

2017) 

Aggregate 

Channel Features 

and Boosted 

Trees Classifier 

Daimler, 

LISA and 

LaRA 

84.314 ( 

Daimler), 

90.33 ( LISA), 

Proposed the high 

average-recall and 

speed method 
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2.3.3 Accident Detection 

One crucial aspect of traffic monitoring beside of others is identifying and 

tracking vehicles, which helps in reporting and detecting incidents at traffic 

junctions. This section also covers methods for predicting and detecting 

accidents. 

(Tian et al., 2019) developed a Cooperative Vehicle Infrastructure Systems 

(CVIS) and introduced a machine-based vision system capable of automatically 

detecting car accidents. The study consisted of two phases: In the first phase, 

the CAD-CVIS database was created to improve the accuracy of accident 

detection. This database, CAD-CVIS, includes various types of accidents, 

weather conditions, and accident locations, representing different traffic 

scenarios. In the second phase, a deep neural network model named YOLO-

92.048 ( 

LaRA) 

(Ellahyani et 

al., 2016) 

HOG, LSS and 

SVM 

GTSRB, 

GTSDB and 

TST 

97.43 

Shapes classified by 

using invariant 

geometric moments 

 

(Shao et al., 

2018) 
SGW and SVM 

GTSDB and 

CTSD 
99.43 

Speed of detection 

and classification 

improved which is 

more than 6 frames 

per second 

(Shustanov 

and 

Yakimov, 

2017) 

CNN GTSRB 99.94 

CNN process 

described   

(Liu et al., 

2021) 

Proposed model 

named CapsNet 
TL_Dataset  

The proposed 

CapsNet is employed 

for traffic sign 

recognition. 
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CA, based on CAD-CVIS and deep learning algorithms, was created for 

accident detection. Moreover, to enhance the model's performance in detecting 

small objects, Multi-Scale Feature Fusion (MSFF) and a loss function with 

dynamic weights were utilized. The results showed that the proposed method 

surpassed previous approaches, being able to detect car accidents within 

milliseconds with a very high average precision of 90.02%. Finally, the 

proposed method was compared with existing approaches, demonstrating 

improved accuracy and real-time performance compared to other models. 

Neoteric framework is presented in (Ijjina et al., 2019), for accident 

detection. This framework introduces the use of Mask R-CNN for accurate 

object detection and is supported by a centroid-based object tracking algorithm 

for surveillance footage efficiency. The main idea is to identify accidents by 

spotting irregularities in vehicle speed and trajectory once vehicles intersect. 

This framework proves to be superior and paves the way for real-time versatile 

vehicular accident detection algorithm development. Performance evaluation 

and validation of this framework were conducted using a dataset with diverse 

weather conditions. 

(Saini et al., 2017), suggested a novel vehicle tracking technique utilizing 

image processing, which eliminates the need for background subtraction to 

delineate the region of interest. Instead, the study advocates for a hybrid 

methodology that integrates feature detection and region matching, facilitating 

the estimation of vehicle trajectories across successive frames. As vehicles 
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traverse through an intersection, the system monitors the tracked direction for 

any potential events. The research concludes that the proposed method exhibits 

proficiency in detecting accidents involving two vehicles. 

According to (Wenqi et al., 2017), the TAP-CNN model was introduced for 

accident prediction on highways by utilizing convolutional neural networks. 

This model combines traffic state and CNN architecture to create a state matrix 

that includes various accident factors like traffic flow, weather, and lighting. 

The researchers also investigated ways to improve the TAP-CNN model's 

accuracy through multiple iterations. They gathered accident data for training 

purposes and to assess the model's performance. The experimental results 

conclusively show that the TAP-CNN model outperforms conventional neural 

network models in accurately predicting traffic accidents.  

(Dogru and Subasi, 2018) proposed an intelligent accident detection system 

in which automobiles share microscopic vehicle variables. Using vehicle speed 

and coordinates obtained from Vehicular Ad-Hoc Networks (VANETs), data 

are collected and simulated in the proposed system, which then sends traffic 

alerts to drivers. The study also demonstrates the utilization of machine 

learning techniques for accident detection on freeways within ITS. Position and 

velocity values of each vehicle serve as crucial parameters for easy accident 

analysis and detection. Moreover, the proposed method is evaluated using the 

OOB dataset, with results indicating that the RF algorithm outperforms ANN 

and SVM algorithms, achieving accuracies of 91.56%, 88.71%, and 90.02%, 
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respectively.  

As can be seen in (Yu et al., 2019), vision-based algorithms are used to 

detect traffic accidents by applying an ST-IHT algorithm to improve the 

robustness and sparsity of spatio-temporal features. Furthermore, a weighted 

extreme learning machine detector is used to distinguish between traffic 

accidents and normal traffic. The study also presents a two-point search 

technique designed to dynamically locate candidate values for Lipschitz 

coefficients to improve tuning accuracy. To assess the efficiency of the 

suggested approach, 30 traffic videos from the YouTube website are used for 

testing and evaluation. The results indicate that the suggested technique 

surpasses current approaches in terms of traffic accident detection performance. 

The accelerometer method is widely utilized for crash detection. In this 

respect (Borisagar et al., 2018) state that the accelerometer values undergo 

calibration to detect accidents based on acceleration. However, due to the 

limitations in accelerometer accuracy and the need for efficient accident 

detection, the researchers turned to the CNN machine learning algorithm. 

While image classification techniques are typically used for accident detection, 

CNNs require significant time, data, and computational resources for training. 

To address these challenges, transfer learning techniques were creatively 

employed. This involved retraining a pre-trained network, specifically the 

Inception-v3 classifier developed by Google for image tasks for accident 

detection purposes. The efficiency of the proposed method was then compared 
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to traditional accelerometer-based techniques, resulting in an accuracy of 

84.5% for the Transfer Learning algorithm. 

Summary of Various Studies Conducted in the Field of Accident Detection 

Presented in Table 2.4 

Table 2.4 Summary of Studies Conducted in the Field of Accident Detection 

 

 

Reference(s) Algorithm(s) Dataset(s) 
Accuracy 

% 
Contribution(s) 

(Tian et al., 

2019) 

Deep neural 

network model 

YOLO-CA 

CAD-CVIS 90.02 

CAD-CVIS dataset 

created and the 

proposed method more 

fast and accurate. 

(Ijjina et al., 

2019) 
Mask R-CNN Proposed 71 

Developing vehicular 

accident detection 

algorithms in real-time. 

(Saini et al., 

2017) 

Hybrid of feature 

detection and 

Region matching 

Real world 

dataset 
N/A 

Accident detection 

between two vehicles 

(Wenqi et al., 

2017) 
CNN 

Accident data 

collected 
78.5 

Accident predicted by 

using CNN 

(Dogru and 

Subasi, 

2018) 

ANN, SVM and 

Random 

Forests (RF) 

OOB data set 

 

91.56 (RF), 

88.71 

(ANN), 

90.02 

(SVM) 

The proposed method 

can provide estimated 

geographical 

location of the possible 

accident 

(Yu et al., 

2019) 

ST-IHT, Spatio-

Temporal Features  

and W-ELM 

Collected 

dataset 

87.4 ± 0.3 

(SVM),  

94.3 ± 0.2 

(ELM),  

95.5 ± 0.3 

(W-ELM) 

(i) Robust Fractures 

extraction proposed 

based on OF-DSIFT 

and ST-IHT  

ii) detect imbalance 

between traffic accident 

and normal traffic  

(Ghahreman

nezhad et al., 

2022) 

YOLOv4 

video 

sequences 

collected 

from 

YouTube 

 

 

N/A 

presents a new efficient 

framework for accident 

detection 
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2.3.4 Emergency Vehicles Detection 

The success of law enforcement and public safety is the timely arrival of 

first responders at emergency scenes. These responders usually consist of 

ambulance, firefighter, and police vehicles. The following section reviews 

several suggested techniques for detecting these emergency vehicles. 

(Raji et al., 2022) have developed an innovative strategy to manage 

emergency situations, especially in congested traffic scenarios. Addressing the 

problem of blocked emergency vehicle movement during peak traffic hours, 

the system successfully improves timing inefficiencies and reduces traffic 

congestion. As an emergency vehicle moves through a specific lane, a Radio-

Frequency Identification (RFID) transmitter captures and transmits signal data. 

This allows an RFID receiver to change the traffic signal from red to green, 

thus clearing the lane for the emergency vehicle. To adapt to changes in traffic 

density, the system dynamically adjusts signal timing intervals to either 10 or 

6 seconds. This adjustment leads to decreased congestion, reduced travel time, 

and potentially saving lives. By utilizing RFID technology for accurate motion 

detection and identification, the proposed system can consistently evaluate 

vehicular density and grant automatic priority to emergency vehicles. Both 

traditional and deep neural networks are commonly used to classify regular and 

emergency vehicles. In this respect, (bin Che Mansor et al., 2021) presented a 

classification technique specifically designed to identify emergency vehicles 

that frequently get stuck in congested traffic areas. Detecting emergency 
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vehicles on city roads can help improve their prompt arrival. They employed 

the VGG-16 model as a pre-trained base, adjusting the convolutional layer and 

filter size to boost performance. The experimental results showed that the 

proposed method achieved an accuracy rate of 95%. In (Haque et al., 2022), 

developed and implemented an automated system to identify emergency 

vehicles, distinguishing them from non-emergency vehicles. They used 

YOLOv4 for initial object detection with the ROI strategy, then trained the 

detected objects using CNN and VGG-16 by fine-tuning the model parameters. 

The system reached an average accuracy of 82.03% when tested on the 

Emergency Vehicle Identification v1 dataset. 

According to (Kaushik et al., 2020), two computer vision techniques are 

used to identify and locate emergency vehicles. These methods include object 

detection and instance segmentation. More precisely, the process includes 

using Faster RCNN for object detection and Mask RCNN for instance 

segmentation. The results demonstrate the proposed approach's effectiveness, 

particularly its accuracy and suitability for detecting emergency vehicles in 

chaotic traffic conditions. Furthermore, a custom dataset of 400 images was 

employed for emergency vehicle detection, carefully labeled using the LabeMe 

tool. 

(Roy and Rahman, 2019) have developed a model aiming at identifying 

emergency vehicles like ambulances and fire trucks in crowded road CCTV 

footage. This model gives priority to these vehicles, ensuring the emergency 
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lane is cleared to help them pass through traffic intersections smoothly. When 

traffic police encounter difficulties in determining which lanes to open for 

emergency vehicles, this model provides an automated solution. By employing 

deep convolutional neural networks and the Common Objects in Context 

(COCO) dataset, the method they propose shows promising results in 

effectively detecting and recognizing different types of emergency vehicles. 

(Jonnadula and Khilar, 2020b) introduced a hybrid architecture for 

emergency vehicle detection, blending image processing and computer vision 

elements. They also reduce the search space by using region of interest 

techniques. 

To reduce casualties in road emergencies, (Lin et al., 2020) introduced a 

novel approach that utilizes machine learning techniques. Various features are 

extracted through multi-faceted methods to accurately represent ambulance 

characteristics. The effectiveness of predicting next-day demand was tested 

through experiments involving cutting-edge machine learning techniques and 

ambulance demand prediction methodologies. This testing was conducted 

using actual ambulance and demographic data from Singapore. Additionally, 

the accuracy of the proposed method was validated across different machine 

learning techniques and data types, using the SCDF-Engineered-Socio dataset. 

The current traffic light system often lacks responsiveness during 

emergencies involving ambulances, firefighters, and police vehicles. In 

response to this issue, (Suhaimy et al., 2020) have developed an embedded 
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machine learning application. This application involves data acquisition, 

feature extraction, exploration of various algorithms, tuning, and model 

deployment to achieve optimal performance in a simulation environment. 

Specifically, they created a classifier for ambulance siren sounds, sorting them 

into 'Ambulance Arrive' and 'No Ambulance Arrive' categories. This classifier 

allows the traffic light system to detect and monitor ambulance arrivals during 

emergencies. The approach proposed utilizes Mel-frequency Spectral 

Coefficients Combined with Support Vector Machine (MFCC-SVM) 

implemented on MATLAB R2017b. Additionally, other researchers have 

investigated incorporating optimization algorithms into deep learning models 

in similar research efforts. 

(Alhudhaif et al., 2022) utilized a hybrid approach that combined a pre-

trained CNN GoogleNet and particle swarm optimization (PSO) - an algorithm 

inspired by nature - to classify autonomous vehicles. They trained the model 

using a Kaggle dataset comprising vehicle images that were enhanced through 

various transformations. Subsequently, the model underwent classification 

using different classifiers, with the Cubic Support Vector Machine (CSVM) 

emerging as the most effective model. The CSVM exhibited superior 

performance in terms of both time efficiency and accuracy, achieving an 

impressive accuracy rate of 94.8%. Both empirical and statistical evaluations 

confirm the model's superiority over similar approaches, not only in accuracy 

(94.8%) but also in training duration (82.7 seconds) and speed in forecasting 
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(380 observations per second). 

The studies conducted in the field of emergency vehicle detection are 

summarized in Table 2.5. 

 

 

 

Table 2.5 Summary of Studies Conducted on Emergency Vehicle Detection 

2.3.5  Transfer Learning and Optimization Techniques  

Researchers have conducted some studies in order to improve the accuracy 

Reference(s) Algorithm(s) Dataset(s) Accuracy % Contribution(s) 

(Kaushik et 

al., 2020) 

Faster RCNN and 

Mask RCNN 

Custom 

dataset 

81 (Object 

Detection), 

92 (Iinstance 

Segmentation

) 

The computational 

and accuracy for 

emergency vehicle 

detection are suitable  

(Roy and 

Rahman, 

2019) 

Deep 

convolutional 

neural network 

COCO 97.97 

Detecting and 

identifying all kinds 

emergency cars 

(Jonnadula 

and Khilar, 

2020a) 

YOLO + ResNet COCO N/A 

Hybrid architecture 

presented for 

detection of 

emergency vehicles 

in a real time  

 

(Lin et al., 

2020) 

SVR, MLP, 

RBFN, and 

LightGBM 

SCDF-

Engineered-

Socio 

N/A 

Varying degrees to 

the model training in 

LightGBM 

 

(Suhaimy et 

al., 2020) 
MFCC-SVM - 97 

Effectively 

distinguish audio 

events from audio 

signals 
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of emergency vehicle detection. Their main focus has been on models that 

utilize deep learning techniques. Also, they use of transfer learning for traffic 

signal systems and reducing traffic congestion. In this respect, some other 

researchers have conducted researches of using optimization algorithms in deep 

learning models. (Alhudhaif et al., 2022) proposed a method that combines a 

pre-trained CNN GoogleNet with particle swarm optimization (PSO), a nature-

inspired optimization algorithm, to classify autonomous vehicles. The model 

was trained using a Kaggle dataset that included vehicle images enhanced with 

various transformations. After training, the model was subjected to 

classification using different classifiers, with the Cubic support vector machine 

(CSVM) proving to be the most effective. It exhibited superior performance in 

terms of both time efficiency and accuracy, achieving an accuracy rate of 

94.8%. The results of empirical and statistical evaluations clearly demonstrate 

that this model not only surpassed similar approaches in terms of accuracy 

(94.8%) but also excelled in training duration (82.7 seconds) and speed 

forecasting (380 observations per second). 

In another work, (Haque et al., 2022) automated an approach which is 

deployed to detect emergency vehicles. Ambulances and fire trucks are 

categorized as emergencies, while other vehicles are considered non-

emergency. The process begins by identifying multiple vehicles within an 

image using the YOLOv4 object detector. These identified vehicles are then 

further investigated. Also, the method distinguishes between emergency and 
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non-emergency vehicles. Finally, the research contributes by developing a 

model that incorporates a convolutional neural network (CNN) with a viral 

algorithm in deep learning. Transfer learning with a fine-tuned VGG16 model 

is also utilized for emergency vehicle detection. On the Emergency Vehicle 

Identification v1 dataset, this model achieves an average accuracy of 82.03%.  
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3.1 Introduction 

This chapter introduces a comprehensive methodology that specifically 

addresses vehicle classification and object detection using advanced deep 

learning techniques. The primary objective is to enhance accuracy and offer 

readers a practical guide for efficient research design and material utilization. 

Moreover, this chapter provides detailed explanations of the methods used and 

the intricate modifications applied to deep learning techniques. Additionally, 

the chapter offers thorough explanations of the employed methods and the 

modifications made to deep learning techniques. 

3.2 Research Framework 

The process of implementing research is divided into five distinct phases, 

each with its own objectives and tasks. Visual representations are utilized to 

enhance the clarity and flow of each phase within the framework. Table 3.1 

presents a block diagram that provides an overview of the entire study 

framework. 
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Figure 3.1 General Framework of Proposed System 

Figure 3.2 specifically illustrates Phase 1, where the customized dataset is 

created, highlighting the inclusion of various vehicle types such as police cars, 

ambulances, firefighters, and non-emergency vehicles. 

 

Figure 3.2 Phase 1 Creating the Dataset 
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Phase 2 illustrates the development of the classification system. This system 

utilizes a modified deep learning technique to accurately distinguish the 

different types of vehicles shown in Figure 3.3. 

 

 

Figure 3.3 Phase 2 Classification Vehicle Types 

Figure 3.4 represents Phase 3, which focuses on refining the vehicle 

detection system using YOLOv5. This system plays a vital role in the decision-

making process for traffic signals. 
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Figure 3.4 Phase 3 Detection of Vehicles 

Figure 3.5 details Phase 4, where the simulation model is designed. This 

figure illustrates the various components and requirements incorporated into 

the simulated traffic environment. 

 

Figure 3.5 Phase 4 Design a Traffic Environment 
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Phase 5 is dedicated to showcasing the implementation of the optimized 

traffic signal system. Its primary objective is to improve traffic flow and 

prioritize emergency vehicles, as depicted in Figure 3.6. 

 

 

Figure 3.6 Phase 5 Implement Optimized Traffic Flow 

 

3.2.1 Creating a New Dataset 

This research used a dataset that included images of emergency and non-

emergency vehicles. Since there was no existing dataset available specifically 

for emergency vehicles like police cars, ambulances, and firefighters, a custom 

dataset was created for this study. The vehicle images were gathered from 

different sources, including Kaggle (www.kaggle.com), Fatkun Batch, and the 
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Rania traffic directorate in the Kurdistan region of Iraq. It is important to 

mention that the vehicle images vary in dimension and have an unbalanced 

distribution across different classes. For more information about the dataset for 

emergency and non-emergency vehicles, please refer to Table 3.1. 

Table 3.1Unbalanced Datasets 

Vehicle types Total number of images 

Ambulance 322 

Firefighters 526 

Police car 700 

Non-emergency 1670 

Total 3218 
 

3.2.2 Data Preprocessing 

Preprocessing algorithms involve a range of techniques that aim to improve 

the quality of images through specific operations. The initial steps include 

resizing the images to meet model requirements, such as dimensions of 64x64, 

128x128, and 224x224. After resizing, the images are categorized into 

emergency and non-emergency vehicle classes. Often, the quality of the images 

is affected by factors like electronic device effects and lighting conditions. 

Therefore, implementing preprocessing algorithms is crucial for preparing the 

images for the classification process.  

This study highlights the importance of image sharpening, smoothing, and 

contrast enhancement in enhancing image quality. These enhancements 

provide essential support for downstream tasks such as image segmentation, 

detection, and classification. For these purposes, Albumentations library 
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python data augmentation is used for balancing the dataset. Albumentations 

library has 12 transformations which can be applied to easy and fast 

augmentation. Table 3.2 shows a balanced dataset consisting of both 

emergency and non-emergency vehicles. 

Table 3.2 Used Preprocessing Techniques 

Vehicle types Used Techniques 

Ambulance 

Vertical Flip, Sharpen 

Horizontal Flip, Sharpen 

Sharpen, Random Brightness 

Contrast 

Random Brightness Contrast, 

Median Blur 

 

Firefighters 

Vertical Flip, Sharpen 

Horizontal Flip, Sharpen 

Sharpen, Random Brightness 

Contrast 

 

Police car Horizontal Flip, Sharpen 
 

Because our dataset is unbalanced, balancing scaling is used for balance 

classes and is shown in Table 3.3. The obtained dataset size after the 

augmentation process is 6222 images (An example of augmented data for 

Ambulance, Firefighters, and Police Car is shown in Figures 3.7, 3.8, and 3.9, 

respectively). The results achieved by applying preprocessing techniques to 

balance the dataset collected for this study are presented in Table 3.3.  

 

 

Table 3.3 Balanced Datasets 
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Vehicle types Balancing Scale 
Total number of 

Images 

Ambulance 5.19844358 1610 

Firefighters 3.165876777 1682 

Police car 2.385714286 1260 

Non-emergency 1 1670 

Total 6222 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3.7 Augmented data (Ambulance): (a) Original Image, (b) Vertical 

Flip, Sharpen, (c) Horizontal Flip, Sharpen, (d) Sharpen, Random Brightness 

Contrast, (e) Random Brightness Contrast, Median Blur 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3.8 Augmented data (Firefighters): (a) Original Image, (b) Vertical 

Flip, Sharpen, (c) Horizontal Flip, Sharpen 
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(a) 

 
(b) 

Figure 3.9 Augmented data (Police): (a) Original Image, (b) Horizontal Flip, 

Sharpen 

 

3.2.3 Image Data Annotation 

Annotations play a crucial role in object detection tasks. There are several 

free tools available for annotating datasets, such as MakeSense, LabelImg, 

CVAT, LabelMe, VoTT, ImgLab, and some more. For this study, the 

MakeSense online tool was used to label and annotate the images. The 

annotated information is stored in both text and XML files, which can be used 

with various object detection techniques like YOLO, R-CNN, SSD, and others. 

Figure 3.10 provides an illustrative example of image labeling. 
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Figure 3.10 Image Labeling 

3.3 Vehicle Types Classification  

To improve the accuracy of the vehicle classification system, several 

classification techniques are applied to the balanced dataset. These techniques 

encompass ResNET, MobileNet, VGG16, VGG19, DenseNet201. Transfer 

learning was valuable in object classification, particularly when working with 

limited datasets, as it provided valuable insights. A visual representation of the 

proposed system’s classification can be seen in Figure 3.11. This study 

successfully employed a variety of deep learning techniques to precisely 

classify vehicles as they pass through a traffic intersection. 
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Figure 3.11 Vehicle Classification Process 
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Table 3.4 showcases the top results attained, along with the optimizers 

utilized for this dataset.  

Table 3.4 Results of DL Techniques 

Techniques Optimizer Accuracy (%) 

VGG16 RMSprop 95 

MobileNet RMSprop 95.3 

ResNet RMSprop 95.3 

DenseNet Adam 97 

 

Based on the results obtained from the tests and the selection of the best 

technique for vehicle classification, DenseNet has been chosen for 

modification. 

Furthermore, fine-tuning the deep transfer learning DenseNet201-based 

model can be employed to further improve the results. This process involves 

repurposing a pre-trained model, allowing the application of knowledge gained 

from a larger dataset to a smaller one, as depicted in Figure 3.12. The 

methodologies utilized in this study encompass various processes, as illustrated 

in Figure 3.13. The block diagram of DenseNet 201 modification comprises the 

following stages: 

1. Data Compilation: images are collected from publicly available datasets 

and local traffic offices in the KRG, Iraq, to compile the data on vehicles. 

2. Image Labeling: Vehicles are categorized into emergency (Ambulance, 

Police, and Firefighter) and non-emergency groups through annotation. 

This results in four types of vehicles that are used for model training. 



74 

 

3. Improvement of Image Quality: Preprocessing algorithms are applied to 

enhance the quality of the images. This includes resizing, sharpening, 

smoothing, and contrast enhancement. 

4. Data Augmentation: Various image transformations are utilized to 

address overfitting and balance the datasets. 

5. Dataset Partitioning: The data is divided into training and 

testing/validation sets for cross-validation. 80% of the data is allocated 

for training, while 20% is reserved for testing and validation. 

6. Proposed Transfer Model Training: The model is constructed and certain 

parameters are adjusted for training. 

7. Vehicles Classification: Vehicles are classified into emergency and non-

emergency categories. 

8. Evaluation of Performance Metrics: Performance is assessed using loss-

accuracy curves, a confusion matrix, precision, recall, F1-score, and 

average accuracy. 

 

Figure 3.12 Transfer knowledge learning-based processes 
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Figure 3.13 Steps of DenseNet201 Modification 

3.3.1 DenseNet201 

The proposed model uses the DenseNet201 for classification. The design 

and implementation of the proposed approach consists of three steps: apart of 

preprocessing, feature extraction, classification, and optimization. Figure 3.14 

displays the stages of the proposed model architectures. 

 

Figure 3.14 DenseNet201 with CNN for classification 
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3.3.2 Modified DenseNet201 (Freezing Layers) 

In the field of neural networks, freezing layers refers to the control of weight 

updates. When a layer is frozen, its weights remain unchanged during further 

processing. This simple, yet effective, technique helps reduce computational 

costs during training without significantly affecting detection accuracy. 

Therefore, freezing layers is a strategic approach to speed up neural network 

training by gradually immobilizing hidden layers. In this study, we will apply 

multiple freezing layers to the DenseNet201 layers to show their impact on 

performance accuracy as depicted in Figure 3.15. 

 

Figure 3.15 Modified DenseNet201 Architecture 

 

3.3.3 Proposed Optimized Selection Algorithm 

We train each model using input sizes of 64x64, 128x128, and 224x224. 

The models are then simulated with different epoch numbers. Performance 

metrics such as accuracy, precision, recall, and F1-score are calculated for each 

model. Next, we sort the results to find the optimal values of accuracy and 

precision. Our selection process is based on choosing the best optimizer when 

accuracy or precision reach their peak, as shown in Figure 3.16. 
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Figure 3.16 Proposed Search Mechanism 

3.3.4 Selecting Optimizers 

Many optimization techniques discussed in the existing literature have been 

widely used in recent studies on deep transfer learning. These techniques are 

designed to reduce the loss function and modify the weights during back-

propagation. Gradient descent is a commonly used method for finding local 

minima of different functions. It calculates the gradient by evaluating the loss 

function across the entire dataset.  

This study investigates how different optimizers affect the accuracy of deep 
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learning DenseNet201 models, both with and without freezing layers. Figure 

3.17 depicts the selection of the optimal optimizer. 

 

Figure 3.17 Selecting Best Optimizer 

3.4 Vehicle Types Detection  

Deep learning techniques can be employed for the purpose of detecting and 

categorizing vehicles, with a specific focus on distinguishing emergency 

vehicles (EVs) such as police cars, ambulances, and firefighters from non-

emergency vehicles. This involves training a deep learning model to not only 

detect vehicles, but also identify them accurately. Figure 3.18 displays a 

flowchart depicting the processes used to detect vehicle types. 
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Figure 3.18 Vehicle Types Detection Processes 

 

3.4.1 Modified YOLOv5s  

 

The changes are made to the YOLOv5s backbone are intended to improve 

the network's ability to learn and represent features more efficiently. In this 

study, the original C3 layers are replaced with BottleneckCSP layers and 

substituted the Spatial Pyramid Pooling - Fast (SPPF) module with the Spatial 

Pyramid Pooling (SPP) module in the modified backbone of the YOLOv5s 
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architecture and named to YOLOv5sm. Modified version of YOLOv5 is 

illustrated in Figure 3.19. 

 

 

Figure 3.19 Modified YOLOv5 

 

 

3.4.2 Integrate YOLO with Arduino 

 

The architecture of the proposed system is divided into two distinct 

components hardware and software. In terms of hardware, it includes a webcam 

for video input, a PC with a GPU for training and executing the YOLO model, 

an LED Traffic Light Signal Module, and an Arduino Uno for signal control. 

As for the software component, it involves the use of the Python programming 

language and its associated libraries. The working mechanism of the proposed 

system for signalling control is illustrated in figure 3.20.  
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Figure 3.20 System Architecture 

 

3.4.3 Optimized Traffic Flow  

The use of deep learning methods allows for the optimization of traffic flow 

and the distinction between emergency and non-emergency vehicles. By 

utilizing advanced neural network architectures, such as YOLO, it becomes 

possible to analyze traffic dynamics and classify vehicles in real-time. This 

allows for the accurate identification of emergency vehicles, such as police 

cars, ambulances and firefighters, within regular traffic, which in turn enables 

the implementation of dynamic traffic management strategies. These strategies 

prioritize the passage of emergency vehicles, thereby improving response times 

during critical situations. In addition, deep learning techniques can analyze 

traffic flow patterns and adjust signal timings at intersections to reduce 

congestion and improve overall traffic efficiency. By integrating deep learning 

into traffic management systems, smarter and more adaptable control 

mechanisms can be implemented, leading to safer and more efficient 

transportation networks. A general block diagram of using optimized traffic 
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flow is shown in the Figure 3.21. 

 

Figure 3.21 General Block Diagram of Optimized Traffic Flow 

3.5 Mathematical Formulation of Optimized Traffic Flow 

This study presents a novel mathematical formulation that aims to optimize 

the traffic flow. The proposed approach utilizes advanced algorithms and real-

time traffic data analysis to minimize congestion by adjusting traffic signals in 

the presence of emergency vehicles. 

Normally, allowed time (ATi) for one lane is equal to: 

𝐴𝑇𝑖 = 𝐺𝑖 + 𝑌𝑖    3.1 

Where,  
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 ATi : Allowed time for passing vehicles of Lane i (in seconds) 

 Gi : Duration of green signal for Lane i (in seconds) 

 Yi : Duration of yellow signal for Lane i (in seconds) 

That means the total times for one cycle is equal to: 

𝐶 = ∑ 𝐴𝑇𝑖
𝑛
𝑖=0      3.2 

Where  

 C: Total cycle length (in seconds) 

The expanded equation of 3.2 is equal to: 

𝐶 = ∑ 𝐺𝑖 + 𝑌𝑖
𝑛
𝑖=0      3.3 

To incorporate the preemption (Pi) duration for emergency vehicles into the 

equation for the total cycle length C, we need to add the preemption duration 

for each lane i when an emergency vehicle appears.  

𝐶 = ∑ 𝐺𝑖 ± 𝑃𝑖  + 𝑌𝑖
𝑛
𝑖=0         {

+ 𝑃𝑖 𝑖𝑓 𝐸𝑉𝑠 𝑎𝑝𝑝𝑒𝑟𝑎𝑟𝑒𝑑
− 𝑃𝑖  𝑖𝑓 𝑟𝑜𝑎𝑑 𝐶𝑙𝑒𝑎𝑟𝑑 𝑎𝑛𝑑 𝑛𝑜 𝑣𝑒ℎ𝑐𝑖𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝐿𝑎𝑛𝑒

 3.4 

  

Then, the static signaling time is converted from static to dynamic value based 

on factors including appearance EVs and not cars in the lane while still in green. 

𝐶 = ∑ ∆(𝐺𝑖 ± 𝑃𝑖  + 𝑌𝑖)

𝑛

𝑖=0

 {
+ 𝑃𝑖 𝑖𝑓 𝐸𝑉𝑠 𝑎𝑝𝑝𝑒𝑟𝑎𝑟𝑒𝑑

− 𝑃𝑖 𝑖𝑓 𝑟𝑜𝑎𝑑 𝐶𝑙𝑒𝑎𝑟𝑑 𝑎𝑛𝑑 𝑛𝑜 𝑣𝑒ℎ𝑐𝑖𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝐿𝑎𝑛𝑒
 3. 5 

 

3.6 Performance Metrics 

To evaluate the performance of the models, several metrics are used. 

Machine learning tasks are typically categorized into either classification or 

object detection. It is crucial to select appropriate metrics to evaluate 
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performance, as not all metrics are suitable for every type of problem. The 

metrics used to evaluate the proposed models in this study are divided into two 

parts: classification performance and object detection. 

The precision-recall curve offers a comprehensive assessment of a system's 

performance, often consolidated into a single metric by calculating the average 

precision across various standard recall levels or document numbers (Goutte 

and Gaussier, 2005). 

 Precision stands for a model's capability to accurately identify pertinent 

objects, denoting the percentage of correct positive predictions (Kamal and 

Hamid, 2023).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   3.6 

Sensitivity (Recall) represents a model's ability to detect all relevant 

instances, signifying the percentage of accurate positive predictions among all 

provided ground truths (Kamal and Hamid, 2023).  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   3.7 

Accuracy is defined as the proportion of correctly predicted observations in 

a dataset compared to the total number of observations (Kamal and Hamid, 

2023). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
   3.8 

Or  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   3.9 
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F1 Score is a metric that combines precision and recall, providing a 

balanced evaluation by considering both metrics (Kamal and Hamid, 2023). 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2.𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  3.10 

 

Specificity which refers to the rate of true negatives, is a measure used to 

assess the accuracy of correctly identifying negative data (Kamal and Hamid, 

2023). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑃+𝐹𝑃
  3.11 

 

The Confusion Matrix is a structured tabular representation displaying the 

results of predictions in binary classification. It offers a comprehensive insight 

into a classification model's performance when evaluated against a dataset with 

known true values (Padilla et al., 2020, Gong, 2021). This metric helps to assess 

and delineate the accuracy and efficiency of classification predictions. Table 

3.5 demonstrates a typical confusion matrix for binary classification, yet it can 

be expanded to accommodate classification involving more than two classes. 
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Table 3.5 Standard tabular confusion matrix (Narkhede, 2018) 

  Actual  

  Positive (P) Negative (N) 
P

re
d

ic
te

d
 

P
o

si
ti

v
e 

 
True Positive (TP) False Positive (FP) 

N
eg

at
iv

e 

False Negative (FN) True Negative (TN) 

 

In the displayed table, columns represent the predicted values, while rows 

indicate the actual values. The table distinguishes between two potential 

classes: Positive and Negative. For example, in predicting the presence of an 

emergency vehicle in an image, a positive prediction column suggests the 

image containing a change signal to green, while a negative prediction column 

implies the no changing signals. The table is divided into four categories: 

 True Positive (TP): Signifies a correct prediction aligned with reality. 

 True Negative (TN): Indicates an accurate negative prediction. 

 False Positive (FP): Represents an incorrect positive prediction. 

 False Negative (FN): Denotes an incorrect negative prediction. 

Average Precision (AP), in object detection challenges and across the 

scientific community, the AP (Average Precision) stands out as the primary 

metric used to assess the accuracy of detections among diverse annotated 

datasets. It is important to note that in object detection, a true negative (TN) 
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result is irrelevant. This is due to the fact that there are numerous bounding 

boxes in any given image that should not be detected (Padilla et al., 2020).  

The provided definitions necessitate defining "correct detection" and 

"incorrect detection." A prevalent method to achieve this is by utilizing the 

intersection over union (IOU), which is a metric derived from the Jaccard 

Index—a measure of similarity between two data sets (Jaccard, 1901).  

In object detection, the IOU measures the overlap between the predicted 

bounding box Bp and the ground-truth bounding box Bgt, defined as the ratio 

of the area of their intersection to the area of their union 

𝐽(𝐵𝑝, 𝐵𝑔𝑡) = 𝐼𝑂𝑈 =  
𝑎𝑟𝑒𝑎(𝐵𝑝∩𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝∪𝐵𝑔𝑡)
   3.12 

 

as illustrated in Figure 3.22. 

 

 

Figure 3.22 Intersection Over Union (IOU). 

To determine whether a detection is correct or incorrect, we compare the 

IOU with a given threshold, t. If the IOU is greater than or equal to t, the 

detection is considered correct. If the IOU is less than t, the detection is 
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considered incorrect. 

As mentioned earlier, object detection frameworks do not utilize true 

negatives (TN). Therefore, metrics such as true positive rate (TPR), false 

positive rate (FPR), and ROC curves (Hanley and McNeil, 1982)  are not used. 

Instead, the evaluation of object detection methods primarily revolves around 

precision (P) and recall (R) (as previous mentioned). Precision is defined as the 

proportion of correctly detected objects, while recall is the proportion of actual 

objects that are correctly detected.  

Precision measures a model's ability to correctly identify relevant objects, 

expressed as the percentage of accurate positive predictions. Recall, on the 

other hand, gauges a model's ability to detect all relevant instances, including 

all ground-truth bounding boxes, and is calculated as the percentage of correct 

positive predictions relative to all ground truths provided. 

The mean average precision (mAP) is a metric utilized to assess the 

accuracy of object detectors across all classes in a given database. The mAP is 

essentially the average precision calculated for each class (Ren et al., 2015, Liu 

et al., 2016), that is 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1     3.13 

with APi representing the average precision in the i-th class, and N being 

the total number of classes evaluated. 
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CHAPTER FOUR:  

4. IMPLEMENTATION, RESULTS AND DISCUSSION 
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4.1 Introduction 

 

This chapter focuses on using advanced deep learning techniques to achieve 

vehicle classification and detection. The main goal is to achieve high accuracy 

and provide valuable insights to readers. In addition, simulation environments 

of real traffic intersections are developed, which are crucial for the application 

of these techniques in real situations. Additionally, this chapter provides an 

overview of the architecture of implemented and modified deep learning 

techniques. It contains a detailed description of the methods used and changes 

made. Finally, the results of this study are presented and discussed. 

4.2 Deep Learning-Based Models’ Results  

The problem of vehicles passing through a road junction was considered, 

and the proposed model, which comprises three main elements, was introduced. 

First, a robust deep learning-based classification method was developed. More 

precisely, the deep learning model was improved using the efficiency of 

DenseNet201, which achieved greater accuracy than other models. The purpose 

is to enhance vehicle classification during crossing at a junction. In the second 

part, YOLOv5 was employed for vehicle identification and detection tasks. 

With this approach, it is possible to accurately and efficiently determine the 

vehicle type at any given moment when they pass through the intersection, 

achieving complete traffic analysis of the area. Finally, the system features an 

innovative algorithm for efficient signal optimization that aims to minimize 
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average travel time by dynamically regulating traffic signals to match observed 

congestion levels in order to maximize flow rate and prevent queue build-up. 

 

4.2.1 Vehicle Types Classification Results 

As explained in previous sections, one of the main goals of this work is to 

find high accuracy DL technique and an optimal optimizer. Accordingly, the 

pre-trained models are compiled using the customized dataset for different 

epoch numbers (i.e., iterations). Based on the results other hyper-parameters 

are fixed for all methods, such as (filter size, dropout rate, batch size, and 

learning rate). The description of value of the fixed hyper parameters are shown 

in the Table 4.1 

Table 4.1 Fixed Hyper-parameters for DL Techniques 

Hyper Parameter Description 

Filter Size 7*7 

Dropout Rate 0.5 

Batch Size 16 

Learning Rate 0.0001 

 

The tests conducted involved evaluating performance metrics such as 

average accuracy, precision, recall, and F1-Score. These metrics were 

measured over a span of 15 to 30 epochs, a range chosen based on observations 

from preliminary experiments. When the model was trained for fewer than 15 

epochs, its performance consistently suffered. Conversely, extending training 

beyond 30 epochs did not lead to noticeable improvement in performance 
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metrics. Figure 4.1. and 4.2. show the accuracy and precision results for the 

different input image sizes when the best optimizer has been chosen. In this 

case, a modified DenseNet201 with 120 layers freezing is used.         

 

Figure 4.1 Accuracy versus image size (DensNet201-120_freeze_layers) 

 

 

 

Figure 4.2 Precision versus image size (DensNet201-120_freeze_layers) 

 

Experimental results in Figures 4 and 5 reveal that the image size 224*224 

gives better accuracy and precision values. Therefore, for further tests, merely 
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used this size with all techniques and optimizers in this research.   

Table 4.2 and 4.3 present the accuracy and precision metrics results to select 

the best optimizer using our new search strategy and other tests are detailed in 

the Appendix A.   

Table 4.2 Accuracy Tests 

Image Size Epoch 

No. 
Models Optimizers 

Accuracy     

(%) 

64 

 

15 VGG19 Adam 90.37 

20 VGG19 Adam 90.04 

25 VGG16 RMSprop 90.78 

30 

 
VGG19 Nadam 90.69 

128 

 

15 DenseNet201 Freeze 0 Nadam 96.37 

20 DenseNet201 Freeze 0 RMSprop 96.79 

25 
DenseNet201 Freeze 0 - 

30 
Adam 96.21 

 

30 

 

DenseNet201 Freeze 0 - 

90 
Adam 96.21 

224 

15 
DenseNet201 Freeze 0 - 

30 
Adam 98.06 

20 
DenseNet201 Freeze 0 - 

60 
RMSprop 98.27 

25 
DenseNet201 Freeze 0 - 

150 
RMSprop 98.68 

30 
DenseNet201 Freeze 0 - 

120 
RMSprop 98.84 

 
The highlighted rows in the above tables indicate that the more accurate 

model is the DenseNet201 with 120 layers freezing and the best optimizer is 

RMSprop for both accuracy and precision tests when the input image size is 

224*224 and the epoch No. is 30.  
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Table 4.3 Precision Tests 

Image 

Size 

Epoch 

No. 
Models Optimizers 

Accuracy     

(%) 

64 

 

15 VGG16 Adam 90.96 

20 VGG19 Adam 91.01 

25 VGG16 RMSprop 91.63 

30 

 

VGG19 Nadam 91.65 

128 

 

15 DenseNet201 Freeze 0 Nadam 96.37 

20 DenseNet201 Freeze 0 RMSprop 96.84 

25 
DenseNet201 Freeze 0 

- 30 

Adam 96.21 

30 

 

 

DenseNet201 Freeze 0 

- 90 

Adam 96.26 

224 

15 
DenseNet201 Freeze 0 

- 30 

Adam 98.61 

20 
DenseNet201 Freeze 0 

- 60 

RMSprop 98.27 

25 
DenseNet201 Freeze 0 

- 150 

RMSprop 98.71 

30 
DenseNet201 Freeze 

0 - 120 

RMSprop 98.85 

 
In addition, the confusion matrix of the proposed emergency vehicles 

classification transfer-based model is plotted, which is displayed in Figure 4.3. 

The matrix diagonal represents the proposed model performance accuracy for 

different types of emergency cars. 
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Figure 4.3 Confusion matrix for the optimal model and optimizer 

The model’s (DenseNet201 with 120 layers freezing) loss and accuracy for 

the training and test validation are depicted in Figure 4.4 and Figure 4.5 

respectively.  

 

 
Figure 4.4 Model’s loss (DensNet201 – 120 layers freezing) 
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Figure 4.5 Model’s accuracy (DensNet201 – 120 layers freezing) 

 

4.2.2 Vehicle Types Detection Results 

Another objective of this study is to apply the YOLO deep learning 

technique for detecting vehicle types. The hyperparameters, such as filter size, 

dropout rate, batch size, and learning rate, are kept constant across all methods 

using the YOLO model, except image size. The Table 4.4 displays the 

Description and Value of the Fixed Hyperparameters. 

Table 4.4 Fixed Hyper-parameters for YOLOv5 Techniques 

Hyper-parameter Description 

Batch Size 16 

Learning Rate 0.01 

Optimizer SGD 

 

Figures 4.6 and 4.7 show examples for batch training and prediction, 

respectively. 
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Figure 4.6 Batch Training 
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Figure 4.7 Batch Prediction 

The results are obtained from evaluating different input image sizes using 

performance metrics such as mAP, recall, and F1-Score are presented in Table 

4.5. The highlighted rows in the tables indicate the superior performance of the 

YOLOv5sm model. 
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Table 4.5 Object Detection Using YOLOv5 and Modified YOLOv5 Results 

Model Image 

Size 

No. of 

Epochs 

F1 Score 

(%) 

Precisio

n (%) 

Recall 

(%) 

mAP@0.5 

(%) 

YOLOv5s 640 50 86 100 99 91 

75 87 100 99 90.2 

100 88 100 98 92.2 

512 100 89 100 99 91.7 

 

YOLOv5sm 

(Proposed) 

640 100 0.87 100 98 90.9 

416 100 89 100 99 93.2 

  

The tests conducted evaluate performance metrics, including average F1-

Score, precision, recall, mAP, and confusion matrix are shown in Figures 4.9, 

4.10, 4.11, and 4.13 Respectively.  

 

Figure 4.8 F1 Score 
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Figure 4.9 Precision 

 

 

Figure 4.10 Recall 
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Figure 4.11 mAP@0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Confusion Matrix 

 

Figures 4.14 and 4.15 show the loss functions for the training and validation 

sets. These figures depict both the unmodified (YOLOv5s) and modified 

(YOLOv5sm) versions, utilizing the same hyperparameters. 
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Figure 4.13 The loss functions for the training and validation sets of original 

(YOLOv5s) 

 

 

 

Figure 4.14 The loss functions for the training and validation sets for 

modified (YOLOv5sm) 

 

4.2.3 Simulated Environment Results 

 

Due to difficulties implementing smart traffic system on the roads and 

obtaining permission from the relevant security offices, a simulated version of 
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a real traffic environment was developed for this study. As previously 

mentioned, the equipment in the simulated environment includes a webcam for 

acquiring images from simulated roads, a PC for processing the captured 

images and uploading them to the model, and an Arduino with LEDs for 

controlling traffic signals as shown in the Figure 4.16. 

 

Figure 4.15 Simulated Environment of Traffic Intersection 

A semi-truth table has been used to control and optimize traffic flow. This 

table represents the values of A (Ambulance), F (Firefighter), P (Police Car), 

and C (Crowded Lane) in relation to Lanes (L1, L2, L3, and L4), with the goal 

of determining availability. 

The factors, which can affect the traffic signals with respecting lanes have 

been coded and read by Arduino as shown in the Table 4.5. 
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Table 4.6 Lanes and Factors 

 Traffic Lanes 

F
ac

to
rs

 
 L1 L2 L3 L4 

A 1 5 a A 

F 2 6 b B 

P 3 7 c C 

C 4 8 d D 

 

For testing the proposed traffic flow some scenario created which are detailed 

below: 

 Case 1: Assume that: 

o Set the duration of one cycle = 140 Seconds (120 for Green 

Signals with 30 Seconds for each Lane and 20 Seconds for Red 

with 5 Seconds for each Lane). 

o The green signal turned on for Lane 3, indicating that it can 

continue and try to finish within its allocated time. 

o An ambulance appeared in Lane 2, which is currently under the 

red signal as shown in Table 4.7. 

o The proposed method involves changing the signal of L3 to 
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yellow for 5 seconds, which will enable the ambulance to pass 

through the traffic area by opening L2. 

o After the yellow signal has finished, the green signal returns to 

L3 and traffic cycles continue until another factor appears. 

Table 4.7 Case 1 

 Traffic Lanes 

F
ac

to
rs

 

 L1 L2 L3 L4 

A X ✓ X X 

F X X X X 

P X X X X 

C X X X X 

 

Where: 

✓ represents that the factor occurs on the level. 

X represents that the factor does not occur on the level. 

 

 Case 2: Assume that: 

o Set the duration of one cycle = 140 Seconds (120 for Green 

Signals with 30 Seconds for each Lane and 20 Seconds for Red 

with 5 Seconds for each Lane). 
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o The green signal turned on for Lane 3, indicating that it can 

continue and try to finish within its allocated time. 

o A Firefighter appeared in Lane 1, which is currently under the 

red signal as shown in Table 4.8. 

o The proposed method involves changing the signal of L3 to 

yellow for 5 seconds, which will enable the Firefighter to pass 

through the traffic area by opening L1. 

o After the yellow signal has finished, the green signal returns to 

L3 and traffic cycles continue until another factor appears. 

Table 4.8 Case 2 

 Traffic Lanes 

F
ac

to
rs

 

 L1 L2 L3 L4 

A X X X X 

F ✓ X X X 

P X X X X 

C X X X X 

 

Where: 

✓ represents that the factor occurs on the level. 

X represents that the factor does not occur on the level. 
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 Case 3: Assume that: 

o Set the duration of one cycle = 140 Seconds (120 for Green 

Signals with 30 Seconds for each Lane and 20 Seconds for Red 

with 5 Seconds for each Lane). 

o The green signal turned on for Lane 4, indicating that it can 

continue and try to finish within its allocated time. 

o A Police Car appeared in Lane 1, which is currently under the 

red signal as shown in Table 4.9. 

o The proposed method involves changing the signal of L4 to 

yellow for 5 seconds, which will enable the Firefighter to pass 

through the traffic area by opening L1. 

o After the yellow signal has finished, the green signal returns to 

L4 and traffic cycles continue until another factor appears. 
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Table 4.9 Case 3 

 Traffic Lanes 

F
ac

to
rs

 

 L1 L2 L3 L4 

A X X X X 

F X X X X 

P ✓ X X X 

C X X X X 

 

Where: 

✓ represents that the factor occurs on the level. 

X represents that the factor does not occur on the level. 

 

The results for cases are shown in the Table 4.10. 

Table 4.10 Optimized Traffic Flow Results 

Case Normal Time to 

Pass (in Seconds) 

Optimized Time 

(in Seconds)  

Reduced Time 

(in Seconds) 

1 105 5  100 

2 70 5 65 

3 35 5 30 
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4.3 Discussion 

The analysis of the obtained results focuses on three key areas: classification 

processes, vehicle detection processes, and traffic flow optimization. Each 

process demonstrates significant improvements in accuracy due to the 

implementation of smart traffic signaling. 

 

4.3.1 Discussion of Vehicle Types Classification Results 

 

The performance of the DenseNet201 model can be greatly affected by the 

number of frozen layers during training and the quality of the training data. This 

impact is evident when comparing two configurations of DenseNet201, as 

shown in Table 4.2, which achieved higher accuracy compared to others. The 

results highlight the notable effect of augmented data on increasing accuracy. 

In the first configuration, the DenseNet201 model was trained by freezing 

the first 30 layers using an imbalanced dataset of 3218 images. Despite the 

imbalance, the model achieved an impressive accuracy of 96.7%. 

In contrast, the second configuration which involved training the model by 

freezing the first 120 layers and using a balanced dataset of 6222 images. This 

setup resulted in a significantly higher accuracy of 98.84%, showcasing the 

combined benefits of freezing more layers and using balanced data. A balanced 

dataset ensures equal representation of each class, which generally improves 

model generalization. It is worth noting that the same RMSProb optimizer was 

used in both scenarios. The fixed Hyper-parameters for DL techniques are 
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shown in Table 4.11. 

Table 4.11 Fixed Hyper-parameters for DL Techniques 

Model 
Optimizer  

Accuracy (%) 

DenseNet201 with 

Freezing 0-30 

Layers  

RMSProb  Imbalanced 

data 

(3218 images) 

96.7 

DenseNet201 with 

Freezing 0-120 

Layers 

RMSProb Balanced data 

(6222 images) 

 

98.84 

 

The significant improvement in accuracy, from 96.7% to 98.84%, can be 

attributed to two key factors. First, freezing a larger number of layers, 

specifically 120 instead of just 30, allows the model to retain more of its pre-

trained features. This aids in better feature extraction and reduces the risk of 

overfitting. Second, using a balanced dataset with data augmentation 

techniques likely contributed to the improvement. Data augmentation enhances 

the diversity and representativeness of the training data, allowing the model to 

learn more generalized features through varied training examples. 

In summary, the results clearly demonstrate the crucial roles played by layer 

freezing and the quality of the training data in the performance of the 

DenseNet201 model. Freezing more layers (0-120) and using a balanced 

dataset significantly increase accuracy, as evidenced by the rise to 98.84%. This 

highlights the effectiveness of these strategies in improving model performance 

and emphasizes the importance of data augmentation and appropriate model 

adjustments in achieving high accuracy in machine learning tasks. 
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4.3.2 Discussion of Vehicle Detection Results 

The performance of the YOLOv5s model and its proposed modified 

YOLOv5sm, has been analyzed across different image sizes and training 

epochs using key metrics such as F1 Score, Precision, Recall, and mAP@0.5. 

The YOLOv5s model, tested with an image size of 640*640, shows a 

gradual improvement in F1 Score from 86% at 50 epochs to 88% at 100 epochs. 

Precision remains consistently perfect at 100% across all epochs, indicating no 

false positives. Recall slightly decreases from 99% to 98% as epochs increase, 

while mAP@0.5 improves from 91% at 50 epochs to 92.2% at 100 epochs. This 

technique demonstrates that longer training leads to better overall performance 

accuracy. 

When the image size is reduced to 512*512 and the model is trained for 100 

epochs, the F1 Score reaches 89%, Precision remains at 100%, Recall at 99%, 

and mAP@0.5 at 91.7%. This configuration suggests that a smaller image size 

with sufficient training can yield high performance, but it does not surpass the 

performance metrics of the proposed model. 

The proposed YOLOv5sm model, tested with an image size of 640* 640 for 

100 epochs, achieves an F1 Score of 87%, Precision of 100%, Recall of 98%, 

and mAP@0.5 of 90.9%. However, with an image size of 416*416 at 100 

epochs, it significantly outperforms the other configurations with an F1 Score 

of 89%, Precision of 100%, Recall of 99%, and mAP@0.5 of 93.2%. This 

demonstrates that the proposed model's modifications are particularly effective 
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at this smaller image size, achieving the highest mAP@0.5 among all tested 

configurations. 

In summary, both models exhibit high precision across all configurations, 

but the proposed YOLOv5sm with an image size of 416*at 100 epochs delivers 

the best balance of metrics, particularly excelling in mAP@0.5. This indicates 

its superior capability in object detection tasks, making it a preferred choice for 

applications requiring high accuracy and reliability. Further validation on 

diverse datasets and real-world conditions would ensure the robustness of these 

findings. 

4.3.3 Discussion of Optimized Traffic Flow 

The analysis presents three scenarios that compare the time it takes to 

complete a process before and after optimization. These scenarios provide 

insights into the efficiency gains achieved. 

In the first scenario, the initial time to complete the process is 105 seconds. 

After optimization, this time is drastically reduced to 5 seconds, resulting in a 

reduction of 100 seconds. This indicates an approximately 95.24% 

improvement in efficiency, showcasing the significant impact of the 

optimization technique. 

The second scenario shows a similar trend. Initially, the process takes 70 

seconds. After optimization, the time drops to 5 seconds, achieving a 65-second 

reduction, which translates to a 92.86% increase in efficiency. This further 

underscores the effectiveness of the optimization method employed. 



113 

 

In the third scenario, the process originally takes 35 seconds to complete. 

With optimization, the time is reduced to 5 seconds, resulting in a 30-second 

decrease and an 85.71% improvement in efficiency. This again highlights the 

substantial benefits of the optimization process. 

The obtained results clearly illustrate the significant impact of optimization 

on reducing process times across all scenarios. The optimized time consistently 

drops to 5 seconds in each case, suggesting a standardized optimization 

approach.  

The value of improvement is noteworthy, with time reductions ranging from 

85.71% to 95.24%. This consistency in achieving a 5-second completion time 

indicates the effectiveness of the optimization process and its potential for 

broad application.  

In summary, the analysis demonstrates the profound effect of optimization 

on reducing process time with significant efficiency gains observed in each 

scenario.  

 

 

 

 

 

 

 

 

 

 



114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE:  

5. CONCLUSIONS AND FUTURE WORKS 
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5.1 Conclusions 

In recent years, the issue of traffic congestion has become increasingly 

critical due to the growing number of vehicles on the roads. This study presents 

its findings in three main phases: 

The first phase focused on classifying vehicle types using various deep 

learning techniques. Among the models tested, the DenseNet201 model proved 

to be the most effective, outperforming the others. By implementing 

enhancements such as freezing the first 120 layers and using a balanced dataset 

with data augmentation, the accuracy increased significantly from 96.7% to 

98.84%. This improvement highlights the importance of balanced data and 

model optimization for achieving high accuracy in machine learning tasks. 

The second phase involved vehicle detection using the YOLOv5s and 

YOLOv5sm models. The YOLOv5s model demonstrated high precision and 

recall across different image sizes and training epochs. Specifically, the 

YOLOv5sm model, trained with an image size of 416x416 for 100 epochs, 

achieved impressive results: An F1 score of 89%, precision of 100%, recall of 

99%, and mAP@0.5 of 93.2%. These findings highlight the effectiveness of 

the YOLOv5sm model, particularly when using smaller image sizes, and 

recommend its use for accurate and reliable vehicle detection. 

The final phase involved testing the proposed system in a simulated traffic 

environment with the goal of optimizing traffic flow. Three scenarios were 

evaluated based on the presented mathematical formulation, and each scenario 
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showed significant reductions in process times. In the first scenario, the time 

was reduced from 105 seconds to 5 seconds, representing a 95.24% 

improvement. The second scenario achieved a reduction from 70 seconds to 5 

seconds, resulting in a 92.86% increase in efficiency. Lastly, the third scenario 

reduced the time from 35 seconds to 5 seconds, leading to an 85.71% 

improvement. These findings emphasize the substantial impact of the proposed 

system in reducing process times, suggesting that its standardized application 

could effectively optimize traffic flow in real-world settings. 

5.2 Future Works 

In order to improve the intelligent traffic systems, the following future 

works must be taken into consideration: 

 Enhanced Dataset Development: It is important to continuously 

update and expand datasets to include a wider range of diverse and 

challenging scenarios. This will help to improve the robustness of 

trained models. 

 Applying another DL technique: It is necessary to apply and explore 

more deep learning architectures and optimization techniques. This 

exploration will may enhance the accuracy and efficiency of traffic 

signaling systems. 

 Real-World Implementation: Implement the proposed system in the 

real traffic environment.  
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 Finding the EVs car positions: Applying another technique for 

improving the traffic signaling based on the EVs positions. In this 

case, the lane with EV must be preempted depending on the number 

of cars until the traffic signal turn from yellow to green. 
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APPENDIX A: RESULTS OF CLASSIFICATION PROCESS 

Image Size: 64*64  

No of epochs:  15 

 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.713580247 0.7194 0.7136 0.7146 

Adamax 0.57037037 0.5674 0.5704 0.5665 

Nadam 0.716049383 0.7198 0.716 0.7164 

RMSprop 0.728395062 0.7334 0.7284 0.7255 

ResNet50 

Adam 0.81399177 0.8272 0.814 0.8187 

Adamax 0.670781893 0.6913 0.6708 0.6793 

Nadam 0.823045267 0.8289 0.823 0.8255 

RMSprop 0.83127572 0.8455 0.8313 0.8363 

VGG16 

Adam 0.863374486 0.9096 0.8634 0.8742 

Adamax 0.902880658 0.909 0.9029 0.9051 

Nadam 0.902057613 0.9045 0.9021 0.903 

RMSprop 0.902880658 0.9094 0.9029 0.9051 

VGG19 

Adam 0.903703704 0.9083 0.9037 0.9048 

Adamax 0.863374486 0.8751 0.8634 0.8671 

Nadam 0.890534979 0.9077 0.8905 0.8952 

RMSprop 0.86255144 0.8972 0.8626 0.872 

DenseNet201 Freeze 0 

Adam 0.824261275 0.8278 0.8243 0.8258 

Adamax 0.702954899 0.7082 0.703 0.7015 

Nadam 0.828926905 0.8302 0.8289 0.8292 

RMSprop 0.841368585 0.8457 0.8414 0.843 

DenseNet201 Freeze 0-30 

Adam 0.846034215 0.8499 0.846 0.8472 

Adamax 0.712286159 0.7175 0.7123 0.7131 

Nadam 0.833592535 0.8335 0.8336 0.8333 

RMSprop 0.836702955 0.8382 0.8367 0.8371 

DenseNet201 Freeze 0-60 

Adam 0.842923795 0.8482 0.8429 0.8444 

Adamax 0.727838258 0.7296 0.7278 0.725 

Nadam 0.810264386 0.8121 0.8103 0.8107 

RMSprop 0.822706065 0.8211 0.8227 0.8211 

DenseNet201 Freeze 0-90 

Adam 0.839813375 0.8372 0.8398 0.8381 

Adamax 0.724727838 0.7278 0.7247 0.7238 

Nadam 0.822706065 0.8249 0.8227 0.8235 

RMSprop 0.816485226 0.8157 0.8165 0.8157 

DenseNet201 Freeze 0-120 

Adam 0.786936236 0.7898 0.7869 0.7877 

Adamax 0.702954899 0.7091 0.703 0.7042 

Nadam 0.804043546 0.802 0.804 0.8028 

RMSprop 0.828926905 0.8271 0.8289 0.8276 

DenseNet201 Freeze 0-150 
Adam 0.800933126 0.7967 0.8009 0.7984 

Adamax 0.707620529 0.6987 0.7076 0.699 
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Nadam 0.804043546 0.8024 0.804 0.8026 

RMSprop 0.808709176 0.8132 0.8087 0.809 

 

 

Image Size: 64*64 

No of epochs:  20 

 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.734979424 0.7437 0.735 0.7368 

Adamax 0.595884774 0.5957 0.5959 0.5893 

Nadam 0.753909465 0.7592 0.7539 0.7552 

RMSprop 0.748971193 0.7601 0.749 0.7525 

ResNet50 

Adam 0.810699588 0.8247 0.8107 0.8142 

Adamax 0.719341564 0.7305 0.7193 0.724 

Nadam 0.825514403 0.8281 0.8255 0.8265 

RMSprop 0.826337449 0.8425 0.8263 0.832 

VGG16 

Adam 0.883950617 0.8917 0.884 0.8857 

Adamax 0.869958848 0.8928 0.87 0.8758 

Nadam 0.891358025 0.8977 0.8914 0.8935 

RMSprop 0.882304527 0.9079 0.8823 0.8885 

VGG19 

Adam 0.900411523 0.9044 0.9004 0.9017 

Adamax 0.891358025 0.9031 0.8914 0.8953 

Nadam 0.885596708 0.9054 0.8856 0.8917 

RMSprop 0.89382716 0.9101 0.8938 0.898 

DenseNet201 Freeze 0 

Adam 0.872427984 0.8857 0.8724 0.8771 

Adamax 0.795884774 0.8179 0.7959 0.8027 

Nadam 0.795884774 0.8179 0.7959 0.8027 

RMSprop 0.869958848 0.8766 0.87 0.872 

DenseNet201 Freeze 0-30 

Adam 0.865843621 0.8755 0.8658 0.8694 

Adamax 0.803292181 0.8116 0.8033 0.8059 

Nadam 0.86255144 0.8723 0.8626 0.8663 

RMSprop 0.872427984 0.8885 0.8724 0.8779 

DenseNet201 Freeze 0-60 

Adam 0.868312757 0.8752 0.8683 0.871 

Adamax 0.786831276 0.8016 0.7868 0.7901 

Nadam 0.855967078 0.8632 0.856 0.8587 

RMSprop 0.867489712 0.8727 0.8675 0.8688 

DenseNet201 Freeze 0-90 

Adam 0.874897119 0.8766 0.8749 0.8756 

Adamax 0.799176955 0.8101 0.7992 0.8027 

Nadam 0.852674897 0.863 0.8527 0.8566 

RMSprop 0.86255144 0.8687 0.8626 0.8651 

DenseNet201 Freeze 0-120 

Adam 0.852674897 0.8659 0.8527 0.857 

Adamax 0.790946502 0.8008 0.7909 0.7944 

Nadam 0.857613169 0.8694 0.8576 0.8614 

RMSprop 0.857613169 0.8702 0.8576 0.8618 
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DenseNet201 Freeze 0-150 

Adam 0.84691358 0.8544 0.8469 0.8499 

Adamax 0.786831276 0.7909 0.7868 0.7876 

Nadam 0.855144033 0.8596 0.8551 0.8565 

RMSprop 0.854320988 0.8601 0.8543 0.8562 

 

Image Size: 64*64 

No of epochs:  25 

 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.769547325 0.7853 0.7695 0.7757 

Adamax 0.635390947 0.6317 0.6354 0.6334 

Nadam 0.771193416 0.7805 0.7712 0.7749 

RMSprop 0.78600823 0.7867 0.786 0.7856 

ResNet50 

Adam 0.827983539 0.8341 0.828 0.8305 

Adamax 0.827983539 0.8341 0.828 0.8305 

Nadam 0.826337449 0.8307 0.8263 0.8275 

RMSprop 0.832098765 0.8403 0.8321 0.835 

VGG16 

Adam 0.903703704 0.9116 0.9037 0.9061 

Adamax 0.897119342 0.901 0.8971 0.8983 

Nadam 0.879012346 0.9049 0.879 0.8867 

RMSprop 0.90781893 0.9163 0.9078 0.9103 

VGG19 

Adam 0.90617284 0.9069 0.9062 0.9059 

Adamax 0.887242798 0.8911 0.8872 0.8886 

Nadam 0.887242798 0.8928 0.8872 0.8885 

RMSprop 0.905349794 0.9024 0.9053 0.9023 

DenseNet201 Freeze 0 

Adam 0.865020576 0.8763 0.865 0.8692 

Adamax 0.81399177 0.8179 0.814 0.815 

Nadam 0.869135802 0.8802 0.8691 0.8723 

RMSprop 0.867489712 0.8845 0.8675 0.8731 

DenseNet201 Freeze 0-30 

Adam 0.869135802 0.872 0.8691 0.8698 

Adamax 0.817283951 0.8273 0.8173 0.8209 

Nadam 0.875720165 0.8885 0.8757 0.8799 

RMSprop 0.888065844 0.8903 0.8881 0.8887 

DenseNet201 Freeze 0-60 

Adam 0.855967078 0.8679 0.856 0.86 

Adamax 0.811522634 0.8183 0.8115 0.8137 

Nadam 0.865843621 0.8758 0.8658 0.8694 

RMSprop 0.885596708 0.8905 0.8856 0.8876 

DenseNet201 Freeze 0-90 

Adam 0.864197531 0.8736 0.8642 0.8675 

Adamax 0.809053498 0.8248 0.8091 0.8155 

Nadam 0.851028807 0.8676 0.851 0.857 

RMSprop 0.863374486 0.873 0.8634 0.866 

DenseNet201 Freeze 0-120 

Adam 0.86090535 0.8681 0.8609 0.8636 

Adamax 0.791769547 0.8078 0.7918 0.7982 

Nadam 0.849382716 0.8678 0.8494 0.8552 
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RMSprop 0.856790123 0.8647 0.8568 0.8594 

DenseNet201 Freeze 0-150 

Adam 0.849382716 0.8581 0.8494 0.8521 

Adamax 0.776954733 0.7913 0.777 0.7816 

Nadam 0.860082305 0.8715 0.8601 0.8637 

RMSprop 0.855967078 0.8646 0.856 0.8592 

 

Image Size: 64*64 

No of epochs:  30 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.775308642 0.775309 0.7753 0.77531 

Adamax 0.667489712 0.671 0.6675 0.6684 

Nadam 0.795884774 0.8067 0.7959 0.7999 

RMSprop 0.800823045 0.8114 0.8008 0.8049 

ResNet50 

Adam 0.846090535 0.8579 0.8461 0.8495 

Adamax 0.778600823 0.7893 0.7786 0.782 

Nadam 0.84526749 0.851 0.8453 0.8472 

RMSprop 0.82962963 0.8419 0.8296 0.8328 

VGG16 

Adam 0.897942387 0.9044 0.8979 0.9 

Adamax 0.895473251 0.8986 0.8955 0.8967 

Nadam 0.902880658 0.9105 0.9029 0.9048 

RMSprop 0.898765432 0.9161 0.8988 0.9034 

VGG19 

Adam 0.902057613 0.9042 0.9021 0.9011 

Adamax 0.888065844 0.8965 0.8881 0.8911 

Nadam 0.906995885 0.9165 0.907 0.9101 

RMSprop 0.880658436 0.8868 0.8807 0.8779 

DenseNet201 Freeze 0 

Adam 0.872427984 0.8795 0.8724 0.874 

Adamax 0.824691358 0.8306 0.8247 0.827 

Nadam 0.87654321 0.8875 0.8765 0.8799 

RMSprop 0.880658436 0.8996 0.8807 0.8868 

DenseNet201 Freeze 0-30 

Adam 0.868312757 0.8835 0.8683 0.8729 

Adamax 0.834567901 0.8406 0.8346 0.8364 

Nadam 0.865843621 0.8794 0.8658 0.8706 

RMSprop 0.879012346 0.8942 0.879 0.8839 

DenseNet201 Freeze 0-60 

Adam 0.874897119 0.8857 0.8749 0.8788 

Adamax 0.819753086 0.8312 0.8198 0.824 

Nadam 0.861728395 0.8734 0.8617 0.8661 

RMSprop 0.873251029 0.8861 0.8733 0.8773 

DenseNet201 Freeze 0-90 

Adam 0.861728395 0.8643 0.8617 0.8626 

Adamax 0.821399177 0.8305 0.8214 0.8248 

Nadam 0.871604938 0.8756 0.8716 0.8733 

RMSprop 0.874074074 0.8856 0.8741 0.8781 

DenseNet201 Freeze 0-120 
Adam 0.855144033 0.8692 0.8551 0.8603 

Adamax 0.81399177 0.8257 0.814 0.8187 
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Nadam 0.857613169 0.8676 0.8576 0.8612 

RMSprop 0.847736626 0.8681 0.8477 0.8542 

DenseNet201 Freeze 0-150 

Adam 0.864197531 0.8709 0.8642 0.8665 

Adamax 0.788477366 0.8079 0.7885 0.7956 

Nadam 0.84526749 0.8579 0.8453 0.8487 

RMSprop 0.863374486 0.8634 0.8634 0.8632 

 

Image Size: 128*128 

No of epochs:  15 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.950617284 0.9508 0.9506 0.9507 

Adamax 0.930041152 0.9291 0.93 0.9292 

Nadam 0.947325103 0.947 0.9473 0.947 

RMSprop 0.950617284 0.9503 0.9506 0.9504 

ResNet50 

Adam 0.922633745 0.9261 0.9226 0.9236 

Adamax 0.914403292 0.9151 0.9144 0.9146 

Nadam 0.925925926 0.9275 0.9259 0.9266 

RMSprop 0.924279835 0.9245 0.9243 0.9241 

VGG16 

Adam 0.945679012 0.946 0.9457 0.9452 

Adamax 0.942386831 0.9429 0.9424 0.9426 

Nadam 0.948148148 0.9504 0.9481 0.9484 

RMSprop 0.9218107 0.9295 0.9218 0.9221 

VGG19 

Adam 0.946502058 0.9461 0.9465 0.9461 

Adamax 0.93744856 0.941 0.9374 0.9384 

Nadam 0.95473251 0.9552 0.9547 0.9549 

RMSprop 0.940740741 0.9423 0.9407 0.9412 

DenseNet201 Freeze 0 

Adam 0.956378601 0.9574 0.9564 0.9567 

Adamax 0.928395062 0.9293 0.9284 0.9285 

Nadam 0.963786008 0.9637 0.9638 0.9637 

RMSprop 0.959670782 0.9598 0.9597 0.9597 

DenseNet201 Freeze 0-30 

Adam 0.956378601 0.9573 0.9564 0.9567 

Adamax 0.935802469 0.9356 0.9358 0.9356 

Nadam 0.960493827 0.9604 0.9605 0.9604 

RMSprop 0.953909465 0.955 0.9539 0.9541 

DenseNet201 Freeze 0-60 

Adam 0.950617284 0.9527 0.9506 0.9514 

Adamax 0.935802469 0.9386 0.9358 0.9368 

Nadam 0.958024691 0.9592 0.958 0.9584 

RMSprop 0.95308642 0.9543 0.9531 0.9535 

DenseNet201 Freeze 0-90 

Adam 0.951440329 0.9517 0.9514 0.9515 

Adamax 0.922633745 0.9223 0.9226 0.9222 

Nadam 0.95473251 0.9557 0.9547 0.955 

RMSprop 0.940740741 0.946 0.9407 0.9422 

DenseNet201 Freeze 0-120 Adam 0.950617284 0.9518 0.9506 0.9509 
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Adamax 0.926748971 0.9289 0.9267 0.9276 

Nadam 0.944855967 0.9468 0.9449 0.9454 

RMSprop 0.943209877 0.9454 0.9432 0.9438 

DenseNet201 Freeze 0-150 

Adam 0.951440329 0.9524 0.9514 0.9517 

Adamax 0.930041152 0.9295 0.93 0.9295 

Nadam 0.939917695 0.942 0.9399 0.9404 

RMSprop 0.949794239 0.9511 0.9498 0.9502 

 

Image Size: 128*128 

No of epochs:  20 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.95473251 0.9551 0.9547 0.9549 

Adamax 0.942386831 0.9417 0.9424 0.9419 

Nadam 0.941563786 0.9417 0.9416 0.9416 

RMSprop 0.95308642 0.9531 0.9531 0.9531 

ResNet50 

Adam 0.922633745 0.9286 0.9226 0.9243 

Adamax 0.914403292 0.915 0.9144 0.9146 

Nadam 0.928395062 0.9302 0.9284 0.929 

RMSprop 0.926748971 0.9291 0.9267 0.9276 

VGG16 

Adam 0.95308642 0.9545 0.9531 0.9531 

Adamax 0.948148148 0.9511 0.9481 0.949 

Nadam 0.943209877 0.945 0.9432 0.9438 

RMSprop 0.950617284 0.9532 0.9506 0.9515 

VGG19 

Adam 0.955555556 0.9562 0.9556 0.9558 

Adamax 0.936625514 0.9382 0.9366 0.9372 

Nadam 0.938271605 0.938 0.9383 0.9371 

RMSprop 0.950617284 0.9526 0.9506 0.9513 

DenseNet201 Freeze 0 

Adam 0.956378601 0.9563 0.9564 0.9562 

Adamax 0.941563786 0.944 0.9416 0.9425 

Nadam 0.956378601 0.9566 0.9564 0.9565 

RMSprop 0.967901235 0.9684 0.9679 0.9681 

DenseNet201 Freeze 0-30 

Adam 0.958024691 0.9586 0.958 0.9582 

Adamax 0.943209877 0.9448 0.9432 0.9437 

Nadam 0.955555556 0.9569 0.9556 0.956 

RMSprop 0.956378601 0.9566 0.9564 0.9562 

DenseNet201 Freeze 0-60 

Adam 0.952263374 0.9534 0.9523 0.9527 

Adamax 0.930864198 0.9312 0.9309 0.931 

Nadam 0.948148148 0.949 0.9481 0.9483 

RMSprop 0.956378601 0.9566 0.9564 0.9565 

DenseNet201 Freeze 0-90 

Adam 0.947325103 0.9487 0.9473 0.9477 

Adamax 0.941563786 0.9427 0.9416 0.942 

Nadam 0.953909465 0.955 0.9539 0.9543 

RMSprop 0.949794239 0.9507 0.9498 0.95 
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DenseNet201 Freeze 0-120 

Adam 0.95308642 0.9538 0.9531 0.9533 

Adamax 0.930864198 0.9353 0.9309 0.9324 

Nadam 0.953909465 0.9569 0.9539 0.9548 

RMSprop 0.955555556 0.9568 0.9556 0.956 

DenseNet201 Freeze 0-150 

Adam 0.948148148 0.9506 0.9481 0.9487 

Adamax 0.938271605 0.9385 0.9383 0.9383 

Nadam 0.953909465 0.9542 0.9539 0.9539 

RMSprop 0.948148148 0.95 0.9481 0.9486 

 

Image Size: 128*128 

No of epochs:  25 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.953909465 0.954 0.9539 0.9539 

Adamax 0.941563786 0.9412 0.9416 0.9413 

Nadam 0.948148148 0.9481 0.9481 0.948 

RMSprop 0.949794239 0.9513 0.9498 0.9503 

ResNet50 

Adam 0.926748971 0.9319 0.9267 0.9282 

Adamax 0.919341564 0.9195 0.9193 0.9193 

Nadam 0.930864198 0.9338 0.9309 0.9318 

RMSprop 0.9218107 0.924 0.9218 0.9224 

VGG16 

Adam 0.95473251 0.9552 0.9547 0.9548 

Adamax 0.929218107 0.9335 0.9292 0.9299 

Nadam 0.948971193 0.9491 0.949 0.9488 

RMSprop 0.95308642 0.9553 0.9531 0.9538 

VGG19 

Adam 0.934156379 0.9358 0.9342 0.9343 

Adamax 0.938271605 0.9385 0.9383 0.9384 

Nadam 0.952263374 0.9522 0.9523 0.952 

RMSprop 0.947325103 0.9478 0.9473 0.947 

DenseNet201 Freeze 0 

Adam 0.960493827 0.961 0.9605 0.9607 

Adamax 0.941563786 0.9427 0.9416 0.9419 

Nadam 0.953909465 0.9552 0.9539 0.9541 

RMSprop 0.947325103 0.9486 0.9473 0.9478 

DenseNet201 Freeze 0-30 

Adam 0.962139918 0.9621 0.9621 0.962 

Adamax 0.948971193 0.9494 0.949 0.9488 

Nadam 0.958024691 0.9582 0.958 0.9581 

RMSprop 0.947325103 0.949 0.9473 0.9479 

DenseNet201 Freeze 0-60 

Adam 0.951440329 0.9527 0.9514 0.9519 

Adamax 0.948148148 0.95 0.9481 0.9488 

Nadam 0.949794239 0.9504 0.9498 0.9498 

RMSprop 0.93744856 0.938 0.9374 0.9375 

DenseNet201 Freeze 0-90 

Adam 0.953909465 0.9546 0.9539 0.9541 

Adamax 0.944855967 0.9455 0.9449 0.9451 

Nadam 0.953909465 0.9547 0.9539 0.9542 
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RMSprop 0.93744856 0.9386 0.9374 0.9378 

DenseNet201 Freeze 0-120 

Adam 0.949794239 0.9521 0.9498 0.9506 

Adamax 0.936625514 0.9392 0.9366 0.9375 

Nadam 0.953909465 0.955 0.9539 0.9543 

RMSprop 0.941563786 0.9439 0.9416 0.9424 

DenseNet201 Freeze 0-150 

Adam 0.949794239 0.951 0.9498 0.9502 

Adamax 0.942386831 0.9432 0.9424 0.9427 

Nadam 0.95473251 0.9553 0.9547 0.9547 

RMSprop 0.922633745 0.9292 0.9226 0.9248 

 

Image Size: 128*128 

No of epochs:  30 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.950617284 0.9505 0.9506 0.9504 

Adamax 0.945679012 0.9458 0.9457 0.9456 

Nadam 0.950617284 0.9522 0.9506 0.9512 

RMSprop 0.944032922 0.9452 0.944 0.9444 

ResNet50 

Adam 0.938271605 0.9394 0.9383 0.9387 

Adamax 0.904526749 0.9054 0.9045 0.9047 

Nadam 0.934156379 0.9364 0.9342 0.9349 

RMSprop 0.924279835 0.9254 0.9243 0.9247 

VGG16 

Adam 0.934156379 0.9394 0.9342 0.935 

Adamax 0.948148148 0.948 0.9481 0.9479 

Nadam 0.95308642 0.9526 0.9531 0.9526 

RMSprop 0.955555556 0.9558 0.9556 0.9556 

VGG19 

Adam 0.935802469 0.9466 0.9358 0.9384 

Adamax 0.939917695 0.9404 0.9399 0.94 

Nadam 0.958847737 0.9605 0.9588 0.9593 

RMSprop 0.944032922 0.9492 0.944 0.945 

DenseNet201 Freeze 0 

Adam 0.958847737 0.9595 0.9588 0.9591 

Adamax 0.944855967 0.9456 0.9449 0.9451 

Nadam 0.958847737 0.9594 0.9588 0.9589 

RMSprop 0.950617284 0.9517 0.9506 0.9506 

DenseNet201 Freeze 0-30 

Adam 0.958024691 0.9586 0.958 0.958 

Adamax 0.939917695 0.9417 0.9399 0.9404 

Nadam 0.957201646 0.9588 0.9572 0.9577 

RMSprop 0.952263374 0.9539 0.9523 0.9527 

DenseNet201 Freeze 0-60 

Adam 0.955555556 0.9576 0.9556 0.9563 

Adamax 0.933333333 0.9366 0.9333 0.9344 

Nadam 0.949794239 0.9501 0.9498 0.9497 

RMSprop 0.948148148 0.9523 0.9481 0.9494 

DenseNet201 Freeze 0-90 
Adam 0.962139918 0.9626 0.9621 0.9623 

Adamax 0.93744856 0.9392 0.9374 0.9379 
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Nadam 0.957201646 0.9577 0.9572 0.9574 

RMSprop 0.949794239 0.952 0.9498 0.9504 

DenseNet201 Freeze 0-120 

Adam 0.95308642 0.9547 0.9531 0.9533 

Adamax 0.93909465 0.9393 0.9391 0.9391 

Nadam 0.947325103 0.9491 0.9473 0.9479 

RMSprop 0.948971193 0.9517 0.949 0.9495 

DenseNet201 Freeze 0-150 

Adam 0.95308642 0.9541 0.9531 0.9534 

Adamax 0.93909465 0.9413 0.9391 0.9398 

Nadam 0.949794239 0.9505 0.9498 0.9499 

RMSprop 0.95308642 0.953 0.9531 0.9529 

 

Image Size: 224*224  

No of epochs:  15 

 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.960493827 0.9608 0.9605 0.9606 

Adamax 0.953909465 0.9541 0.9539 0.954 

Nadam 0.963786008 0.9636 0.9638 0.9635 

RMSprop 0.957201646 0.9574 0.9572 0.9573 

ResNet50 

Adam 0.967078189 0.9676 0.9671 0.9672 

Adamax 0.960493827 0.9604 0.9605 0.9604 

Nadam 0.967901235 0.9683 0.9679 0.9681 

RMSprop 0.961316872 0.9617 0.9613 0.961 

VGG16 

Adam 0.960493827 0.9619 0.9605 0.961 

Adamax 0.942386831 0.9423 0.9424 0.9423 

Nadam 0.952263374 0.9533 0.9523 0.951 

RMSprop 0.944032922 0.955 0.944 0.9464 

VGG19 

Adam 0.957201646 0.9591 0.9572 0.9569 

Adamax 0.950617284 0.9504 0.9506 0.9502 

Nadam 0.972839506 0.9726 0.9728 0.9726 

RMSprop 0.966255144 0.9665 0.9663 0.9657 

DenseNet201 Freeze 0 

Adam 0.973662551 0.9739 0.9737 0.9737 

Adamax 0.977777778 0.9777 0.9778 0.9777 

Nadam 0.978600823 0.9787 0.9786 0.9786 

RMSprop 0.979423868 0.9794 0.9794 0.9793 

DenseNet201 Freeze 0-30 

Adam 0.98600823 0.9861 0.986 0.986 

Adamax 0.976954733 0.9771 0.977 0.977 

Nadam 0.983539095 0.9835 0.9835 0.9835 

RMSprop 0.976954733 0.978 0.977 0.9773 

DenseNet201 Freeze 0-60 

Adam 0.980246914 0.9805 0.9802 0.9803 

Adamax 0.972839506 0.9729 0.9728 0.9728 

Nadam 0.977777778 0.9777 0.9778 0.9777 

RMSprop 0.974485597 0.9747 0.9745 0.9746 

DenseNet201 Freeze 0-90 Adam 0.980246914 0.9805 0.9802 0.9803 
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Adamax 0.973662551 0.9738 0.9737 0.9737 

Nadam 0.975308642 0.9752 0.9753 0.9752 

RMSprop 0.976131687 0.9765 0.9761 0.9762 

DenseNet201 Freeze 0-120 

Adam 0.980246914 0.9802 0.9802 0.9802 

Adamax 0.973662551 0.9741 0.9737 0.9738 

Nadam 0.981069959 0.9811 0.9811 0.9811 

RMSprop 0.977777778 0.978 0.9778 0.9777 

DenseNet201 Freeze 0-150 

Adam 0.977777778 0.9778 0.9778 0.9778 

Adamax 0.96872428 0.9686 0.9687 0.9686 

Nadam 0.980246914 0.9804 0.9802 0.9803 

RMSprop 0.978600823 0.9789 0.9786 0.9787 

 

Image Size: 224*224   

No of epochs:  20 

 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.967901235 0.9677 0.9679 0.9677 

Adamax 0.944855967 0.9453 0.9449 0.945 

Nadam 0.96872428 0.9685 0.9687 0.9686 

RMSprop 0.946502058 0.9467 0.9465 0.9465 

ResNet50 

Adam 0.97037037 0.9706 0.9704 0.9705 

Adamax 0.961316872 0.9613 0.9613 0.9613 

Nadam 0.974485597 0.9745 0.9745 0.9745 

RMSprop 0.967901235 0.9679 0.9679 0.9679 

VGG16 

Adam 0.967901235 0.9678 0.9679 0.9677 

Adamax 0.944032922 0.9436 0.944 0.9436 

Nadam 0.969547325 0.9699 0.9695 0.9696 

RMSprop 0.948971193 0.9592 0.949 0.9513 

VGG19 

Adam 0.920164609 0.9254 0.9202 0.92 

Adamax 0.942386831 0.9461 0.9424 0.9429 

Nadam 0.962962963 0.9633 0.963 0.9631 

RMSprop 0.97037037 0.9718 0.9704 0.9707 

DenseNet201 Freeze 0 

Adam 0.979423868 0.9794 0.9794 0.9794 

Adamax 0.975308642 0.9755 0.9753 0.9754 

Nadam 0.980246914 0.9803 0.9802 0.9803 

RMSprop 0.981893004 0.9818 0.9819 0.9819 

DenseNet201 Freeze 0-30 

Adam 0.967901235 0.9688 0.9679 0.9681 

Adamax 0.972016461 0.9722 0.972 0.9721 

Nadam 0.974485597 0.9746 0.9745 0.9745 

RMSprop 0.976131687 0.9762 0.9761 0.9758 

DenseNet201 Freeze 0-60 

Adam 0.980246914 0.9803 0.9802 0.9802 

Adamax 0.975308642 0.9754 0.9753 0.9753 

Nadam 0.981069959 0.9813 0.9811 0.9812 

RMSprop 0.982716049 0.9827 0.9827 0.9827 
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DenseNet201 Freeze 0-90 

Adam 0.982716049 0.9827 0.9827 0.9827 

Adamax 0.97037037 0.9705 0.9704 0.9704 

Nadam 0.980246914 0.9805 0.9802 0.9803 

RMSprop 0.972839506 0.9743 0.9728 0.9732 

DenseNet201 Freeze 0-120 

Adam 0.975308642 0.9754 0.9753 0.975 

Adamax 0.974485597 0.9746 0.9745 0.9745 

Nadam 0.981069959 0.981 0.9811 0.981 

RMSprop 0.974485597 0.9754 0.9745 0.9747 

DenseNet201 Freeze 0-150 

Adam 0.981069959 0.981 0.9811 0.981 

Adamax 0.976131687 0.9762 0.9761 0.9762 

Nadam 0.97037037 0.971 0.9704 0.9706 

RMSprop 0.978600823 0.9787 0.9786 0.9786 

 

Image Size: 224*224 

No of epochs:  25 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.962139918 0.9621 0.9621 0.962 

Adamax 0.953909465 0.9539 0.9539 0.9538 

Nadam 0.958024691 0.9578 0.958 0.9576 

RMSprop 0.959670782 0.9606 0.9597 0.96 

ResNet50 

Adam 0.967901235 0.9679 0.9679 0.9678 

Adamax 0.961316872 0.9611 0.9613 0.9611 

Nadam 0.967078189 0.9672 0.9671 0.9671 

RMSprop 0.972839506 0.973 0.9728 0.9729 

VGG16 

Adam 0.929218107 0.9376 0.9292 0.9311 

Adamax 0.93744856 0.951 0.9374 0.9408 

Nadam 0.958024691 0.9648 0.958 0.9596 

RMSprop 0.927572016 0.9366 0.9276 0.9211 

VGG19 

Adam 0.967901235 0.9689 0.9679 0.9682 

Adamax 0.952263374 0.9527 0.9523 0.952 

Nadam 0.963786008 0.9643 0.9638 0.9639 

RMSprop 0.952263374 0.9555 0.9523 0.9527 

DenseNet201 Freeze 0 

Adam 0.981069959 0.981 0.9811 0.981 

Adamax 0.976954733 0.9769 0.977 0.9769 

Nadam 0.979423868 0.9795 0.9794 0.9795 

RMSprop 0.978600823 0.9786 0.9786 0.9786 

DenseNet201 Freeze 0-30 

Adam 0.979423868 0.9794 0.9794 0.9793 

Adamax 0.979423868 0.9796 0.9794 0.9795 

Nadam 0.981893004 0.9819 0.9819 0.9818 

RMSprop 0.981069959 0.981 0.9811 0.981 

DenseNet201 Freeze 0-60 

Adam 0.981893004 0.9819 0.9819 0.9819 

Adamax 0.977777778 0.9779 0.9778 0.9778 

Nadam 0.983539095 0.9835 0.9835 0.9835 
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RMSprop 0.983539095 0.9835 0.9835 0.9835 

DenseNet201 Freeze 0-90 

Adam 0.98436214 0.9844 0.9844 0.9843 

Adamax 0.966255144 0.9665 0.9663 0.9663 

Nadam 0.982716049 0.9828 0.9827 0.9828 

RMSprop 0.982716049 0.9828 0.9827 0.9827 

DenseNet201 Freeze 0-120 

Adam 0.976131687 0.9763 0.9761 0.9762 

Adamax 0.978600823 0.9787 0.9786 0.9786 

Nadam 0.976954733 0.9773 0.977 0.9771 

RMSprop 0.975308642 0.9753 0.9753 0.9752 

DenseNet201 Freeze 0-150 

Adam 0.975308642 0.9752 0.9753 0.9753 

Adamax 0.976954733 0.977 0.977 0.9769 

Nadam 0.981069959 0.981 0.9811 0.981 

RMSprop 0.986831276 0.9871 0.9868 0.9869 

 

Image Size: 224*224 

No of epochs:  30 

Model Optimizer accuracy precision recall f1-score 

MobileNet 

Adam 0.967078189 0.9673 0.9671 0.9672 

Adamax 0.961316872 0.9614 0.9613 0.9609 

Nadam 0.96872428 0.9688 0.9687 0.9688 

RMSprop 0.963786008 0.9638 0.9638 0.9636 

ResNet50 

Adam 0.967078189 0.9673 0.9671 0.9671 

Adamax 0.967078189 0.9671 0.9671 0.9671 

Nadam 0.960493827 0.9611 0.9605 0.9607 

RMSprop 0.959670782 0.9615 0.9597 0.9602 

VGG16 

Adam 0.967078189 0.9685 0.9671 0.9675 

Adamax 0.95308642 0.9553 0.9531 0.9538 

Nadam 0.966255144 0.9678 0.9663 0.9667 

RMSprop 0.967901235 0.9708 0.9679 0.9686 

VGG19 

Adam 0.969547325 0.9694 0.9695 0.9688 

Adamax 0.948971193 0.9484 0.949 0.9481 

Nadam 0.967901235 0.9688 0.9679 0.9681 

RMSprop 0.963786008 0.9647 0.9638 0.9639 

DenseNet201 Freeze 0 

Adam 0.976131687 0.9763 0.9761 0.9762 

Adamax 0.973662551 0.9737 0.9737 0.9737 

Nadam 0.98436214 0.9844 0.9844 0.9844 

RMSprop 0.976131687 0.9763 0.9761 0.9762 

DenseNet201 Freeze 0-30 

Adam 0.978600823 0.9786 0.9786 0.9783 

Adamax 0.978600823 0.9786 0.9786 0.9786 

Nadam 0.978600823 0.9785 0.9786 0.9785 

RMSprop 0.977777778 0.9778 0.9778 0.9778 

DenseNet201 Freeze 0-60 
Adam 0.98436214 0.9844 0.9844 0.9843 

Adamax 0.976131687 0.9765 0.9761 0.9762 
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Nadam 0.97037037 0.9713 0.9704 0.9707 

RMSprop 0.982716049 0.9828 0.9827 0.9827 

DenseNet201 Freeze 0-90 

Adam 0.979423868 0.9795 0.9794 0.9794 

Adamax 0.976954733 0.9769 0.977 0.9769 

Nadam 0.980246914 0.9803 0.9802 0.9803 

RMSprop 0.985185185 0.9852 0.9852 0.9851 

DenseNet201 Freeze 0-120 

Adam 0.982716049 0.9827 0.9827 0.9827 

Adamax 0.972839506 0.9732 0.9728 0.973 

Nadam 0.983539095 0.9837 0.9835 0.9836 

RMSprop 0.988477366 0.9885 0.9885 0.9885 

DenseNet201 Freeze 0-150 

Adam 0.976954733 0.977 0.977 0.9769 

Adamax 0.969547325 0.97 0.9695 0.9697 

Nadam 0.976954733 0.977 0.977 0.9767 

RMSprop 0.975308642 0.9751 0.9753 0.9752 
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 پوختە
 رەسەل یرەگیکار شەمەئ ،ەکردوو یادیز رچاوەب یکەیەوێش ەب هانیج یشتوانیدان ەیژمار

 ەل لێمبۆتۆئ ەیژمار یادبوونیز ۆیه ەتێبەو د ەیەه ەوەکانەتاک نیەلاەل لێمبۆتۆئ ینانێکارهەب

ئەمەش  ل،ێمبۆتۆئ ینانێکارهەو ب شتووانیدان وانێن ۆیوخەاستڕ یندەوەیپەهۆی هەبونی . بکانداەشار

 مەئ ۆ. بتێبکر رەسەچار پێویستە ەگرنگ ک یکێپرس ەتەبوو ۆهاتوچ یبردنەوەڕێبوادەکات کە 

 یغڵباەرەق رەسەب بوونڵزا ۆب ەستیوێپ راێخ ناو شارەکان ەب کەریز ۆیهاتوچ یدانەئاماژ ،ەستەبەم

 ینینیب دا،ەشانێک مەئ رەسەب بوونڵزا ۆ. بشتکردنەگ یو کات چوونێت ەیوەمکردنەو ک ،ۆهاتوچ

 ۆگرنگن ب ( بژاردەیDeep Learning) ڵقوو یربوونێو ف (Computer Vision) رەوتیمپۆک

 یکردنۆڵنترۆو ک بردنەوەڕێب ۆب نێڕگەگرنگ د یکڕۆڵێ ەچونک ەداپرس مەئ ەڵگەل کردنەڵەمام

 (Objects)کانەشت وانێن ەیوەاکردنیو ج ەوەنیزۆد ش،ەوەئ یاەڕرە. سۆهاتوچ یکانڵەگنایس

 یکردنۆڵنترۆک و یغڵباەرەق ەل انۆیخ ەتر ک یکانەو شت کانەلێمبۆتۆئ یژماردن ۆب ەرەدیتەارمی

 یاگوزاریفر یلێمبۆتۆئ ەیوەنیزۆد شەوەل ە. جگگرنەد دوورەب داۆهاتوچ یکانەناوچ ەل کانڵەگنایس

  .ۆهاتوچ یدانەئاماژ یکەریز یمەستیس ۆب ەستیوێپ ەک انۆیب تیەوەولەئ یدانێو پ

 یمەستیس ۆب ەیەکارام یکێمەستیس یکردنێجەبێو ج نکردنیزاید ەیەوەنیژێتو مەئ یکەرەس یئامانج

 یمەستیس ش،ەوەل ە.  جگێل لە ترافیکەکانمبۆتۆئ ەیوەنیزۆد یماەبن رەسەل ۆهاتوچ ڵیگنایس

 یو کات ەوێهاوش یراێکام ردووەه ەل ەنێو یگرتن انیمەکیە ت؛ێگرەدۆخەل ناغۆچوار ق یارکراویشنێپ

 ۆب ەنێو یسکردنێسۆپر شێپ یاوازیج یکانەتمیرۆلگەئ مداەدوو یناغۆق ە. لەوەگاکانڕێ ەل ەنیقەاستڕ

 یکانەکیکنەت ش،ەوەل ە. جگنێدرەد نجامەئ سکردنێسۆپر شێپ یکێنگاوەه کەو کانەراویگ ەنێو

 س،یلۆپ ،یی)ئاسا ەکانیلێمبۆتۆئ کەو یکانەشت یکردنیارید ۆب نێنرێهەکاردەب ڵقوو یربوونێف

 یارکراویشنێپ یمەستیس دا،ییتاۆک یناغۆق ەل کداێکاتەو هتد..( ل ەوەنێو ئاگرکوژ ،فریاگوزاری

  .کانەزراوۆد ەلێمبۆتۆئ ییکارا یورد ینگاندنەسەڵه ۆب ەوەتێکرەدیتاق

 ۆب ەنراوێکارهەب DenseNet201 یلێدۆم ۆب کراویستکارەد ەیوەگواستن یربوونێف یکێبازڕێ

و  سیلۆپ مبولانس،ەئ ،یاگوزاریفر )ئاسایی، ەکانیلێمبۆتۆئ شەوانەل نکردن،ێلۆپ نیندەچ

 مەب رزەب ینیوردب ەیژڕێ. ەکەلێدۆم یکانەنیچهەندێ لە  یستنەب ەل ییەتیبر ەکەبازڕێ. ە(وەنێئاگرکوژ

 ,Adam) ەوانەباشکردن، ل یکانەاوازیج ەوازێش ها،ەروە%. ه98.6 ەگاتەو د تێد ستەدەب ەلێدۆم

Adamax, Nadam, and RMSprob) رەسەل کردنیارید یداەئ یباشترکردن ۆب نێنرێهەکاردەب 

 ش،ەوەئ یاەڕرە. سناێستهەدەب ی%98.84 ینیو وردب رەباشترک یبژاردنەڵه نیباشتر یماەبن

 یئامانج ەک ل،ێمبۆتۆئ ەیوەنیزۆد ۆب ارکرایشنێپ YOLOv5 یکراویستکارەد یکێشانەو

 یمەستیس دا،ییتاۆک ە%. ل3 ەیژڕێ ەب (mAP) ەندەمامناو ینیوردب یندەمامناو ەیوەرزکردنەب
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 ینجامە. ئۆهاتوچ ڵیگنایس ەل یوانەڕچاو یکات ەیوەمکردنەک ۆکرا ب ەوێهاوش یارکراویشنێپ

 ١٠٠ ۆب ٣٠ وانێن ەل ەک ن،ەدەد شانین دایوانەڕچاو یاتک ەل رچاوەب ەیوەمبوونەک کانەوەکردنیتاق

 .ەکانخۆد ێیپەب یەداەچرک

 


