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ABSTRACT 
 

      The emerging Fifth-Generation (5G) technology towards Internet of Vehicles 

(IoV) provides numerous advantages, such as lower levels of latency, stable link 

connections, and support for high mobility. However, avoiding vehicle collisions 

in IoV is a challenging task due to disseminating Emergency Safety Messages 

(ESMs) without strict delay and reliability requirements. To address this issue, this 

study proposes a novel intelligent Software-Defined Networking-based Collision 

Avoidance (SDNCA) framework assisted 5G. The proposed SDNCA framework 

employs two system models, each comprising three proposed algorithms. In the 

first system model, primarily, SDNCA performs the Vehicular Federated Learning 

(VFL) algorithm that accurately estimates the risk severity for each vehicle via 

training the proposed Risk Severity-Artificial Neural Network (RS-ANN) model 

through the implementation of federated learning among vehicles. The SDNCA 

framework applies the SDN algorithm to achieve three main objectives. First, it 

calculates the Quality of Service (QoS) of the ESM. Second, it dynamically 

allocates both 5G network and computing resources for three Virtual Networks 

(VNs). Third, it selects the optimal 5G base station (gNB) for routing the ESM to 

the destination vehicle. To ensure effective forwarding for each ESM, SDNCA 

deploys the gNB algorithm at the selected gNB to schedule the ESMs considering 

their priorities and configures the 5G network resources and computing resources 

based on the OpenFlow control message received from the SDN.  

      The implementation of the second system model integrates the VFL, SDN, and 

gNB algorithms, focusing on the risk distance between the source and destination 

vehicles. The objective of the second system model is to ensure the successful 

transmission of ESMs in scenarios when considering the risk distances between 

vehicles. 
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      The two system models have been implemented using three simulation tools: 

Network Simulator (NS3), Python programming language, and a Mininet network 

emulator. The real-time simulation results demonstrate the evaluation of the 

SDNCA framework into two sections, compared with the existing related research. 

The first section assesses the performance of the SDNCA framework by varying 

the density and speed of the vehicles. These results include 17% and 20% Network 

Overhead (NO), 17% and 20% Computational Complexity (CC), 0% Collision 

Rate (CR), 18 ms End-to-End (E2E) Delay, 89%–90% Packet (ESM) 

Transmission Reliability (TR), 99.5% and 99.4% Successful Routing Ratio (SRR), 

0.0050 ms Routing Efficiency (RE), 0% Packet Drop Ratio (PDR), 0.25 × 10−4 

and 0.5 × 10−4 Channel Utilization (CU), and 4.5 ms and 4 ms E2E Delay with 

different values of the allocated bandwidth. The second section evaluates the 

performance of the SDNCA framework at distances ranging up to 30 meters 

between the source and destination vehicles, taking into account different vehicle 

densities and speeds. These results include 97%–99.5% and 98.4%–99.8% SRR, 

4 ms and 3.5 ms RE, 0% CR, and 4.5 ms E2E Delay. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Overview  
 

      Technological transformations in automated vehicles are leading to vital 

changes in the transport systems and automotive industries due to their rapid 

proliferation on roads, contributing to increased safety and effectiveness (Soto et 

al., 2022, Dhanare et al., 2022, Alhilal et al., 2020). Recently, the concept of the Internet 

of Vehicles (IoV) (Gao et al., 2021) has drawn significant attention as a promising 

approach to reduce traffic accidents, alleviate traffic congestion, and provide 

various convenient applications, such as autonomous driving, interactive 

entertainment, and real-time traffic information (Zeng et al., 2022, Chang et al., 2021).   

      The IoV connects hardware devices, network communication channels, and 

cloud platforms that allow connected vehicles, pedestrians, and intelligent units 

near the road to exchange information in real-time (Ayaz et al., 2022, Ji et al., 2022, 

Yin et al., 2022, Song et al., 2021). Autonomous Vehicles (AVs) are nearing 

commercialization and are expected to become dominant among various emerging 

vehicles in the future (Mushtaq et al., 2021, Na et al., 2022). Wireless communication 

technologies, specifically vehicular communications such as Vehicle-to-

Everything (V2X) (Xiong et al., 2021), along with existing vehicle-sensing 

capabilities (Agbaje et al., 2022), provide support for enhanced safety applications, 

thereby enabling AVs for safer autonomous driving (Hussein et al., 2021). The 

important supporting technologies of Artificial Intelligence (AI) (Kim et al., 2022) 

and Fifth-Generation (5G) networks (Hakak et al., 2023, Montero et al., 2022) in IoV 

technology are considered potential solutions for boosting vehicular critical safety 

applications (Mekrache et al., 2022).   



2 

 

      IoV based on 5G communication (5G-IoV) enables Vehicle-to-Vehicle (V2V), 

Vehicle-to-Infrastructure (V2I), Vehicle-to-Roadside (V2R), Vehicle-to-

Pedestrian (V2P), Vehicle-to-Grid (V2G), Vehicle-to-Building (V2B), Vehicle-

to-Device (V2D), and Vehicle-to-Cloud (V2C) communication modes with high 

data rates and very low latency, making AVs a reality (Hichri et al., 2021). 

Beamforming and virtualization technologies are considered the best solutions to 

optimize 5G utilization in IoV. Beamforming design aims to reduce the hardware 

and signal processing complexity while achieving near-optimal performance by 

directing a narrow beam toward each vehicle destination. Thus, adaptive 

beamforming can minimize interference, improve network coverage, and increase 

throughput (Shaik and Malik, 2021). Conversely, Network Function Virtualization 

(NFV) is an underlying method that enables network operators to create network 

slices per end-user application or service requirement with guaranteed 

performance and quality corresponding to service-level agreements. Both cloud 

and edge computing components are required in these network slices to address 

the varying performance and latency requirements (Bolla et al., 2022). Thus, 

emerging 5G-IoV supports high-speed mobility, broad coverage, substantial 

capacity, and a stable connection (Chen et al., 2019). These attributes are effective 

for enabling V2X services, particularly in satisfying the stringent latency 

requirements of safety-critical missions such as autonomous driving (Coll-Perales et 

al., 2022). Although 5G-IoV aims to provide new capabilities and strict Quality of 

Service (QoS) requirements, it runs its network functions over a unified operating 

system, particularly at its edge (Dai et al., 2021).  

      Mobile Edge Computing/Multiaccess Edge Computing (MEC) has been 

envisioned for future 5G-IoV, in which some core network functionalities are 

moved to the network edge, that is, nearer to the vehicles for lower latency and 

local processing of sensitive data for critical public safety services (Wang and Xu, 
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2020). However, MEC requires the virtualization of network infrastructure for the 

utilization of cloud resources at the network edge. As Software-Defined 

Networking (SDN) (Liu et al., 2020) provides flexibility in network management 

and large-scale optimization with unified abstraction (Duo et al., 2020, Ravi and 

Thangaraj, 2021), SDN is combined with MEC to control Virtual Network (VN) 

customization (Walia et al., 2021). In addition, MEC can be utilized to bolster the 

control of SDN in the 5G-IoV, improving network and resource management 

(Zhuang et al., 2020). Thus, the supportive 5G-IoV introduces resilience, elasticity, 

QoS provisioning, and programmability by efficiently allocating the available 5G 

resources and minimizing network management latency (Wan et al., 2021, Boukerche 

and Aljeri, 2021). Moreover, the central SDN controller can manage edge servers 

deployed at 5G base stations (Gyawali et al., 2021). Therefore, SDN can achieve 

reliable transmission of Emergency Safety Messages (ESMs) to the destination 

vehicles in the 5G-IoV environment (Benalia et al., 2020). 

      ESMs are emergency warnings and delay-sensitive messages transmitted to 

the targeted vehicles when detecting hazardous events on the road to avoid crucial 

danger and road congestion (Rastogi et al., 2021). The major challenge of ESM 

dissemination in traditional vehicular networks is high broadcast storms, which 

consume large amounts of bandwidth, increase network congestion, and further 

increase dissemination delay (Ameur et al., 2022). Moreover, the QoS provisioning 

regarding the reliability of the surrounding vehicles that can receive safety 

messages from a transmitting vehicle within the message lifetime still has several 

limitations in high-density IoV scenarios and uneven traffic distributions (Garg et 

al., 2021b, Noor-A-Rahim et al., 2022). The reason can be attributed to the numerous 

challenges that vehicular networks face, such as channel interference, limited 

bandwidth, Line-of-Site (LoS) and Non-Line-of-Site (NLoS) connections, highly 

dynamic mobility scenarios, and environmental changes (Ghimire and Rawat, 2022). 
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At the same time, the large amount of data collected by sensors requires high 

processing and communication capabilities (Yuan et al., 2021). To alleviate the 

broadcast storm problem and handle the challenges in vehicular networks, SDN-

assisted 5G-IoV technology requires the integration of AI techniques (Ayyub et al., 

2022). 

      A significant risk is the dissemination of ESMs to vehicles without strict 

reliability and delay requirements (Ma and Trivedi, 2021). Therefore, robust collision 

avoidance mechanisms for vehicles are key challenges that require more advanced 

approaches than conventional approaches. Federated Learning (FL), a promising 

framework (Shaheen et al., 2022), is considered a feasible solution for safety-and 

time-critical applications involving AVs (Kong et al., 2022, Huang et al., 2022). FL 

enhances IoV owing to its properties, such as alleviation of network bandwidth, 

privacy protection, and low latency. This is achieved because the training vehicles 

transmit only the learning models, not the entire dataset, to the edge servers (Jamil 

et al., 2022). In addition, FL handles scalability issues because a large number of 

vehicles participate in the training process and can be efficiently used with Non-

Independent and Identically Distributed (Non-IID) data partitions. This is in 

contrast to the most decentralized learning algorithms, which produce a major 

model quality loss (Billah et al., 2022). Considering FL in IoV (Taik et al., 2022), the 

vehicles will train and improve the initial downloaded model using their local data 

and send the resulting model parameters to the edge servers and then to the central 

server for global aggregation (Posner et al., 2021). In FL, the essential 

communication between the edge server and federated vehicles can be either 

Synchronous FL (SFL) or Asynchronous FL (AFL) (Li et al., 2020a). Recent studies 

have investigated the application of FL in SDN controller, and the central SDN 

server in this case is used to coordinate the edge servers associated with 5G base 
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stations and aggregate the learning model updates received from these edge servers 

(Ma et al., 2022). 

      To overcome the aforementioned bottlenecks, and specifically provide 

effective coordination and boost safety-critical services in 5G-V2I 

communication, this research study proposes a novel Software-Defined 

Networking-based Collision Avoidance (SDNCA) framework for disseminating 

the ESMs via 5G technology to avoid vehicles’ collisions. 

 

1.2 Motivation of the Study 
 

      The primary motivation is to address the challenges in the dissemination of 

ESMs with high performance, particularly in terms of mobility and 

interoperability. Additionally, taking into account the advantages mentioned for 

5G, FL, MEC, and SDN, this dissertation aims to investigate the precise 

interaction between them in the IoV environment to combine the techniques and 

technological solutions. Therefore, this dissertation examined FL to enable the 

SDN controller to implement three objectives for the purpose of disseminating 

ESMs in 5G-IoV.  

 

1.3 Problem Statement 

      This section signifies the problems present in the existing ESM dissemination 

approaches associated with the IEEE 802.11p, 5G, and SDN technologies that 

hinder resolving the vehicle collision problem. The issues identified in existing 

studies include the following: 

1. IEEE 802.11P: Short-range V2V and V2R communications (Li et al., 2023) 

are basic vehicular communications that are enabled through the IEEE 

802.11p protocol/Wireless Access of Vehicular Environment (WAVE) 

(Karim et al., 2022, Wang et al., 2023). The dedicated spectrum for this protocol 
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is 75 MHz in the range of 5.850– 5.925 GHz (Moradi-Pari et al., 2023). One of 

the main problems using IEEE 802.11p technology in emergency traffic 

situations is broadcast storms, which have been addressed in the literature 

using various mechanisms. However, ESM dissemination is highly 

bandwidth-intensive due to broadcast storms. Therefore, the existing 

solutions in related studies cannot satisfy the requirements of transmitting 

ESMs to vehicles with high reliability and low latency, which require high-

speed network access. 

2. 5G: Data dissemination in vehicular networks, especially ESM 

dissemination, is one of the main challenges that needs to be identified 

(Tabassum and Reddyy, 2023). The low-latency feature of 5G technology (Liu et 

al., 2022b, Chatzoulis et al., 2023) is helpful in this context, particularly in V2I 

communication, which enables the reliable transmission of ESMs to 

vehicles on time (Karim et al., 2023). However, the integration of IEEE 

802.11p and 5G technologies in some studies elevates the complexity and 

network congestion due to beacon messages and network signal 

transmission. One of the main targets of 5G-IoV is to avoid accidents 

involving vehicles that require intelligent dynamic control for 5G base 

stations (5G gNBs). The recent research studies that used 5G technology 

did not consider this point when transmitting ESMs.  

3. SDN: Recently, SDN has been deployed in vehicular networks to boost 

many services, including safety (Islam et al., 2021). The major problem that 

occurs during emergencies is the need to reduce the time taken to analyze 

the on-location situation to reduce traffic congestion and facilitate critical-

time safety information dissemination (Mekki et al., 2021). Using SDN for 

ESM dissemination in vehicular networks is operationally expensive. 
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Therefore, efficient mechanisms are required to reduce the overall network 

overhead and operational costs, an aspect not addressed in the studies. 

Additionally, some of the studies related to points 1–3 used the clustering 

technique, where the formation and modification of clusters for each ESM 

transmission increase the network overhead. 

 

1.4 Research Objective and Questions 

      The basic aim of this study is to tackle the issues outlined in the problem 

statement and propose a novel cellular 5G-V2I framework based on SDN 

(SDNCA) for ESM dissemination in highway scenarios. More specifically, the 

proposed SDNCA framework focuses on a specific problem, that is, avoiding 

vehicle collisions by disseminating ESMs. This study targets to develop practical 

decision-making and adaptation techniques to solve this problem. The proposed 

first and second system models include realistic assumptions in order to handle the 

dynamic characteristics of IoV. In this context, the following research questions 

need to be addressed in the SDNCA framework: 

1. What is the impact of the federated learning approach on addressing the key 

challenges in estimating risk severity for vehicles in a dynamic and 

decentralized environment? 

2. What specific considerations and solutions does federated learning 

introduce to improve the training accuracy and test accuracy of the proposed 

Risk Severity-Artificial Neural Network (RS-ANN) model? 

3. During the training and test phases, what concepts and metrics are 

considered to investigate the level of stability of federated learning?  

4. How does federated learning between vehicles contribute to lower training 

latency and test latency? What is the importance of evaluating these metrics, 

particularly for ESM dissemination?   
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5. How can federated learning enhance the efficiency of the SDN controller 

for routing ESMs when the vehicle density and speed change over time and 

area? 

6. What is the role of federated learning in providing adaptive control of 5G 

gNBs to ensure optimal performance during the transmission of ESMs? 

 

1.5 Contributions 
 

      The key contributions of the proposed framework are as follows: 

1. The SDNCA framework employs three proposed algorithms in the first 

system model for routing ESMs to avoid vehicle collisions by controlling 

network congestion. 

2. A Vehicular Federated Learning (VFL) algorithm has been proposed for 

improved estimation of the risk severity of vehicles. This algorithm 

estimates risk severity for each vehicle by training the proposed RS-ANN 

model through federated learning between vehicles. This method of 

learning enhances the training and test accuracies, and provides lower 

training and test latencies. 

3. On the basis of the VFL algorithm, a novel SDN algorithm has been 

formulated to handle three main successive objectives in an OpenFlow 

control message. First, it identifies the QoS for each ESM by considering 

succeeding metrics that are risk severity, vehicle speed, and risk distance. 

Second, it dynamically allocates 5G network resources and computing 

resources based on the QoS value, risk distance, and vehicle speed. Third, 

it traces the optimal route (gNB) for routing ESM to the destination vehicle. 

The SDN algorithm handles each ESM independently in an efficient 

manner, which controls the network congestion. 
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4. The gNB algorithm is then proposed at the selected gNB to schedule ESMs 

based on their priorities. It also configures the 5G network resources and 

computing resources. In this way, the selected gNB forwards ESM to the 

destination vehicle with low latency and extremely high reliability, thereby 

avoiding vehicle collisions. 

5. Based on the first system model, the second system model has been applied 

to consider the risk distance between the source and destination vehicles. 

The process in this system model is as follows: First, the VFL algorithm has 

been performed. Second, the algorithm of SDN has been developed by 

calculating the QoS for each ESM based on the metrics of risk severity, 

vehicle speed, and risk distance between the source and destination vehicles. 

Then, SDN selects the nearest gNB to the destination vehicle. Moreover, 

SDN dynamically allocates the network resources and computing resources 

of 5G based on the QoS value, the risk distance between vehicles, and the 

distance between the selected gNB and the destination vehicle. Third, the 

selected gNB configures its network and computing resources based on the 

OpenFlow control message received from the SDN and sends the ESM to 

the destination vehicle. The second system model effectively manages the 

SDNCA framework when there are significant distances between the source 

and destination vehicles that pose a risk.   

6. The real-time simulation results indicate that the SDN controller in the 

SDNCA framework can optimize the network communication of ESMs to 

vehicles in 5G-IoV through the FL scheme. These results include network 

overhead, computational complexity, collision rate, end-to-end delay, 

transmission reliability, packet drop ratio, successful routing ratio, routing 

efficiency, and channel utilization. 
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1.6 Dissertation Outline 
 

      The structure of this dissertation is organized as follows: 

      Chapter one summarizes the employed technologies that are integrated to 

establish the scope of this study. It addresses the key issues that promoted the 

proposal of the SDNCA framework, objectives, and research questions, and also 

explains the contributions behind it. 

      Chapter two contains two main sections, which are: The first section covers 

the theoretical background of VANETs, IoV, and enabling technologies in IoV. 

The second section provides an extensive literature review on the dissemination 

of ESMs based on IEEE 802.11p, 5G, and SDN technologies. Existing works are 

explained along with their limitations.  

      Chapter three starts with introducing the proposed IoV architecture, 

concentrates intently on the design and methodology, which covers the FL, MEC, 

5G, and SDN in the IoV environment. 

      Chapter four and chapter five present the simulation scenarios regarding the 

proposed system models and discuss the results obtained in each specific scenario. 

      Chapter six concludes the study and provides future research directions.  
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CHAPTER TWO 

LITERATURE REVIEW AND THEORITICAL BACKGROUND 

 

2.1 Introduction 
 

      Chapter two of the study provides a comprehensive overview of the theoretical 

background upon which the research is built, together with an extensive literature 

review. The theoretical background explores the conceptual framework that 

provides guidance for the study, explaining the fundamental concepts, principles, 

and models that form the basis of the research. Additionally, the literature review 

critically examines existing scholarly works relevant to the research topic, 

synthesizing and analyzing various perspectives, methodologies, and findings. 

The literature review examines the previous research to identify any gaps and 

provides context and justification for the current investigation. 

 

2.2 Vehicular Ad-Hoc Networks (VANETs) 
 

      Vehicular communication networks have emerged to enable numerous 

vehicular data services and applications. Conventional Vehicular Ad-Hoc 

Networks (VANETs) are often operated in an ad hoc mode and mainly focus on 

road safety applications based on the connections between vehicles and Roadside 

Units (RSUs) (Ahangar et al., 2021). Given the expected market growth in the 

connected vehicles landscape, two different Device-to-Device (D2D) 

communication technologies, namely, Dedicated Short Range Communication 

(DSRC), which is based on the IEEE 802.11p standard, and Cellular Vehicle-to-

Everything (C-V2X) (Zhou et al., 2020, Mir et al., 2020), have been standardized by 

international organizations. Further developments and evaluations are progressing 

worldwide for both technologies (Zeadally et al., 2020).  
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      In VANETs, there are several communication mechanisms available, 

including V2V mode, which is pure ad-hoc communication without fixed 

infrastructure (Zeadally et al., 2019), and V2R, or Roadside units-to-Vehicle (R2V) 

communications, which allow a vehicle to communicate with roadside units 

primarily for collecting information and analyzing traffic data (Hossain et al., 2020). 

A hybrid communication mode is a combination between V2V and V2R 

communications, whereby a vehicle can directly communicate with the road 

infrastructure; in addition, a vehicle can communicate via multi-hopping with 

other vehicles when direct transmission to an RSU is not possible with a single 

hop (Jeong et al., 2021). In addition, an RSU can directly transmit data to another 

RSU in Roadside Unit-to-Roadside Unit (RSU-to-RSU) communication to 

facilitate computation, network load-balancing, and information sharing. Figure 

2.1 shows a VANET architecture with different transmission modes (Karunathilake 

and Förster, 2022). 

 

 
 

Figure 2.1: Communication modes in traditional vehicular networks (Guerna et al., 2022) 
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2.3 Internet of Vehicles (IoV) 
 

      The concept of the Internet of Things (IoT) (Manogaran et al., 2021) and its 

intelligent interfaces provide a wide range of services through ubiquitous sensing 

capabilities that evolved conventional VANETs to the next emerging and 

evolutionary stage of the IoV (Kumar and Singh, 2020). The main objective behind 

IoV is to support the recent and forthcoming demands from the mobility world, 

such as Intelligent Transportation Systems (ITS), advanced driving, and 

autonomous vehicles (Heo et al., 2021). 

IoV maximizes the utilization of information and communication technologies 

that provide new interactions at the road level among vehicles, humans, and 

environments. These interactions facilitate the use of many applications, such as 

data dissemination and aggregation, alleviation of traffic congestion, road safety, 

traffic management, and mainly routing schemes, and support the significant 

number of connected vehicles (Magaia et al., 2022, Senouci et al., 2019). In diverse and 

heterogeneous IoV networks, the vehicles communicate in a partially structured 

form, influenced by large and dynamic topologies, high mobility and speed of 

vehicles, and frequent changes in density over time and location (Qureshi et al., 

2021). Reliable and scalable wireless transmissions for IoV are technically 

difficult; some of the challenges of the existing IoV networks are as follows: 

• Each vehicle, from driver-assisted to automated, will generate a flood of 

information, up to thousands of times more than that by a person that 

requires big data analytics and intelligent decision-making based on this 

analysis (Arooj et al., 2021). 

• During peak traffic hours or when an accident occurs, a large number of 

vehicles require urgent information exchange. In these situations, the 
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services are limited or unreliable due to variable-capacity wireless links, 

bandwidth constraints, and communication channel impacts (Ni et al., 2020). 

• Lack of standards and scalability (Qureshi et al., 2021).  

• Storage and computation constraints and the unavailability of cloud services 

(Danquah and Altilar, 2020). 

• It is challenging for existing centralized resource allocation approaches in 

cellular networks to guarantee such diverse QoS requirements, especially 

the ultra-reliable and low latency requirements (Liang et al., 2020, Zhang et al., 

2020b). 

• Security issues (Xu et al., 2022). 

• Lack of Global Positioning System (GPS) due to reception issues, weak 

signals, and vehicle position imprecision (Heo et al., 2019). 

 

On the basis of the aforementioned challenges, the motivation for IoV is realistic 

and huge for greater convenience and comfort, providing service applications and 

safety applications, as shown in figure 2.2.  
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Figure 2.2: Service and safety applications in IoV (Ji et al., 2020) 

 

This motivation can be realized by designing more precise and relevant 

architectures, as illustrated in figure 2.3, related to V2X communication, 

computation, and service scenarios.  

The V2X in these scenarios contains multiple connections such as V2V, V2I, V2P 

(Ansari, 2020), V2R, V2C (Shen et al., 2020), V2G, V2B (Ang et al., 2019), V2D (Singh 

et al., 2019), Vehicle-to-Fog (V2F) (Zhang et al., 2021), and Vehicle-to-Sensor (V2S) 

(Vasudev et al., 2020). 
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Figure 2.3: V2X in different scenarios. I: communication scenario; II: computation scenario; 

III: service scenario (Lv et al., 2023). 

 

2.4 Dissemination of ESMs in IoV 
 

      Message or data dissemination is a common practice in vehicular networks, 

where messages and resources are shared among all neighboring vehicles in the 

network. Routing involves determining the most efficient and optimal path for 

successfully transmitting information between sender and recipient nodes, 

ensuring timely delivery and error-free communication, even if any event happens 
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on the road (Ahmed et al., 2023, Kayarga and Kumar, 2021). A vehicle equipped with a 

DSRC unit based on the IEEE 802.11p standard can communicate with other 

vehicles to exchange warning messages to avoid accidents and improve traffic 

situations (Fabi and Thampi, 2022). The capability of receiving the ESMs is important 

in a dense vehicular communication network with many vehicles attempting to 

broadcast the ESMs in an uncoordinated way (Li et al., 2022). The most basic ESM 

dissemination scheme is based on broadcasts. However, broadcast-based ESM 

dissemination causes the broadcast storm phenomenon. This phenomenon results 

in excessive transmission delay, packet loss, transmission failure, dissemination 

interference, and degrades overall network performance. Furthermore, broadcast 

storms occur more frequently in urban environments with high vehicle density 

(Ullah et al., 2020a). 

The subsequent sections offer a comprehensive and easily understandable 

overview of four key advancements: 5G, FL, MEC, and SDN. The explanation 

provided aims to emphasize the inherent benefits of these solutions within the 

realm of IoV, particularly in the context of transmitting ESMs between vehicles to 

avoid vehicle collisions. In this study, the exploration of 5G's high-speed, low-

latency communication, FL's collaborative and privacy-preserving model training, 

MEC's edge computing capabilities, and SDN's dynamic network management 

creates an environment where 5G, FL, MEC, and SDN work together to enhance 

vehicular safety through efficient ESM transmission. 

 

2.5 Fifth-Generation (5G) Networks 
 

      In recent years, 5G wireless networks have attracted extensive research 

interest. According to the 3rd Generation Partnership Project (3GPP) (Qian et al., 

2021), 5G networks should support three major families of applications, including 

enhanced Mobile Broadband (eMBB), massive Machine Type Communications 
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(mMTC), and Ultra-Reliable and Low-Latency Communications (URLLC) 

(Weerasinghe et al., 2020, Chen et al., 2021). In addition, the inclusion of enhanced V2X 

(eV2X) communications is regarded as a crucial service that necessitates support 

from 5G networks. These scenarios require extensive connectivity with a fast rate 

of data transfer, and enhanced utilization of the available frequency spectrum. This 

presents considerable difficulties in designing 5G networks (Cai et al., 2018). 

Besides, there are various Key Performance Indicator (KPI) requirements for 5G 

cellular networks, as listed in Table 2.1. Each KPI is related to one or more use 

cases. The KPIs on mMTC and URLLC are specifically related to IoT (Fuentes et 

al., 2020).  

 

Table 2.1: KPIs of 5G (Vaezi et al., 2022) 

KPI Requirements Category 

Peak data rate 20 Gbps (downlink), 10 Gbps (uplink) eMBB 

User experienced data rate 100 Mbps (downlink), 50 Mbps (uplink) eMBB 

Spectral efficiency 30-bit/s/Hz (downlink), 15-bit/s/Hz 

(uplink) 

eMBB 

Latency (user plane) 4 ms for eMBB, 1 ms for URLLC eMBB, 

URLLC 

Reliability 1 − 10−5 URLLC 

Energy efficiency Qualitative eMBB 

Connection density 106 devices/𝐾𝑚2 mMTC 

Mobility Up to 500 km/hr. eMBB 

 

      Allocating new frequencies is a straightforward solution for increasing the 

number of connections in the network. A good example is the introduction of 

millimeter-Wave (mmWave) bands (30–300 GHz) in 5G networks. However, due 

to the wide bandwidth and high penetration loss, mmWave frequency bands are 
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generally not considered for massive connectivity, but they can be used for 

broadband IoT and critical IoT (Hu et al., 2020). The Ultra-Dense Network (UDN) 

is a crucial technology in 5G networks that tackles the pressing issue of system 

capacity by implementing unique deployment strategies. Small cells, due to their 

smaller coverage areas and higher spatial reuse, allow for a more detailed and 

efficient exploitation of the available spectrum (De Ree et al., 2019). This strategy 

not only enhances data throughput but also mitigates issues related to network 

congestion and data latency. The implementation of UDN in 5G networks serves 

as a proactive solution to address the increasing need for faster data speeds, 

enhanced network stability, and the growing number of connected devices (Alablani 

and Arafah, 2021). 

      5G Advanced will build a foundation for more demanding applications, such 

as extended reality. A key component of 5G Advanced is the use of AI-based 

techniques to introduce intelligent network management and further optimize the 

performance of the networks. Based on the 3GPP’s 5G evolution tentative time 

plan shown in figure 2.4, the standardization of 5G Advanced began with Release 

18 in 2022 and will continue until 2028 (Release 21) (Rahman et al., 2021). 

 

 
Figure 2.4: Scheduled time plan for the development of 5G by 3GPP (Rahman et al., 2021) 

 

      A few KPIs are related to the data rate in one way or another. These are peak 

data rate, user experience peak data rate, and spectral efficiency. As shown in 
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figure 2.5, 5G networks are expected to offer peak data rates of up to 20 Gbps, 

whereas peak data rates for Sixth-Generation (6G) networks will be about 1,000 

Gbps. Also, compared to 5G, the user experience data rate is expected to increase 

by about an order of magnitude in 2030. Further, spectral efficiency must improve 

two to three times. The technologies facilitating these escalations are mmWave, 

Tera Hertz (THz), and massive Multiple-Input Multiple-Output (MIMO) (Navarro-

Ortiz et al., 2020). 

 

 
Figure 2.5: Traffic estimates from 2020 to 2030 (Navarro-Ortiz et al., 2020) 
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2.5.1 Network Function Virtualization (NFV) 
 

      NFV is crucial to the advancement of 5G networks as it converts conventional 

network infrastructures into highly adaptable and efficient environments. In the 

context of 5G, NFV involves the decoupling of network functions from dedicated 

hardware and virtualizing them as software applications. Operators can utilize this 

capability to flexibly implement, expand, and manage network services, including 

routing, load balancing, and security, on standard servers and in a more cost-

effective manner. NFV in 5G enables rapid service innovation, scalability, and 

efficient use of resources. This allows network operators to promptly respond to 

changing demands and launch new services with enhanced flexibility (Ghai et al., 

2020). Network Service Providers (NSPs) can greatly enhance the performance of 

Network Function Virtualization Management and Orchestration (NFV MANO) 

by incorporating advanced intelligence techniques such as federated learning and 

reinforcement learning. This will provide a solid foundation for tackling the new 

challenges and opportunities presented by 5G networks and future technological 

environments. Federated learning enables NSPs to collectively train machine 

learning models across distributed network elements, promoting collective 

intelligence while upholding data privacy and security. Reinforcement learning, 

on the other hand, empowers the NFV MANO system to independently adjust and 

enhance decision-making by utilizing real-time feedback and dynamic network 

conditions (Manias and Shami, 2021b). 

 

2.5.2 Network Slicing 
 

      Network slicing in 5G networks is a revolutionary architectural concept that 

allows service providers to partition a single physical network infrastructure into 

multiple virtual networks, known as slices, each customized to fulfill the specific 
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needs of different applications. The operators can optimally distribute resources 

using this dynamic and adaptable technique, thereby providing optimal 

performance for a wide range of use cases. This includes delivering ultra-low 

latency for critical applications such as autonomous vehicles, as well as providing 

high-speed, low-delay connections for augmented reality experiences (Ssengonzi et 

al., 2022). Each network slice functions as a separate, end-to-end logical network 

with its own allocated resources, network functionalities, and management 

policies. The isolation and customization provided by this system allow different 

services to exist on the same physical infrastructure without any interference, 

resulting in exceptional scalability, efficiency, and service differentiation 

(Wijethilaka and Liyanage, 2021). 

 

2.5.3 Software-Defined Networking (SDN) 
 

      SDN represents a transformative approach to designing network architecture. 

It involves separating the control plane from the physical hardware infrastructure 

and allowing centralized control through software (Bi et al., 2019). In SDN, the 

network's intelligence and decision-making processes are moved to a software 

layer, enabling the flexible, programmable, and centralized administration of 

network resources. The segregation of control and data planes enables enhanced 

agility and flexibility in network setups, simplifying the process of adapting to 

evolving demands, optimizing traffic flow, and swiftly deploying new services 

(Rafique et al., 2020). 

      Integrating SDN into 5G networks plays a crucial role in meeting the complex 

and ever-changing demands of future communication technologies. SDN 

introduces a centralized and programmable mechanism for managing networks. 

This enables operators to effectively distribute resources, optimize traffic, and 
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adapt network configurations in real-time to cater to the various requirements of 

5G services. Within the realm of 5G, where network slicing is a fundamental 

concept, SDN plays a pivotal role in managing and coordinating these slices. SDN 

facilitates the dynamic establishment, administration, and enhancement of 

network slices by offering a single and customizable control plane. This ensures 

that each slice fulfills the distinct performance, latency, and bandwidth 

prerequisites of various 5G applications (Ahmadi, 2019). Furthermore, SDN 

improves the overall flexibility and responsiveness of 5G networks by facilitating 

quick service implementation and automation. SDN facilitates centralized 

management and control of network functions, enabling the adoption of intelligent 

and adaptable policies. This allows for optimal usage of resources and an 

immediate response to changing network conditions (Kakkavas et al., 2021). 

 

2.5.4 Mobile Edge Computing/Multiaccess Edge Computing (MEC) 
 

      MEC is a paradigm that aims to optimize the performance of mobile 

applications and services by bringing computing resources closer to the network 

edge. This approach reduces latency, or the delay in data transmission, resulting 

in improved performance. MEC strategically positions processing power, storage, 

and networking capabilities at the edge of the cellular network. This allows for 

local data processing instead of depending only on remote cloud data centers 

(Tropea et al., 2021). The close proximity to end-users enables faster response times, 

which is especially beneficial for latency-sensitive applications such as augmented 

reality, virtual reality, and real-time analytics. The implementation of MEC not 

only reduces latency, improving the user experience, but also creates possibilities 

for creative and context-aware services. This establishes the groundwork for a 

more responsive and efficient mobile communication infrastructure (Darwish and 

Abu Bakar, 2018). 
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      MEC plays a pivotal role in facilitating the implementation of 5G networks, 

making a significant contribution to the realization of the technology's 

transformational capabilities. MEC, as a crucial facilitator of 5G, utilizes its 

capacity to deploy computational resources to the network's edge, perfectly 

aligning with the anticipated high data rates, low latency, and extensive device 

connections offered by 5G (Hassan et al., 2019, Pereira et al., 2020). By bringing 

computational capabilities closer to end-users and their devices, MEC reduces 

latency and improves data processing. This directly meets the demanding 

performance needs of forthcoming 5G applications. The strategic deployment of 

computing capacity in the edge infrastructure improves the overall efficiency and 

responsiveness of 5G networks, enabling the full realization of revolutionary 

applications like autonomous vehicles, smart cities, and immersive multimedia 

experiences (Pham et al., 2020). 

 

2.6 IoV Based on 5G communications (5G-IoV) 
 

      The incorporation of 5G technology into the IoV signifies a significant 

advancement in the domain of interconnected mobility. 5G facilitates a smooth 

and effective communication network for the IoV, offering exceptional speed, 

minimal delay, and high capacity. This opens up a wide range of potential 

applications and opportunities (Sodhro et al., 2021a). By 2030, the profound impact 

of 5G technology on the IoV is expected to be even more pronounced, with the 

automotive industry poised to dominate the 5G IoT environment. Approximately 

53% of the total 5G IoT endpoints are projected to be allocated to connected cars, 

underscoring the pivotal role of 5G in shaping the future of transportation 

(Taslimasa et al., 2023). Vehicles equipped with 5G connectivity can exchange real-

time data with each other and the surrounding infrastructure, strengthening traffic 

management, reducing congestion, and improving overall road safety. The ultra-
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fast data transfer capabilities of 5G enable faster decision-making for autonomous 

vehicles, which aids in the advancement and implementation of self-driving cars 

(Garg et al., 2021a, Yuan et al., 2020, Balasubramanian et al., 2022). Furthermore, the 

minimal delay of 5G guarantees prompt responses to critical situations, such as 

collision avoidance or emergency braking, hence enhancing the overall reliability 

and quickness of the IoV (Ali et al., 2021). 

      V2V communication is a fundamental application in the field of 5G and 

advanced networks. In the specific context of time-sensitive V2V safety 

applications, the demand for URLLC is of utmost importance (Yang et al., 2020). 

The requirement for timely updates on the status of vehicles emphasizes the need 

for immediate and reliable information transmission. With the ongoing progress 

of 5G and future technologies, it is crucial to optimize V2V communication by 

carefully managing the freshness of information. This is not only a technical 

requirement but also a critical factor for the effectiveness of intelligent and 

responsive transportation systems (Abdel-Aziz et al., 2019). 

      Releases 16 and 17 primarily represent subsequent phases of 5G 

standardization by 3GPP. They aim to enhance and broaden the capabilities of 5G-

New Radio (5G-NR) technology, including its implementation in areas such as 

V2X communications (Chen et al., 2020). Release 16, which was completed in 2020, 

brought about notable advances for V2X. These changes focused on reducing 

latency, enhancing reliability, and providing greater support for various vehicular 

applications. Release 17, which was ongoing at the time, was anticipated to 

enhance and expand the capabilities of 5G-V2X. This might include the 

introduction of advanced positioning services and support for more deployment 

scenarios (Abdel Hakeem et al., 2020, Harounabadi et al., 2021). The technical aspects of 

5G-V2X are shown in Table 2.2 (Storck and Duarte-Figueiredo, 2020). 

 



26 

 

Table 2.2: Technical aspects of 5G-V2X (Storck and Duarte-Figueiredo, 2020) 

Technical Aspects DSRC LTE-V2X 4G 5G V2X 

Theoretical bit rate 3–27 Mb/s 20 Mb/s (uplink) 

80 Mb/s (downlink) 

75 Mb/s (uplink) 

300 Mb/s 

(downlink) 

10 Gb/s (uplink) 

20 Gb/s (downlink) 

Practice bit rate 3.5 Mb/s --- 20 Mb/s 1 Gb/s 

Theoretical 

coverage 

500 m More than 1 km 5 km 1732 m (rural) 

500 m (urban macro) 

200 m (urban micro) 

Practice coverage Less than 500 m Up to 150 m (urban) 

Up to 320 m 

(highway) 

Up to 2 km --- 

Theoretical mobility 

support 

More than 250 

km/hr. 

Less than 140 km/hr. Between 120 and 

350 km/hr. 

Up to 500 km/hr. 

Theoretical latency Less than 50 ms Less than 100 ms or 

less than 20 ms in 

emergency situations 

Less than 10 ms Less than 4 ms 

Frequency band 5.9 GHz 5.9 GHz 0.45–3.8 GHz 

Unlicensed band (5 

GHz) 

0.45–6 GHz 

(frequency range 1) 

24–52.6 GHz 

(frequency range 2) 

System bandwidth 10 MHz 10 MHz 20 MHz 50, 100, 200, 400 

MHz (above 6 GHz) 

Subcarrier spacing 156.25 kHz 15 kHz 15 kHz 15, 30, 60 kHz 

(frequency range 1) 

60, 120 kHz 

(frequency range 2) 

Multi-tier RAT 2-tier 2-tier 3-tier n-tier 

Number of 

subcarriers 

52 600 1200 3300 

Power limits 

[Effective Isotropic 

Radiated Power 

(EIRP)] 

33 dBm (private 

RSUs and mobile 

OBUs) 

40 dBm (public 

safety mobile 

OBUs) 

44.8 dBm (public 

safety RSUs) 

23 dBm (OBU) 

33 dBm (RSU) 

23 dBm (OBU) 

33 dBm (RSU) 

 

33 dBm (OBU and 

RSU) 

46 dBm (BSs) 
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2.6.1 SDN for 5G-Enabled IoV        

      The incorporation of SDN within the framework of 5G-IoV signifies a 

revolutionary method for managing networks and distributing resources. SDN 

allows for the efficient and flexible use of resources in the 5G-IoV ecosystem by 

enabling dynamic and centralized control of network functions. This allows for 

the optimization of communication paths, bandwidth allocation, and low-latency 

connectivity, crucial for supporting the diverse and demanding requirements of 

vehicular communication. SDN enables operators to flexibly adjust to fluctuating 

traffic patterns, allocate resources according to immediate demands, and optimize 

network performance, guaranteeing a more dependable and agile environment for 

the networked vehicles in the 5G-IoV (Di Maio et al., 2019).  

      In the dynamic environment of 5G-IoV, where vehicles and IoT devices 

constantly move and exchange data, SDN's centralized control separates the 

network's control and data planes, enabling dynamic and efficient link 

optimization.  SDN's capability to allocate bandwidth, reroute traffic, and 

prioritize communication according to the individual needs of connected vehicles 

and devices improves network responsiveness and resource usage (Sodhro et al., 

2021b). Furthermore, SDN's impact also reaches mobility management, enabling 

proactive decision-making to address the dynamic movements and connection 

requirements of vehicles. By orchestrating mobility management functions, such 

as handovers and network reconfigurations, SDN ensures seamless 

communication by adapting to the dynamic nature of 5G-IoV. SDN's 

programmability allows for the creation of context-aware policies, which optimize 

handovers, minimize latency, and prioritize key communication links based on 

contextual information (Aljeri and Boukerche, 2020). 
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2.6.2 MEC for 5G-Enabled IoV        
 

      MEC is essential for improving the performance and efficiency of 5G-IoV 

systems by reducing latency and improving overall responsiveness through the 

placement of computing resources closer to the network edge. In the context of 

5G-IoV, MEC facilitates instantaneous data processing from connected vehicles, 

enabling expedited decision-making and response durations. This is especially 

advantageous for applications such as autonomous driving, traffic management, 

and safety-critical services. This technology simplifies the offloading of 

computational tasks from the centralized cloud to edge servers, thereby 

maximizing network capacity and minimizing congestion. Moreover, MEC 

enables the implementation of context-aware services, wherein localized data 

processing takes place according to the specific requirements of the vehicular 

environment (Musa et al., 2022, El-Sayed and Chaqfeh, 2019).  

 

2.6.3 SDN and MEC for 5G-Enabled IoV        
 

      Moreover, MEC servers can administer the vehicular group in a 5G-SDN-

based IoV. SDN’s control planes and MEC servers can be positioned in the same 

place so that MEC servers can act as local controllers to localize the control plane 

of SDN in 5G-IoV. In addition, sustainable development is another advantage of 

MEC with SDN (Duan et al., 2020). SDN enables efficient offloading and resource 

allocation by centrally controlling and programmatically managing network 

architecture. It achieves this by dynamically orchestrating network resources in 

response to the changing demands of IoV applications. Simultaneously, MEC, by 

deploying at the network edge, brings computing capabilities closer to IoV 

devices, resulting in reduced latency and enabling real-time decision-making 

(Zhang et al., 2020a). The joint integration of SDN and MEC guarantees smooth 

handovers by automatically overseeing the transitions between various network 
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cells or access points. The interdependence between SDN and MEC in 5G-IoV 

settings enhances the efficiency, dependability, and minimal delay of 

communication among vehicles. This collaboration effectively manages resources 

and facilitates seamless connectivity transitions in the dynamic IoV environment 

(Monir et al., 2022). 

 

2.6.4 Device-to-Device Communication (D2D) for 5G-Enabled IoV        
 

      Figure 2.6 illustrates the utilization of D2D communication in the context of 

5G technology for the IoV application. D2D communication in 5G is essential for 

improving vehicular connectivity and communication efficiency in the IoV. This 

technology facilitates direct V2V communication, eliminating the need for 

intermediaries such as base stations. As a result, it reduces latency and enhances 

the overall performance of the network. D2D communication in 5G-IoV facilitates 

the real-time exchange of critical information, such as location data, traffic 

conditions, and safety warnings, among nearby vehicles. This not only improves 

road safety but also leads to the development of more intelligent and adaptable 

traffic management systems (Yang and Hua, 2019, Ali et al., 2023). 
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Figure 2.6: D2D communication mode of 5G-IoV (Ali et al., 2023) 

 

2.7 Federated Learning (FL) for IoV 
 

      Recently, FL has been emerging for addressing large-scale distributed training 

across many interconnected devices, or agents, with enhanced privacy-preserving 

functionalities compared to deep machine learning systems. FL paradigms rely on 

the exchange of locally trained instances of the machine learning parameters, i.e., 

the weights and biases of the neural networks, rather than sharing raw data. As 

opposed to classical big-data fusion approaches, FL makes use of on-device 

learning functions and an intensive exchange of machine learning parameters over 

the network (Lim et al., 2020). As shown in figure 2.7, first, a global model is 

initialized and distributed to all participating devices or nodes. During the training 

process, each device computes model updates locally using its own data and sends 

only the model updates (not raw data) to a central server. The central server 

aggregates these updates to enhance the global model. This iterative process of 
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local computation and global aggregation continues until the model achieves 

satisfactory performance (Abdulrahman et al., 2021). 

 

 
Figure 2.7: A schematic representation of the high-level process of FL (Manias and Shami, 

2021a) 

       

      A communication type refers to the manner in which the edge server and 

federated nodes (such as vehicles) communicate with the local training models and 

global model updates (Nguyen et al., 2021). SFL is the major form of FL owing to its 

superior performance of Stochastic Gradient Descent (SGD) in edge-server 

settings compared to AFL. SFL primarily focuses on the evolution of Federated 

Averaging (FedAvg) (Wahab et al., 2021). However, in SFL (e.g., FedAvg), the edge 

server has to wait until all the federated nodes upload their local training models 

to derive the updated global model; therefore, this communication mode is not 

practical in large-scale scenarios (specifically with the large deployment of 5G 

networks) and fast hardware growth. This is due to the heterogeneous resources in 
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terms of different computation abilities, various network settings, and unbalanced 

data distribution, which result in different training times and unknown 

communication costs. To address the aforementioned issues, AFL has been 

investigated recently, in which an updated global model can be derived even if not 

all local models have been received (Xu et al., 2023).  

      In the context of IoV, where vehicles and infrastructure generate vast amounts 

of data, FL features several benefits, such as: 

•   FL enables the collaborative training of models across decentralized nodes 

without centralized data aggregation. This distributed intelligence strategy 

enables vehicles to acquire knowledge from their own data within their local 

environment while also contributing to a global model that enhances the 

overall IoV ecosystem (Shinde and Tarchi, 2023).  

•   The ability to make decisions in real-time is greatly improved with FL, as it 

allows models to quickly adjust to dynamic environments and evolving 

traffic situations (Barbieri et al., 2022).  

•   FL reduces the vulnerability associated with centralized data storage by 

enabling collaborative model updates without exposing sensitive 

information. This approach mitigates the risk of unauthorized access (Yang 

et al., 2022).  

•   FL aligns with the MEC paradigm, where MEC's edge servers serve as 

aggregators for the FL. This reduces the need for continuous 

communication with a central server, addresses bandwidth constraints, and 

ensures low-latency responses (Li et al., 2021b). 
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2.8 LITERATURE REVIEW 
 

      In recent years, increasing safety by transmitting ESMs to vehicles has become 

a challenge. This section provides related research on safety message 

dissemination in vehicular networks based on two main categories, which are 

summarized in Table 2.3.  

 

2.8.1 TRADITIONAL IEEE 802.11P PROTOCOL-ENABLED ESMs 

DISSEMINATION 

      Most of the research conducted on vehicular networks utilized IEEE 802.11p 

technology to disseminate ESMs throughout the network. The issue of broadcast 

storms has been tackled in several studies, including those referenced as (Ali et al., 

2019, Li et al., 2021a, Shah et al., 2019, Ullah et al., 2020b, Wang et al., 2019, Alkhalifa and 

Almogren, 2020, Rizwan et al., 2023), and (Raja et al., 2020), which employ different 

mechanisms. 

      The clustering technique was introduced in (Ali et al., 2019, Shah et al., 2019, Ullah 

et al., 2020b), and (Alkhalifa and Almogren, 2020) to reduce broadcast storms and 

disseminate ESMs by choosing a forwarder that has higher compatible interests 

with other vehicles in (Ali et al., 2019). This forwarder disseminates ESMs to 

vehicles near the accidental region, thereby attaining ESM dissemination over 

time. However, the researchers in (Shah et al., 2019) allowed only the furthest 

vehicles to rebroadcast ESMs after a certain time barrier expiration, which resulted 

in less network congestion. (Ullah et al., 2020b) outperformed (Shah et al., 2019) by 

examining the link stable estimation parameter and achieving improved results. 

      The hybrid methodology of fuzzy and VIKOR was introduced in (Alkhalifa and 

Almogren, 2020) to examine the best vehicle based on its degree, position, 

probability of forwarding, and ESM dissemination delay within a segment. Thus, 
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the selected vehicle maximizes the ESM reachability while reducing the 

dissemination delay. 

      The protocol in (Li et al., 2021a) strengthened reliability by evaluating each 

vehicle’s transmission probability concerning distance, packet reception ratio, and 

link availability metrics. The vehicle with the highest value forwards the ESM, 

with other vehicles as backups in case of failure. 

      In (Raja et al., 2020), SDN managed network loads, and different machine 

learning classifiers detected accident events, whereas selected forwarders (RSU 

and vehicles) transmitted ESMs based on nearby vehicle information with the help 

of SDN, thereby improving routing efficiency. 

      The proposed local information-based broadcast protocol in (Wang et al., 2019) 

also addressed the issue of insufficient topological knowledge. The proposed 

protocol considers the maximum distance for forwarding, vehicle density, and 

candidates’ number to choose the optimum forwarders that make it more adaptable 

to the vehicular environment with exceedingly high ESM transmission reliability. 

      (Rizwan et al., 2023) proposed location-based content prefixing scheme. The 

proposed scheme uses single or multiple MEC vehicles and RSUs to disseminate 

the ESMs to the impacted area surrounded by these vehicles. MEC vehicles 

implement a Deep Learning-based Artificial Neural Network (DL-based ANN) 

model to accurately anticipate the severity of safety applications. The limited 

dissemination of ESMs results in high network performance. 

      ESM delivery at intersections was evaluated in (Yanbin et al., 2020), which 

obtained vehicles at extreme positions and hidden zones. Subsequently, a Bare 

Bones Particle Swarm Optimization (BBPSO) algorithm is proposed to adjust 

multiple transmission factors with improved performance to offer highly reliable 

vehicular safety services. 
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      In (Li et al., 2019), a Time Division Multiple Access (TDMA)-based MAC 

protocol was utilized to disseminate ESMs. The protocol controls the collisions by 

setting the transmission powers dynamically based on the transmission ranges and 

thus achieves a high QoS for safety applications. 

      The protocol proposed in (Kim and Kim, 2020) was used to alleviate the burden 

of DSRC and guarantee reliability. The protocol prioritizes the ESM transmission 

from a vehicle based on accident risk evaluation, which calculates the distance 

between the vehicle and the danger zone and hence transmits ESMs with higher 

reliability. 

      The Temporary Warning Network (TWN) concept developed in (Liu et al., 

2022a) focused on improving the coverage and duration of ESM dissemination. 

The selection of the forwarder vehicles was based on their correlated space-time 

information. The forwarder vehicles achieved efficient performance. 

      An efficient selection of specific vehicles to disseminate ESMs was examined 

in (Rehman and Ould-Khaoua, 2019), taking into account the distance from the source 

vehicle. These vehicles are: the farthest vehicles; the surrounding vehicles 

depending on their links’ quality and distances; and the vehicles with the 

maximum link quality. This study reduces network congestion while improving 

the overall transmission performance. 

      Another study in (Ullah et al., 2019) explored the potential of utilizing the fog 

computing paradigm for disseminating ESMs in VANETs and IoVs. In addition, 

this study discusses its various open challenges. 

      (Benrhaiem et al., 2020) tackled the issue of vehicles’ distribution in hidden areas 

and transmitted ESMs with improved reliability and lower latency. This was 

achieved by accurately estimating the connection quality of the vehicles within a 

hop. The estimation information determines an optimum number for ESM 



36 

 

retransmission, elects the best forwarding vehicles with identifying their locations, 

and carries out collaborative communication between those vehicles. 

      An improved mechanism for the existing DSRC has been proposed in (Li et al., 

2020b). This mechanism influences the generation rate of ESMs depending on the 

vehicles' density and attempts to minimize channel congestion. Then, it holds a 

reliability T-pro evaluation scheme for the provision of extremely reliable vehicle 

safety applications. 

 

2.8.2 5G-ENABLED ESMs DISSEMINATION 
 

      A few 5G-V2X-related schemes are explained in this section. Studies 

(Alghamdi, 2020) and (Alghamdi, 2021) handled link and packet losses by transmitting 

ESMs over D2D communication. The routing mechanism selects the best 

forwarder utilizing the Bayesian Rule-based Fuzzy Logic (BRFL) and Stable 

Matching (SM) algorithms in (Alghamdi, 2020) and (Alghamdi, 2021), respectively, 

which improves the QoS. 

      In (Ghazi et al., 2020), the authors reviewed in detail the latest contributions for 

ESM dissemination in vehicular networks in a 5G environment. They also 

highlighted the different implemented mechanisms based on SDN and fog 

computing. 

      The new Deep Reinforcement Learning (DRL) model based on the Double 

Deep Q-learning Networks (DDQN) in (Nguyen et al., 2022) adjusted the ESM 

transmitting rate by calculating the risk distance between vehicles to mitigate 

channel congestion. The proposed algorithm satisfies each vehicle’s requested 

resources and maintains safe communication among vehicles. 

      The authors in (Campolo et al., 2018) introduced a boosted routing framework 

based on Social Relationships (SRs) for ESM dissemination. SDN and MEC have 

been utilized in managing these SRs to improve ESM delivery. 
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      The SDN implemented a federated k-means algorithm to cluster vehicles in 

(Prathiba et al., 2022) to provide efficient ESM transmission. SDN reduces network 

congestion by transmitting ESMs to the selected Cluster Head (CH). The CH then 

delivers the ESMs to all its members in single-hop communication. 

 

Table 2.3: Limitations on prior research 

 

Ref. 

 

Proposed 

Architecture 

Implemented Solutions  

Simulation 

Parameters 

 

Major Limitations IEEE 

802.11p

/DCF 

IEEE 

802.11p 

+ 5G 

5G FL SDN 

(Ali et al., 

2019) 

Clusters ✓     Packet delivery ratio 

(PDR), Average 

transmission delay,  

Information coverage 

 

 

 

 

The current solutions 

presented in the research 

papers in section 2.8.1, 

utilizing IEEE 802.11P/DCF 

technology, are insufficient to 

satisfy the requirements of 

transmitting ESMs to vehicles 

with both high reliability and 

low latency.   

These criteria necessitate a 

high-speed network 

connection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Li et al., 

2021a) 

Multi-hop ✓     PDR, Average 

transmission numbers 

(ATN), End-to-end 

average delay (EED), 

Dissemination 

Efficiency (DE) 

(Shah et 

al., 2019) 

Clusters ✓     Average transmission 

delay, PDR, 

Information coverage  

(Raja et 

al., 2020) 

Multi-hop ✓    ✓ Message transmission 

probability, Message 

propagation speed 

(Wang et 

al., 2019) 

Multi-hop ✓     PDR, End-to-end delay 

(E2ED), Broadcast 

redundancy (BR), 

Forwarding efficiency 

(FE) 

(Ullah et 

al., 2020b) 

Clusters ✓     Information coverage, 

End-to-end delay, PDR, 

Normalized network 

overhead, Cluster 

formation overhead 

(Alkhalifa 

and  

Almogren, 

2020) 

Clusters ✓     Reachability, Average 

number of collisions, 

Duplicate data packets, 

Latency, Packet 

delivery ratio, 

Throughput 

(Yanbin et 

al., 2020) 

No specific 

architecture 

✓     Packet reception 

probability, Execution 

time of model, 

Awareness probability, 
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App-Level Delay, 

Packet generation rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Li et al., 

2019) 

Multi-hop ✓     Number of collisions in 

transmission, Number 

of collisions in 

reception, PDR 

(Kim and 

Kim, 2020) 

No specific 

architecture 

✓     Average latency, PDR, 

Inter-reception time 

(IRT) 

(Liu et al., 

2022a) 

 

 

Multi-hop 

 

✓ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coverage and 

timeliness of message 

dissemination, Duration 

of message 

dissemination, 

Overhead 

 

(Rehman 

and Ould-

Khaoua, 

2019) 

Multi-hop ✓     End-to-end delay, 

Reachability, Saved 

rebroadcast 

(Benrhaie

m et al., 

2020) 

Multi-hop ✓     Packet reception rate 

(PRR), Average delay, 

Network load 

(Li et al., 

2020b) 

No specific 

architecture 

✓     Packet reception ratio 

(PRR), Awareness 

probability 

(Rizwan et 

al., 2023) 

Multi-hop ✓     Data delivery ratio, 

Average delay, 

Average hop count, 

Network overhead, 

Content retrieval delay 

(Alghamdi

, 2020) 

Clusters  ✓    PDR, Throughput, 

Transmission delay, 

Dissemination delay 

 

The integration of IEEE 

802.11p and 5G technologies 

in (Alghamdi, 2020) and 

(Alghamdi, 2021) in section 

2.8.2 elevates the complexity 

and network congestion due 

to beacon messages and 

network signal transmission. 

(Alghamdi

, 2021) 

Sphere 

communication 

 ✓    Throughput, PDR, End-

to-end delay, 

Emergency information 

coverage 

 

 

 

 

(Nguyen et 

al., 2022) 

Multi-agent 

DRL in multi-

hop 

  ✓   Packet reception rate, 

Channel busy ratio, 

Collision risk, 

Computing time 

 

The efficiency decreases as 

the distance between vehicles 

increases. 

(Campolo 

et al., 

2018) 

V2X in tree 

topology 

  ✓  ✓ Dissemination delay of 

Decentralized 

Environmental 

Notification Message 

(DENM) 

 

Lack of intelligent dynamic 

control for 5G gNBs to 

transmit ESMs in (Campolo 
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(Prathiba 

et al., 

2022) 

Clusters   ✓  ✓ Computation 

complexity and 

Network overhead, 

Successful delivery 

ratio, 

Collision rate, 

Dissemination 

efficiency, Average 

end-to-end delay 

et al., 2018) and (Prathiba et 

al., 2022). 

 

 

 

2.9 Summary  

      In conclusion, according to the literature analysis and major limitations listed 

in Table 2.3, this study reaches the following investigations: 

1. To reduce the broadcast storm problem, this research introduced and 

implemented 5G technology. In addition, to optimize the utilization of 5G 

in IoV, the SDNCA framework focuses on beamforming and virtualization 

technologies. 

2. SDN has been implemented in some studies in the literature in sections 2.8.1 

and 2.8.2 to boost safety services, but SDN needs to generate more control 

traffic to analyze data and manage the network during emergencies, which 

consumes bandwidth and computational resources and increases network 

overhead. Therefore, FL has been proposed and executed in this study to 

reduce network overhead and provide low-latency processing. 

3. SDN has been utilized in this study to provide a unified operating system. 

Further, SDN has been integrated with FL to control virtual networks 

customization and support strict QoS requirements regarding transmitting 

ESMs to vehicles with ultra-high reliability and low latency. 

 

 

 



40 

 

CHAPTER THREE 

RESEARCH METHODOLOGY 
 

3.1 Introduction 
 

      IoV architecture is commonly separated into two essential layers: the edge 

layer and the backbone layer. These layers operate in conjunction to facilitate 

effective and seamless communication among vehicles and other connected 

devices. The integration of these layers creates a unified and adaptable IoV 

architecture, where the edge layer manages real-time processing and 

communication, while the backbone layer offers the necessary infrastructure and 

control for a highly scalable and efficient network. This architecture design 

enables innovative applications, boosts safety functionalities, and accommodates 

the evolving connectivity needs of the IoV ecosystem. This study introduces a 

dynamic IoV architecture that combines 5G and SDN at the edge and backbone 

layers. The main objective is to enhance the transmission of ESMs, ensuring rapid 

and reliable communication for critical life-saving alerts. The proposed 

architecture establishes the basis for an innovative SDNCA framework. The 

SDNCA framework leverages the solutions of FL, MEC, 5G, and SDN to create a 

robust system that enhances the responsiveness and effectiveness of disseminating 

ESMs to avoid vehicle collisions.  

      In this study, the combination between FL and MEC involves a continuous, 

iterative learning cycle to maintain a decentralized learning strategy that allowed 

for personalized adaptation on each vehicle while leveraging the collective 

intelligence of the entire framework. Further, 5G is used in this research to enhance 

the reliability and availability of communication in the proposed framework, 

guaranteeing the consistent delivery of ESMs even in challenging network 
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conditions. Then, the produced ESM is sent to the SDN controller using 5G. The 

SDN controller has a pivotal role in this particular setting. The SDN controller 

relies on the collective insights of FL models along with the real-time parameters 

of vehicle speed, overall distance, and the distances between vehicles to optimize 

the disseminating of ESMs. Consequently, the SDN contributes to the overall goal 

of enhancing safety and efficiency in the proposed framework. 

      

3.2 Proposed System Model 

      The proposed architecture shown in figure 3.1 comprises edge and backbone 

layers. The edge layer is responsible for collecting information about the 

environment (including traffic, vehicle speed, risks, obstacles, and weather) and 

the system state (e.g., latency, channel usage, and packet loss). The edge layer 

consists of the following: 

• Vehicles enabled with 5G technology (𝑉1, 𝑉2, 𝑉3, ……… 𝑉𝑁); 

• Multiple 5G base stations; 5G gNBs (𝑔𝑁𝐵𝐸1, 𝑔𝑁𝐵𝐸2, 𝑔𝑁𝐵𝐸3, …… 𝑔𝑁𝐵𝐸𝐿), 

which are  

   responsible for intra-communication and routing; and 

• Edge Server (ES) for computing and storage processes.  

By contrast, the backbone layer interconnects the different 5G edge BSs, providing 

high-speed routes for transmitting ESMs. The backbone layer includes the 

following: 

•   The SDN controller makes the routing and scheduling decisions. The 

decisions are sent as OpenFlow control messages to the OpenFlow switches. 

Every networking device can act as an OpenFlow switch (e.g., gNBs and 

routers). 

•   Backbone routers are used to communicate with the SDN controller and 

forward traffic between different 5G edge BSs. 
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•  5G gNBs cores (𝑔𝑁𝐵𝐶1, 𝑔𝑁𝐵𝐶2, 𝑔𝑁𝐵𝐶3, …… 𝑔𝑁𝐵𝐶𝐾), which are used for 

inter-communication through the backbone layer and to receive OpenFlow 

control messages from the SDN controller. The 5G gNBs cores are used to 

communicate with the edge layer. 

We consider that the ES in this architecture is responsible for FL, in which it 

distributes the initial proposed RS-ANN model to vehicles, receives learning 

model updates, aggregates them to create a global model, and then sends the 

updated global model back to the vehicles for further enhancement. This iterative 

process offers numerous advantages to the SDNCA framework, including:  

•   Significantly reduces the amount of data transmitted, thereby optimizing 

network bandwidth and minimizing latency.  

•   Enhancing real-time reaction, which is crucial in emergency situations, as 

the aggregated global model reflects the cooperative knowledge of all 

vehicles. 

•   Distributing computation tasks between vehicles and the ES, which 

optimizes the utilization of resources.  

•   Allows the entire framework to collectively learn and improve over time. 

In addition, 5G is proposed in this study to provide the following benefits to the 

SDNCA framework, which can be described as follows:  

•   The ultra-low latency of 5G ensures that the ESMs are transmitted to the 

SDN controller and destination vehicles with minimal delay.  

•   The high bandwidth capabilities of 5G enable the precise transmission of 

ESMs. 

•   5G’s network slicing feature enables the creation of dedicated VNs for each 

ESM. This allows for prioritization and allocation of resources, ensuring 
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that these critical messages receive special treatment according to their 

latency requirements and reliable transmission.  

•   5G is designed to support high levels of mobility, making it well-suited for 

vehicular communication scenarios. This guarantees uninterrupted 

connectivity for moving vehicles, hence facilitating the smooth 

transmission of ESMs within the network. 

Furthermore, SDN is designed to determine the QoS of ESMs. Then, the SDN 

intelligently allocates both 5G network and computing resources. As well, it 

optimizes the routing paths of ESMs. This ensures that the ESMs are transmitted 

with ultra-high reliability and low latency to the destination vehicles, mitigating 

the risk of collisions.  Table 3.1 provides the main notations used in this study. 

 

 
Figure 3.1: SDN-enabled 5G-V2I proposed architecture 
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Table 3.1: Main notations 

NOTATION DESCRIPTION 

𝑁 The number of vehicles 

𝐿 The number of edge gNBs 

𝐾 The number of core gNBs 

𝑉𝑖 𝑉1, 𝑉2, 𝑉3, …..𝑉𝑁 

𝑔𝑁𝐵𝐸𝑖 𝑔𝑁𝐵𝐸1, 𝑔𝑁𝐵𝐸2, 𝑔𝑁𝐵𝐸3, …….𝑔𝑁𝐵𝐸𝐿 

𝑔𝑁𝐵𝐶𝑖 𝑔𝑁𝐵𝐶1, 𝑔𝑁𝐵𝐶2, 𝑔𝑁𝐵𝐶3, …….𝑔𝑁𝐵𝐶𝐾 

𝑔𝑁𝐵𝑛𝑟𝑖
 Network resources of any gNB at time 𝑡𝑖 

𝑔𝑁𝐵𝑐𝑟𝑖
 Computing resources of any gNB at time 𝑡𝑖 

B, 𝐵𝑚𝑎𝑥 Bandwidth of the gNB, maximum bandwidth of the gNB  

R, 𝑅𝑚𝑎𝑥 Bitrate of the gNB, maximum bitrate of the gNB  

A, 𝐴𝑚𝑎𝑥 Number of antennas of the gNB, maximum number of antennas of the 

gNB 

M, 𝑀𝑚𝑎𝑥 Utilized memory of the gNB, maximum memory of the gNB 

C, 𝐶𝑚𝑎𝑥 Utilized CPU of the gNB, maximum CPU of the gNB 

𝐵ℎ, 𝐵𝑚, 𝐵𝑙 The highest, medium, and lowest allocated 𝐵 values used in each VN in 

the first system model 

𝑀ℎ, 𝑀𝑚, 𝑀𝑙 The highest, medium, and lowest allocated M values used in each VN in 

the first system model 

𝑅ℎ, 𝑅𝑚, 𝑅𝑙 The highest, medium, and lowest allocated R values used in each VN in 

the first system model 

𝐴𝑉𝑁ℎ
, 𝐴𝑉𝑁𝑚

 , 𝐴𝑉𝑁𝑙
 Allocated 𝐴 values in 𝑉𝑁ℎ, 𝑉𝑁𝑚, and 𝑉𝑁𝑙, respectively, are used in the 

first system model 

𝐶𝑉𝑁ℎ
, 𝐶𝑉𝑁𝑚

 , 𝐶𝑉𝑁𝑙
 Allocated 𝐶 values in 𝑉𝑁ℎ, 𝑉𝑁𝑚, and 𝑉𝑁𝑙, respectively, are used in the 

first system model 

𝐵ℎ𝑟, 𝐵𝑚𝑟, 𝐵𝑙𝑟 Three defined ranges of 𝐵 used in the second system model 

ES Edge Server at the edge layer 

𝑂𝑉𝑖
 Obstacle of 𝑉𝑖 

𝑊𝑉𝑖
 Weather of 𝑉𝑖 

𝑆𝑉𝑖
 Speed of 𝑉𝑖 

𝑅𝐷𝑉𝑖
 Risk Distance of 𝑉𝑖 

𝑅𝐶𝑉𝑖
 Road Condition of 𝑉𝑖 

𝑇𝑉𝑖
 Time of 𝑉𝑖 

S Source vehicle: the vehicle sending ESM 

𝐿𝐷𝐵𝑉𝑖
 Learning database at 𝑉𝑖 
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NOTATION DESCRIPTION 

D Destination vehicle: any vehicle at risk in any direction in the first system 

model.  

Destination vehicle: the closest vehicle to the source vehicle in the second 

system model. 

𝑅𝐷𝑆,𝐷 Risk Distance between S and D 

𝑀𝑆𝑉𝑖
 Maximum 𝑆𝑉𝑖

 

𝑀𝑅𝐷𝑉𝑖
 Minimum 𝑅𝐷𝑉𝑖

 

𝑑𝜎 Division factor in the first system model 

𝑑𝜆 Division factor in the second system model 

𝑑𝑟 Decremental factor of the transmission reliability of the gNB 

𝑀𝑅𝐷𝑆,𝐷 Minimum risk distance between S and D 

𝑅𝑆𝑉𝑖
 Risk severity of 𝑉𝑖  

𝑀𝑣 Maximum value of 𝑅𝑆𝑉𝑖
 

𝐶𝑣 Critical value of 𝑅𝑆𝑉𝑖
 

𝐷𝑖 Dataset of 𝑉𝑖 

𝐷𝑁 Total number of data samples from all vehicles 

neural network 

parameters 

Represents the dataset, connected layers, neurons in the hidden layers, 

activation functions, loss function, optimizer, learning rate, dropout rate, 

and batch size 

𝑇𝑟𝑙 Training loss of the RS-ANN model 

𝑇𝑒𝑙 Test loss of the RS-ANN model 

𝛼𝑖 Updated local learning model of 𝑉𝑖 

𝛽 Global learning model of ES 

𝛽𝑢 Updated global learning model of ES 

𝐿𝑙𝑉𝑖
 Local learning model of 𝑉𝑖 

𝑇𝑟𝑙𝑎 Training latency of the RS-ANN model 

𝑇𝑟𝑎 Training accuracy of the RS-ANN model 

𝑇𝑒𝑙𝑎 Test latency of the RS-ANN model 

𝑇𝑒𝑎 Test accuracy of the RS-ANN model 

𝐷𝑝 Represents the destination vehicles 

𝑄𝑜𝑆𝜎 Quality of service of the ESM in the first system model 

𝑄𝑜𝑆𝜆 Quality of service of the ESM in the second system model 

𝑉𝑁ℎ Virtual network for high ranges of 𝑄𝑜𝑆𝜎 and 𝑄𝑜𝑆𝜆 

𝑉𝑁𝑚 Virtual network for medium ranges of 𝑄𝑜𝑆𝜎 and 𝑄𝑜𝑆𝜆 

𝑉𝑁𝑙 Virtual network for low ranges of 𝑄𝑜𝑆𝜎 and 𝑄𝑜𝑆𝜆 
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NOTATION DESCRIPTION 

𝑄𝑜𝑆𝜎𝑙 Lowest value of 𝑄𝑜𝑆𝜎  

𝑄𝑜𝑆𝜎𝑚 Medium value of 𝑄𝑜𝑆𝜎  

𝑄𝑜𝑆𝜎ℎ Highest value of 𝑄𝑜𝑆𝜎 

𝑔𝑁𝐵𝑇𝑁 Total network of the gNB 

𝑔𝑁𝐵𝑇𝐶 Total complexity of the gNB 

𝑔𝑁𝐵𝐶 Connectivity of the gNB 

𝐸𝑆𝑀𝑃 Priority of the ESM 

𝐸𝑆𝑀𝑃𝑖 Initial priority of ESM 

𝑄𝑜𝑆𝜆𝑙 Lowest value of 𝑄𝑜𝑆𝜆 

𝑄𝑜𝑆𝜆𝑚 Medium value of 𝑄𝑜𝑆𝜆 

𝑄𝑜𝑆𝜆ℎ Highest value of 𝑄𝑜𝑆𝜆 

𝑑𝑔𝑁𝐵,𝐷 Distance between the gNB and D 

𝑑𝑚𝑎𝑥,  
𝑑𝑚𝑜 

Two threshold values for the 𝑑𝑔𝑁𝐵,𝐷  

𝐴𝑚𝑜 Moderate number of A 

𝐴𝑚𝑖 Minimum number of A 

Action The action taken by the D 

𝑠, 𝑚, 𝑎𝑛𝑑 𝑤 Three main actions that are defined in the second system model 

 

3.3 Proposed SDN-Based Collision Avoidance (SDNCA) Framework-First 

System Model 

      Each vehicle in the proposed SDNCA framework is composed of a sensor 

module that allows the sensor user to interact with the environment and collect 

system state information of (𝑂𝑉𝑖
, 𝑊𝑉𝑖

, 𝑆𝑉𝑖
, 𝑅𝐷𝑉𝑖

, 𝑅𝐶𝑉𝑖
, and 𝑇𝑉𝑖

), which has been 

defined in a tuple format. The value of 𝑅𝑆𝑉𝑖
 is calculated as follows: 

 

          𝑅𝑆𝑉𝑖
= 𝑂𝑉𝑖

+ 𝑊𝑉𝑖
+ 𝑆𝑉𝑖

+ 𝑅𝐷𝑉𝑖
+ 𝑅𝐶𝑉𝑖

+ 𝑇𝑉𝑖
                                      (3.1)                                                     

 

                    0 ≤ 𝑅𝑆𝑉𝑖
≤ 𝑀𝑣  

We assume each parameter in equation (3.1) contributes to the overall 𝑅𝑆𝑉𝑖
 by 

reflecting various factors that can affect driving safety. Higher values in any of 
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these parameters indicate increased risk, resulting in a higher value of 𝑅𝑆𝑉𝑖
. The 

combined effect of these parameters provides a comprehensive assessment of the 

𝑅𝑆𝑉𝑖
 in a given situation. The assumptions of the tuple in this research are 

illustrated below: 

• 𝑶𝑽𝒊
: considers that the road can be free, slow, or blocked. 𝑅𝑆𝑉𝑖

 increases 

when   the road is blocked compared with free and slow roads. 

• 𝑾𝑽𝒊
: reflects the impact of weather conditions on driving safety, such as 

good or bad weather. Adverse weather conditions (e.g., rainy weather) result 

in higher values of 𝑅𝑆𝑉𝑖
. 

• 𝑺𝑽𝒊
: denotes low, medium, and high speeds of the vehicle. Higher speeds 

generally increase the 𝑅𝑆𝑉𝑖
 due to reduced reaction time and longer stopping 

distances.  

• 𝑹𝑫𝑽𝒊
: measures the distance to a potential risk. It is considered close 

distance, medium distance, or far distance. Shorter distances indicate closer 

proximity to risks, thereby increasing the 𝑅𝑆𝑉𝑖
. 

• 𝑹𝑪𝑽𝒊
: accounts for the quality and state of the road, which are poor, good, 

or excellent. Poor road conditions (e.g., potholes) lead to higher values of 

𝑅𝑆𝑉𝑖
.  

• 𝑻𝑽𝒊
: represents the time of the day during which the ESM is generated, 

distinguishing between daytime and nighttime driving. Nighttime driving 

often has higher values of 𝑅𝑆𝑉𝑖
 than daytime driving due to reduced 

visibility of the vehicle.  

Each tuple is transmitted after preprocessing to the AI module implemented in the 

vehicles to train the RS-ANN model (see figure 3.2) through VFL.  
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Figure 3.2: RS-ANN Model 

 

On the basis of the received tuple, the AI module predicts whether the tuple is 

considered a Positive Risk (PR) to the vehicles in terms of the following 

expression: 

 

          𝑅𝑆𝑉𝑖
=  {

≥ 𝐶𝑣 ,                 it is PR 
 < 𝐶𝑣 ,             it is not PR

                                                                            (3.2) 

In both cases, the data will be stored in 𝐿𝐷𝐵𝑉𝑖
, which will be used to train the AI 

model. In this study, any vehicle can generate an ESM, which contains the 

information summary of (S, D, 𝑅𝑆𝑉𝑖
, 𝑆𝑉𝑖

, 𝑅𝐷𝑉𝑖
, defined tuple). The generated ESM 

is transmitted to the SDN controller through 5G gNB. 

      This study assumes that the vehicles move at an initial speed to the destination. 

At a particular time 𝑡𝐼 (i = 1, 2, 3, …..,I) during 𝑇, when a vehicle 𝑉𝑖 is driving in 

a real road environment, it faces many circumstances that require it to control its 
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speed and change its direction to avoid accidents and congestion. The proposed 

framework in figure 3.3 shows how vehicles deal with these circumstances and 

avoid collisions through VFL algorithm and SDN objectives.  

 

 
 Figure 3.3: Proposed SDN-based Collision Avoidance (SDNCA) Framework in 5G-V2I 



50 

 

3.3.1 Proposed Vehicular Federated Learning (VFL) 
 

      In the SDNCA framework, RS-ANN model is proposed to build a VFL 

algorithm using SFL. The proposed VFL algorithm is processed through the 

following steps: 

•   The ES creates a baseline model, which is RS-ANN model and sends it to 

the vehicles. In this step, the ES sends 𝛽 to the vehicles.  

•   The vehicles use their own dataset (𝑂𝑉𝑖
, 𝑊𝑉𝑖

, 𝑆𝑉𝑖
, 𝑅𝐷𝑉𝑖

, 𝑅𝐶𝑉𝑖
, and 𝑇𝑉𝑖

) to 

train the model, and generate the updated learning models (𝛼𝑖). 𝛼𝑖 are 

transmitted to the ES. In this step, equation (3.3) (Manias and Shami, 2021a) 

has been used to calculate 𝛼𝑖 as follows:   

 

          𝛼𝑖 =  𝐿𝑙𝑉𝑖
−  𝛽                                                                                      (3.3) 

 

•   The ES aggregates the model updates received from the vehicles and returns 

the updated global model (𝛽𝑢) to the vehicles. In each training round, the 

ES sends 𝛽𝑢 to the vehicles to improve the model for more accurate 

prediction of the 𝑅𝑆𝑉𝑖
. Following equation (3.4), a general formula of FL 

(Taik et al., 2022), the process is repeated until the model converges. During 

this step, 𝛽𝑢 has been calculated using equation (3.4):    

 

          𝛽𝑢 = 𝛽 + ∑
|𝐷𝑖|

|𝐷𝑁|

𝑁
𝑖=1  (𝛼𝑖)                                                                      (3.4) 

 

The proposed VFL algorithm is shown in figure 3.4. Figure 3.4 illustrates the edge 

layer in the proposed SDNCA framework and figure 3.5 shows the flowchart of 

this algorithm. Then, the SDN controller performs its objectives (section 3.3.2) 

based on these model updates. 
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  Figure 3.4: Proposed Vehicular Federated Learning 
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Start

Initialize the learning model information, neural 

network parameters, optimizer, β of ES, Trla, Tela, Trl 

and Tel

Upload αi to the ES

Update β and generate βu

Send βu to the vehicles

Train and test βu on vehicles

Calculate Trl, Trla, Tra, Tel, Tela, and Tea

End

Get dataset from 

environment 

 (defined tuple)

E = N, no. of epochs

N = 100, no. of epochs = 1000

Has termination 

criterion been met?

Yes

No

Send β to vehicles to 

train it 

 
Figure 3.5: Flowchart of the VFL algorithm 
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3.3.2 Proposed SDN-Based Collision Avoidance Application 

      In this study, the SDN controller focuses on three objectives to transmit ESM 

to a destination with low latency and high reliability. The objectives of the SDN 

controller are summarized in sequential order as follows:   

  

3.3.2.1 SDN-Enabled QoS  
 

      The SDN controller enables the 5G gNB to schedule messages based on their 

priorities. We assume that equation (3.5) aims to combine the effects of 𝑅𝑆𝑉𝑖
, 𝑆𝑉𝑖

, 

and 𝑅𝐷𝑉𝑖
 to provide a single measure of 𝑄𝑜𝑆𝜎 of the ESM. The value of 𝑄𝑜𝑆𝜎 is 

calculated using the following proposed equation: 

             

          𝑄𝑜𝑆𝜎 =
𝑅𝑆𝑉𝑖

+ 𝑆𝑉𝑖

𝑅𝐷𝑉𝑖

                                                                                     (3.5)                                               

 

Equation (3.5) represents a risk assessment, meaning that the S that generates an 

ESM with a high 𝑄𝑜𝑆𝜎 value poses a risk to the D. The following are the 

assumptions of equation (3.5) in the proposed SDNCA framework: 

• A greater value of 𝑅𝑆𝑉𝑖
 indicates more severe risks, which increases 𝑄𝑜𝑆𝜎. 

This shows that the equation accounts for the level of danger associated with 

the vehicle's environment. 

• A higher 𝑆𝑉𝑖
 can also increases the risk of accidents, thereby increasing 

𝑄𝑜𝑆𝜎. This implies that the speed of the vehicle is a factor in assessing risk, 

as higher speeds are often associated with greater danger. 

• A smaller 𝑅𝐷𝑉𝑖
 means the vehicle is closer to the risk, which can increase 

the value of 𝑄𝑜𝑆𝜎. This demonstrates that proximity to risk is a critical 

factor in the equation.  

• Thus, 𝑄𝑜𝑆𝜎 will be the highest if 𝑅𝑆𝑉𝑖
 is high, 𝑆𝑉𝑖

 is high, and 𝑅𝐷𝑉𝑖
 is low.    
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3.3.2.2 SDN-Enabled 5G Communication 
 

      We consider that the 5G network and hardware functions are virtualized based 

on the calculation of 𝑄𝑜𝑆𝜎. Three gNBs have been used, and three VNs are created 

in each gNB, as illustrated below:  

 

          𝑉𝑁ℎ:  𝑄𝑜𝑆𝜎𝑚 < 𝑄𝑜𝑆𝜎 ≤ 𝑄𝑜𝑆𝜎ℎ 

         𝑉𝑁𝑚: 𝑄𝑜𝑆𝜎𝑙 < 𝑄𝑜𝑆𝜎  ≤ 𝑄𝑜𝑆𝜎𝑚 

         𝑉𝑁𝑙: 𝑄𝑜𝑆𝜎  ≤ 𝑄𝑜𝑆𝜎𝑙                                                                                 (3.6)                                          

 

Equation (3.6) assumes three VNs based on the following configuration:  

• When 𝑅𝑆𝑉𝑖
=  𝑀𝑣, 𝑆𝑉𝑖

=  𝑀𝑆𝑉𝑖
, and 𝑅𝐷𝑉𝑖

=  𝑀𝑅𝐷𝑉𝑖
, then 𝑄𝑜𝑆𝜎 = 𝑄𝑜𝑆𝜎ℎ. 

• The number of VNs is calculated as  
𝑄𝑜𝑆𝜎ℎ

𝑑𝜎
                                                   

Each VN operates independently using the allocated 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

 

according to the need to maximize the spectrum and energy efficiency. 𝑔𝑁𝐵𝑛𝑟𝑖
 

represents B, R, and A of the gNB, and 𝑔𝑁𝐵𝑐𝑟𝑖
 represents C and M of the gNB. As 

per the proposed framework, the virtualization and adaptive beamforming 

configurations are completely handled by the SDN controller. During this step, 

SDN provides the dynamic allocation of 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

 to handle each ESM 

independently, thereby improving the spectral efficiency and Signal-to-

Interference-plus-Noise Ratio (SINR). The allocation of these resources is 

illustrated based on the following assumptions:  

• Allocating B and M based on 𝑅𝐷𝑉𝑖
: Areas with long distances require higher 

B and M values to maintain reliable communications between vehicles and 

gNBs and to accommodate the larger volume of data and processing 

requirements, respectively. The values of 𝐵 and 𝑀 have been represented 

as follows: 
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       𝐵, 𝑀 =  {

𝐵ℎ , 𝑀ℎ ,            if 𝑅𝐷𝑉𝑖
 is in the range of far distance 

𝐵𝑚, 𝑀𝑚,   if 𝑅𝐷𝑉𝑖
 is in the range of medium distance

𝐵𝑙 , 𝑀𝑙 ,                                                                  otherwise

   (3.7)                

 

• Allocating R based on 𝑆𝑉𝑖
: The data rates of the gNBs directly impact the 

throughput and latency of communications between vehicles and gNBs. 

Vehicles moving at higher speeds need higher data rates to reduce the 

possibility of disruption in communications and preserve seamless 

connectivity. The value of 𝑅 has been selected as expressed below: 

 

          𝑅 =  {

𝑅ℎ ,         if 𝑆𝑉𝑖
 is high

𝑅𝑚 , if 𝑆𝑉𝑖
 is medium

𝑅𝑙 ,             otherwise

                                                                  (3.8) 

                

• Allocating A and C based on the value of 𝑄𝑜𝑆𝜎: Vehicles that produce 

ESMs with high 𝑄𝑜𝑆𝜎 values present a greater danger to their destination 

vehicles. Therefore, the signal quality can be optimized by adjusting the 

number of antennas. In addition, these ESMs need higher computational 

demands in order to be transmitted to their destinations more quickly. The 

values of 𝐴 and 𝐶 have been assigned as follows: 

 

          𝐴, 𝐶 =  {

𝐴𝑉𝑁ℎ
, 𝐶𝑉𝑁ℎ

, if  𝑄𝑜𝑆𝜎𝑚 < 𝑄𝑜𝑆𝜎 ≤ 𝑄𝑜𝑆𝜎ℎ

𝐴𝑉𝑁𝑚
 , 𝐶𝑉𝑁𝑚

, if 𝑄𝑜𝑆𝜎𝑙 < 𝑄𝑜𝑆𝜎 ≤ 𝑄𝑜𝑆𝜎𝑚 

𝐴𝑉𝑁𝑙
 , 𝐶𝑉𝑁𝑙

,                                otherwise

                          (3.9)                          

 

On the basis of the aforementioned explanation in this step, figure 3.6 shows that 

the SDN controller applies the right configuration for each task. As well, figure 

3.7 explains that the SDN controller enables the optimal beamforming strategy to 
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prioritize ESMs by shifting and amplifying the 5G MIMO antennas toward the D. 

Further, figure 3.8 demonstrates the procedures of figure 3.6 and figure 3.7.  

 

 
Figure 3.6: Dynamic allocation of 5G resources by SDN 
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Figure 3.7: Adaptive beamforming by SDN 

 

3.3.2.3 SDN-Enabled Routing 
 

      The SDN controller traces the most optimal route to send the ESM to the 

destination with less packet loss and delay. On the basis of these objectives, the 

SDN controller sends OpenFlow control messages to the switches (gNBs and 

routers) to deliver the ESM as reliably as possible, enabling the vehicle to take 

appropriate action (e.g., stopping and changing direction). OpenFlow control 

messages contain information of (𝑄𝑜𝑆𝜎, 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

, 𝑆𝑟), where 𝑆𝑟 is the 

selected route, means the selected gNB. The flowchart in figure 3.8 explains the 

objectives of the SDN controller. The backbone layer of the proposed SDNCA 

framework shows SDN objectives.  
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         Figure 3.8: Flowchart of the SDN algorithm 
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      In the proposed framework, it is initially assumed that all the gNBs have the 

same signal that is transmitted to the vehicles over the corresponding transmission 

range of each gNB. We assign the total network, total complexity, and connectivity 

of any gNB as follows: 

 

          𝑔𝑁𝐵𝑇𝑁 = 𝐵𝑚𝑎𝑥 +  𝑅𝑚𝑎𝑥 + 𝑀𝑚𝑎𝑥                                                       (3.10)   

          𝑔𝑁𝐵𝑇𝐶 = 𝐴𝑚𝑎𝑥 + 𝐶𝑚𝑎𝑥 + 𝑀𝑚𝑎𝑥                                                       (3.11)   

          𝑔𝑁𝐵𝐶 = 𝐵𝑚𝑎𝑥 + 𝑅𝑚𝑎𝑥 + 𝐴𝑚𝑎𝑥                                                           (3.12)  

 

Scaling the computing resources of the selected gNB will significantly improve 

the processing speed of critical tasks, such as ESM transmission. The selected gNB 

implements the proposed gNB algorithm. In this algorithm, when the gNB 

receives an OpenFlow control message from the SDN controller, it calculates the 

priority of ESM based on the following proposed equation: 

 

          𝐸𝑆𝑀𝑃 =  
𝑄𝑜𝑆𝜎

𝑄𝑜𝑆𝜎ℎ
                                                                                                 (3.13) 

 

Equation (3.13) indicates that the gNB provides faster processing of ESMs with 

higher priority. The purpose of this equation is to schedule the ESMs based on 

their priorities to identify which VN in the gNB will serve a certain ESM. After 

determining the VN, the gNB configures its 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

 for that VN based 

on the resources identified in the OpenFlow control message received from the 

SDN. This step involves the following procedures:  

• gNB compares B with 𝐵𝑖: B is the bandwidth value allocated by the SDN 

controller, which is included in the OpenFlow control message, and 𝐵𝑖 is 

the initial bandwidth value used by the gNB. When 𝐵 >  𝐵𝑖, the gNB will 

consume more bandwidth from its 𝐵𝑚𝑎𝑥, so that 𝐵𝑖 equals the value of B. 
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This step results in an increase in network overhead. Network overhead can 

be expressed as follows: 

 

          𝑁𝑂𝑎 =  𝑁𝑂𝑖 + (𝐵 − 𝐵𝑖)                                                                         (3.14) 

  

Where 𝑁𝑂𝑖 and 𝑁𝑂𝑎 represent the initial network overhead and network 

overhead calculated in this step, respectively. When the consumption of the 

bandwidth increases, this will negatively impact the transmission reliability 

of the gNB. Therefore, the transmission reliability of the gNB will reduce 

during this step, and it is calculated using the proposed equation: 

 

          𝑇𝑅𝑎 =  𝑇𝑅𝑖 − 𝑑𝑟                                                                                   (3.15) 

 

Where 𝑇𝑅𝑖 and 𝑇𝑅𝑎 are the initial transmission reliability and transmission   

reliability calculated in this step, respectively. 

• gNB compares R with 𝑅𝑖: R is the data rate value allocated by the SDN 

controller, which is included in the OpenFlow control message, and 𝑅𝑖 is 

the initial data rate value used by the gNB. When 𝑅 >  𝑅𝑖, the gNB will 

consume more data rate from its 𝑅𝑚𝑎𝑥, so that 𝑅𝑖 equals the value of R. As 

well, the network overhead increased, and it is calculated as follows: 

 

          𝑁𝑂𝑏 =  𝑁𝑂𝑎 + (𝑅 − 𝑅𝑖)                                                                     (3.16) 

 

• gNB compares A with 𝐴𝑖: A is the number of antennas allocated by the SDN 

controller, which is included in the OpenFlow control message, and 𝐴𝑖 is 

the initial number of antennas used by the gNB. When 𝐴 >  𝐴𝑖, the gNB 
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will consume more antennas from its 𝐴𝑚𝑎𝑥, so that 𝐴𝑖 equals the value of 

A. During this step, the computational complexity increases, which is 

measured as follows: 

 

          𝐶𝐶𝑎 =  𝐶𝐶𝑖 + (𝐴 − 𝐴𝑖)                                                                         (3.17) 

   

Where 𝐶𝐶𝑖 and 𝐶𝐶𝑎 represent the initial computational complexity and 

computational complexity calculated in this step, respectively. 

Additionally, if the demand for antennas increases, it could lead to 

congestion and dropped connections, which result in reducing the 

transmission reliability of the gNB. Thus, it is calculated as follows: 

 

               𝑇𝑅𝑏 =  𝑇𝑅𝑎 − 𝑑𝑟                                                                                         (3.18) 

 

We take into consideration that the transmission reliability of the gNB is 

reduced when the network overhead and computational complexity 

increase. Therefore, we denote this assumption by equation (3.15) and 

equation (3.18), respectively. 

• gNB compares C with 𝐶𝑖: C is the number of CPU cores allocated by the 

SDN controller, which is included in the OpenFlow control message, and 

𝐶𝑖 is the initial CPU cores used by the gNB. When 𝐶 >  𝐶𝑖, the gNB will 

use more CPU cores from its 𝐶𝑚𝑎𝑥, so that 𝐶𝑖 equals the value of C. This 

consumption increases the computational complexity, which is calculated 

in this step as follows: 

 

          𝐶𝐶𝑏 =  𝐶𝐶𝑎 + (𝐶 − 𝐶𝑖)                                                                        (3.19)  
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• gNB compares M with 𝑀𝑖: M is the memory value allocated by the SDN 

controller, which is included in the OpenFlow control message, and 𝑀𝑖 is 

the initial memory value used by the gNB. When 𝑀 >  𝑀𝑖, the gNB will 

consume more memory from its 𝑀𝑚𝑎𝑥, so that 𝑀𝑖 equals the value of M. 

This step results in increasing the network overhead and computational 

complexity of the gNB. The calculations of network overhead and 

computational complexity are expressed as follows: 

 

          𝑁𝑂𝑐 =  𝑁𝑂𝑏 + (𝑀 − 𝑀𝑖)                                                                       (3.20) 

          𝐶𝐶𝑐 =  𝐶𝐶𝑏 + (𝑀 − 𝑀𝑖)                                                                       (3.21)  

                                                                     

The flowchart in figure 3.9 explains the proposed gNB algorithm at the backbone 

and edge layers of the SDNCA framework.  
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3.4 Proposed SDN-Based Collision Avoidance (SDNCA) Framework-Second 

System Model 

      According to the prior explanation in section 3.3, this section introduces the 

second implemented system model based on 𝑅𝐷𝑆,𝐷. Considering the 𝑅𝐷𝑆,𝐷 

parameter provides a more accurate resource allocation strategy for each ESM, 

which leads to a further dynamic and adaptive routing mechanism. We propose 

the second system model based on the following algorithms, along with their 

assumptions: 

1. VFL algorithm: This system model uses the same VFL algorithm as the first 

system model. When the vehicle predicts the 𝑅𝑆𝑉𝑖
 through the VFL 

algorithm, it generates an ESM. The produced ESM contains a summary 

information of (S, D, 𝑅𝑆𝑉𝑖
, 𝑆𝑉𝑖

, 𝑅𝐷𝑆,𝐷). Each vehicle transmits its ESM to 

the SDN controller through 5G gNB. 

2. SDN algorithm: The SDN controller receives the ESM and applies the 

following: 

• In this context, based on the assumptions in section 3.3.2.1, 𝑄𝑜𝑆𝜆 has 

been calculated as follows:  

 

                              𝑄𝑜𝑆𝜆 =  
𝑅𝑆𝑉𝑖

+ 𝑆𝑉𝑖

𝑅𝐷𝑆,𝐷
                                                                              (3.22)  

  

• Three VNs are created in each gNB, as expressed below: 

 

           𝑉𝑁ℎ:  𝑄𝑜𝑆𝜆𝑚 < 𝑄𝑜𝑆𝜆 ≤ 𝑄𝑜𝑆𝜆ℎ 

           𝑉𝑁𝑚: 𝑄𝑜𝑆𝜆𝑙  < 𝑄𝑜𝑆𝜆 ≤ 𝑄𝑜𝑆𝜆𝑚 

           𝑉𝑁𝑙: 𝑄𝑜𝑆𝜆 ≤ 𝑄𝑜𝑆𝜆𝑙                                                                        (3.23) 

• Equation (3.23) has been configured in terms of the following: 
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➢ When 𝑅𝑆𝑉𝑖
=  𝑀𝑣, 𝑆𝑉𝑖

=  𝑀𝑆𝑉𝑖
, and 𝑅𝐷𝑆,𝐷 =  𝑀𝑅𝐷𝑆,𝐷, then 

𝑄𝑜𝑆𝜆 = 𝑄𝑜𝑆𝜆ℎ. 

➢ The number of VNs is calculated as  
𝑄𝑜𝑆𝜆ℎ

𝑑𝜆
       

• The SDN controller selects the nearest gNB to the D as 𝑆𝑟: In this 

system model, the ESMs are transmitted over the shortest distances 

to the destinations. This assumption ensures that the ESM will take 

less time to reach D. 

• The SDN controller allocates (B, R, A, C, and M) as follows:   

➢ Allocating B based on the 𝑄𝑜𝑆𝜆: As explained previously, the 

QoS of the ESM provides the level of risk in this study. In this 

system model, we assume that the SDN controller allocates the 

value of B based on 𝑄𝑜𝑆𝜆. Vehicles that produce ESMs with 

high values of  𝑄𝑜𝑆𝜆 usually have high 𝑅𝑆𝑉𝑖
, high 𝑆𝑉𝑖

, and are 

close to their destinations. In this case, high values of B need 

to be allocated at the gNB to enable faster and more timely 

ESM transmission. This step is expressed in the following 

equation: 

           

          𝐵 =  {

𝐵ℎ𝑟  ,   if 𝑄𝑜𝑆𝜆  >  𝑄𝑜𝑆𝜆𝑚

𝐵𝑚𝑟  ,   if 𝑄𝑜𝑆𝜆  >  𝑄𝑜𝑆𝜆𝑙

𝐵𝑙𝑟  ,                 otherwise
                                     (3.24)                             

 

➢ Equation (3.25) indicates that the R of the gNB is allocated 

based on the 𝑅𝐷𝑆,𝐷. This assumption encourages the gNB to 

reduce its R if the S maintains a safe distance from the D and 

increase the value of R if the S approaches the D. The unit of 

equation (3.25) represent the unit of R per distance. 
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          𝑅 (𝑀𝑏𝑝𝑠/𝑚) =  
𝑅𝑚𝑎𝑥

𝑅𝐷𝑆,𝐷
                                                     (3.25) 

                                                                                    

➢ In this system model, the 𝐸𝑆𝑀𝑃 has been identified as 
𝑄𝑜𝑆𝜆

𝑄𝑜𝑆𝜆ℎ
, 

meaning that the ESM that has a high 𝑄𝑜𝑆𝜆 value needs greater 

memory and computational capability for storage and 

accelerated processing.  Equation (3.26) and equation (3.27) 

represent that gNB consumes C and M from its 𝐶𝑚𝑎𝑥 and 

𝑀𝑚𝑎𝑥, respectively, for each ESM based on the 𝑄𝑜𝑆𝜆 value.  

 

          𝐶 (𝐺𝐻𝑧)  =  
𝐶𝑚𝑎𝑥 × 𝑄𝑜𝑆𝜆

𝑄𝑜𝑆𝜆ℎ
                                                    (3.26)                                                                                                                                                                     

 

          𝑀 (𝑀𝐵) =  
𝑀𝑚𝑎𝑥 × 𝑄𝑜𝑆𝜆

𝑄𝑜𝑆𝜆ℎ
                                                  (3.27)  

                                                                                          

➢ The number of antennas has been allocated based on the 

distance between the selected gNB and the D. Equation (3.28) 

calculates the number of antennas as follows: 

 

          𝐴 =  {

𝐴𝑚𝑎𝑥 ,   if 𝑑𝑔𝑁𝐵,𝐷  >  𝑑𝑚𝑎𝑥

𝐴𝑚𝑜 , if 𝑑𝑔𝑁𝐵,𝐷  >  𝑑𝑚𝑜

𝐴𝑚𝑖  ,               otherwise

                                 (3.28) 

 

we consider that the quality of the signal can be strengthened 

by increasing the number of antennas toward the D whenever 

the 𝑑𝑔𝑁𝐵,𝐷 increases. 
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• We added another function to this system model. The SDN controller 

assigns three main actions based on the 𝑄𝑜𝑆𝜆 value. For example, if 

the value of 𝑄𝑜𝑆𝜆 is high, it means the S has high 𝑅𝑆𝑉𝑖
 and high 𝑆𝑉𝑖

, 

and is close to the D. Therefore, when the D receives the action 

message from the gNB, it performs one of these actions to avoid 

collision, as illustrated below: 

 

          𝐴𝑐𝑡𝑖𝑜𝑛 =  {
 𝑠 ,   if 𝑄𝑜𝑆𝜆  >  𝑄𝑜𝑆𝜆𝑚

𝑚 , if 𝑄𝑜𝑆𝜆  >  𝑄𝑜𝑆𝜆𝑙

𝑤 ,               otherwise
                                           (3.29) 

 

• The SDN controller creates the OpenFlow control message and sends 

it to the selected gNB. The OpenFlow control message contains 

(𝑆, 𝐷, 𝑔𝑁𝐵𝑛𝑟𝑖 , 𝑔𝑁𝐵𝑐𝑟𝑖
, 𝐴𝑐𝑡𝑖𝑜𝑛, 𝑆𝑉𝑖

, 𝑅𝐷𝑆,𝐷).  

3. gNB algorithm: The gNB receives the OpenFlow control message from 

SDN and implements the following: 

• It updates its 𝑔𝑁𝐵𝑛𝑟𝑖 𝑎𝑛𝑑 𝑔𝑁𝐵𝑐𝑟𝑖
 based on the resources allocated 

by the SDN controller. 

• Creates the action message and sends it to the D. The action message 

contains (𝑆, 𝐷, 𝐴𝑐𝑡𝑖𝑜𝑛, 𝑆𝑉𝑖
, 𝐵, 𝑅𝐷𝑆,𝐷). 

The flowchart in figure 3.10 demonstrates the three integrated algorithms in the 

second system model. 
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       Figure 3.10: Flowchart of the second system model 
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3.5 Summary 
 

      This chapter started with the introduction of the proposed IoV architecture, 

which is essential to handling the challenges of ESM dissemination within a 

demanding and dynamic IoV environment. The proposed architecture provided an 

overview of the suggested advancements for accomplishing the objective of the 

study. 

      This chapter focused on the formulation of the SDNCA framework utilizing 

two system models. The first system model incorporates three proposed 

algorithms: a novel VFL algorithm that involves the learning of the proposed RS-

ANN model on vehicles to estimate the 𝑅𝑆𝑉𝑖
value for each vehicle. The estimated 

𝑅𝑆𝑉𝑖
 value, 𝑆𝑉𝑖

, and 𝑅𝐷𝑉𝑖
 parameters are sent to the SDN controller through 5G 

gNB. On the basis of this information, the SDN controller implements a new 

application that achieves three successive objectives (SDN-enabled QoS, SDN-

enabled 5G communication, and SDN-enabled routing). The instructed OpenFlow 

control message is transmitted from the SDN controller to the 5G gNB that has 

been chosen to forward the ESM to the 𝐷. During this step, the gNB executes the 

third algorithm to schedule the ESMs and also configures the 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

. 

To be more precise, the second system model performs the VFL algorithm; the 

estimated 𝑅𝑆𝑉𝑖
 value, 𝑆𝑉𝑖

, and 𝑅𝐷𝑆,𝐷 parameters are transmitted to the SDN 

controller by 5G gNB. Then, the SDN controller applies its algorithm to create the 

OpenFlow control message. The last step has been executed by the gNB that 

received the OpenFlow control message to forward the ESM to the 𝐷. The 

comprehensive discussion of the two system models is further explained. As a 

result, the SDNCA framework provided an efficient mechanism for enhancing the 

disseminating of ESMs to the destination vehicles, thus avoiding vehicle 

collisions. 
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CHAPTER FOUR 

SIMULATION RESULTS AND ANALYSIS OF THE FIRST 

SYSTEM MODEL 

 

4.1 Introduction 
 

      This chapter presents four scenarios that are executed to build the first 

proposed system model explained in chapter three. The first scenario simulates 5G 

technology to provide insights into the operational efficiency of the 5G network 

structure. The second and third scenarios implement the edge layer in the proposed 

architecture depicted in figure 3.1. The fourth scenario involves the execution of 

the edge and backbone layers in the architecture provided in figure 3.1, which form 

the SDNCA framework. Furthermore, this chapter discusses the outcomes 

achieved in each specific scenario. 

 

4.2 Simulation Setup and Scenarios 
 

      To build and implement the proposed SDNCA framework, three software tools 

are used: Network Simulator (NS3), Python programming language (Pytorch for 

the machine learning library), and a Mininet network emulator. NS3 is used to 

simulate 5G technology in the proposed architecture. The Python programming 

language is utilized to simulate and evaluate the proposed VFL algorithm. The 

implementation and evaluation of the SDNCA framework are carried out in the 

Mininet emulator, including the RYU controller for a custom-designed topology 

that consists of vehicles and OpenFlow switches (5G gNBs). 

      NS3 is a free and open-source discrete event simulator for communication 

models targeted for the education and research industry. With its modular 

architecture and extensive library of protocols, NS3 enables the simulation of 
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vehicular communication scenarios (Aljabry and Al-Suhail, 2021). Very recently, a 

few implementations of some of the 5G-V2X features have been added to NS3 

and presented in (Saad et al., 2021, Lusvarghi and Merani, 2021). 

      Mininet is an emulator used to create virtual switches, links, hosts, and 

controllers. Mininet helps to create a virtual environment of switches and links to 

simulate different networking models. It is very flexible in terms of SDN. The 

advantage of Mininet is that it is simple and inexpensive. Mininet is highly flexible 

for SDN models (Khan et al., 2021). Further, Ryu is an open-source SDN framework 

written in Python. Ryu facilitates the creation of customized network management 

applications and protocols, empowering network administrators and researchers 

with a high level of programmability as it provides a Python Application 

Programming Interface (API). One of its key features is support for the OpenFlow 

protocol, which enables seamless communication between the SDN controller and 

network devices like switches and routers (Bhardwaj and Panda, 2021).  

 

4.2.1 First Scenario: 5G Simulation 
 

      NS3 is used for the simulation of 5G technology in this particular scenario, the 

simulation setup is illustrated in Table 4.1. Various NS3 modules have been 

utilized; these modules provide functionalities related to networking, mobility, 

spectrum management, application support, configuration handling, output 

statistics, etc. Within this context, several functions have been defined and 

established for executing setup tasks related to the NR simulation. The main 

functions include: 

•   Reporting the statistics for SINR, power, slot, and Resource Block (RB) of 

a 5G gNB. 
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•   Setting up the specific characteristics of the physical layer for a 5G gNB. 

This setup encompasses the implementation of beamforming, shadowing, 

numerology, transmit power, pattern, and adjustment of the antenna 

orientation. Simultaneously, the NR physical layer of the User Equipment 

(UE) is configured. 

•   Configuring the parameters of the radio networks, such as specifying values 

for RB overhead, the number of reference symbols per RB, the number of 

Hybrid Automatic Repeat Request (HARQ) processes, delays, and error 

models. 

• Implementation of the 3GPP channel model. 

•   Determining the power allocation type for the NR spectrum and applying it 

for both UEs and 5G gNBs. 

•   Executing the Adaptive Modulation and Coding (AMC) model for the 5G 

gNB in both Downlink (DL) and Uplink (UL) directions. 

•   Formulating the operational bands and Bandwidth Parts (BWPs) and 

utilizing the following equations to calculate the total bandwidth and central 

frequency. 

 

          𝐵𝐶𝐶 = 𝑁𝐵𝑊𝑃 ∗ 𝐵𝐵𝑊𝑃                                                                              (4.1) 

 

Where 𝐵𝐶𝐶 refers to the total bandwidth for a single Component Carrier 

(CC), 𝑁𝐵𝑊𝑃 represents the number of BWPs per CC, and 𝐵𝐵𝑊𝑃 is the 

bandwidth per BWP.  

 

          𝐵𝑏 =  𝑁𝐶𝐶 ∗  𝐵𝐶𝐶                                                                                 (4.2)                                                 
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𝐵𝑏 is the total bandwidth for the entire frequency band, and 𝑁𝐶𝐶 is the 

number of CC per frequency band. 

 

          𝑏𝐶 = 𝑏𝑆 + 
𝐵𝑏

2
                                                                                          (4.3) 

          𝑏𝐶 = 𝑏𝐶 + 𝐵𝑏                                                                                       (4.4) 

 

𝑏𝐶 is the central frequency of the band, and 𝑏𝑆 is the minimum frequency 

value of the band. Equation (4.4) is applied to move to the center frequency 

of the next BWP in the overlapping and non-overlapping frequency 

scenarios. 

•   Configuration of the attributes related to the antennas for UEs and 5G gNBs. 

•   Identifying the granularity of resource allocation in the MAC layer of NR.  

•   Establishing a high-speed point-to-point communication link between the 

Packet Data Network Gateway (PGW) and a remote host. 

•   Assign IP addresses for the nodes (PGW, remote host, gNB, and UEs) in 

the simulation to enable communication between them. 

•   Attaching UEs to their corresponding 5G gNB. 

•   Establish traffic applications while considering the uniform and non-

uniform packet arrival rates (lambda) among 5G gNBs.  

•   Calculating the average throughput, delay, jitter, and received packets for 

each flow. 
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Table 4.1: NS3 Environmental settings 

Parameters Values/Types 

Transmit power of 

the gNB 

Initial value = 0 dB, configuration values = 30, 43 dB 

Antenna type of the 

gNB 

Uniform planar array 

Simulation NR 

scenarios 

UMi, UMa, RMa 

Operation modes TDD, FDD 

Directions UL, DL 

𝐵𝐵𝑊𝑃 20, 15, 10, 5 MHz 

Frequency scenarios Overlapping, non-overlapping 

Number of 

reference symbols 

per RB 

1 

RB overhead Initial value = 0.1, configuration values = 0.1, 0.04 

HARQ processes Initial value = 20, configuration values = 8, 20 

Default update 

period of the 3GPP 

channel model 

100 ms 

Update period of the 

channel condition 

model 

0 ms 

Noise figure for the 

UE 

9.0 dB 

AMC model Shannon model 

𝑏𝑆 2110 MHz 

𝑁𝐵𝑊𝑃 in FDD 2 

𝑁𝐵𝑊𝑃 in TDD 1 

𝑁𝐶𝐶 1 

Beamforming 

Methods 

Quasi omni direct path beamforming, Direct path beamforming 

Schedulers types NR mac scheduler ofdma PF, NR mac scheduler ofdma RR 

Number of SRS 

symbols used by the 

scheduler 

1 

Number of DLC 

symbols used by the 

scheduler 

1 

Antenna Model of 

the UE 

Isotropic 
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Parameters Values/Types 

Gain of the 

isotropic antenna 

0.0 dB 

Transmit power of 

the UE 

23.0 dB 

Number of RBs per 

RBG 

4, 4, 3, 2 

Error model NrEesmCcT2 

 

4.2.2 Results Analysis and Discussion of the First Scenario 
 

      In 5G NR, the concept of BWPs is introduced to enable flexibility in 

configuring different parts of the available spectrum for various applications. Each 

BWP can have its own set of frequency and bandwidth parameters, allowing for 

adaptable allocation of resources.  

      According to the simulated parameters and models outlined in Table 4.2, the 

simulation employs TDD, a mode where the same frequency band is used for both 

uplink and downlink transmissions with a predefined time division. The 

simulation results indicate that the 5G gNBs have the same BWP configuration 

(i.e., the same BWP id, frequency range, and bandwidth), demonstrating that the 

5G gNBs use the same set of frequency resources. In this scenario, the obtained 

central frequency of 2150 MHz denotes operating in the sub-6 GHz frequency 

range, which is common for 5G deployments, especially in the mid-band 

spectrum. Further, the resulting channel bandwidth of 80 MHz is a typical 

configuration for 5G networks. It allows higher data rates compared to narrower 

bandwidths. The objective of acquiring these findings is to understand the resource 

allocation process of the simulation for each BWP. Then, the configured BWPs 

determine the frequency resources available for communication and analyze how 

the network manages and allocates these resources to different users or services. 
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As a result, this information is vital for evaluating the efficacy of the simulated 5G 

network. 

 

Table 4.2: Simulated parameters of the first scenario 

Parameters Values/Types 

Scenario UMi 

Radio network  NR 

Error model NrEesmIrT2 

Operation mode TDD 

Direction  DL 

Numerology  2 

Pattern  F|F|F|F|F|UL|UL|UL|UL|UL | 

Power allocation  Uniform power allocation per bandwidth 

Scheduler  PF 

𝐵𝐵𝑊𝑃 40 MHz 

Frequency scenario Overlapping 

Simulation time 1400 ms 

𝐿 3 

Number of UEs per 5G 

gNB 

2 

FFR 3 

UDP packet size  600 bytes 

Lambda (packet 

generation rate)  

2000 packets/s 

Remote host 1 

Data rate for the point-

to-point link between 

PGW and the remote 

host 

100 Gb/s 

Delay for the point-to-

point link between 

PGW and the remote 

host 

0 s 

MTU for the point-to-

point link between 

PGW and the remote 

host 

2500 bytes 

Interval (packet 

generation interval) 

1/Lambda 
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4.2.3 Second Scenario: Simulation of the Edge Layer in the Proposed 

Architecture (5G gNBs and Vehicles) 

      Building upon the environmental explanation in the first scenario, the current 

scenario starts a simulation of the edge layer of the proposed architecture. This 

scenario investigates the interaction between the 5G gNBs (𝑔𝑁𝐵𝐸𝑖) and vehicles. 

The vehicles have included the proposed RS-ANN model to predict the 𝑅𝑆𝑉𝑖
 value. 

The simulation parameters for this scenario are described in Table 4.3. 

 

Table 4.3: Simulated parameters of the second scenario 

Parameters Values/Types 

Scenario UMa 

Radio network  NR 

Error model NrEesmCcT2 

Operation mode TDD 

Direction  DL 

Numerology  0 

Pattern  F|F|F|F|F|F|F|F|F|F| 

Power allocation  Uniform power allocation per RB used 

Scheduler  PF 

𝐵𝐵𝑊𝑃 20 MHz 

Frequency scenario Non-overlapping 

𝐿 57 

Number of UEs 

(vehicles) per 5G gNB 

2 

FFR 3 

UDP packet size  1000 bytes 

Lambda (packet 

generation rate)  

5000 packets/s 

Remote host 100 

Interval (packet 

generation interval) 

1/Lambda 

Data rate for the point-

to-point link between 

PGW and the remote 

host 

100 Gb/s 
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Parameters Values/Types 

Delay for the point-to-

point link between 

PGW and the remote 

host 

0 s 

MTU for the point-to-

point link between  

PGW and the remote 

host 

2500 bytes 

Application generation 

time  

1000 ms 

UDP application start 

time 

400 ms 

 

4.2.4 Results Analysis and Discussion of the Second Scenario 
 

      The provided simulation results in Table 4.4 describe 5G communication with 

non-overlapping frequency bands and TDD operational mode at the edge layer in 

figure 3.1. The simulation involves three BWPs (BWP id = 0, BWP id = 1, and 

BWP id = 2), each with a central frequency and bandwidth. The central frequencies 

for each BWP are spaced apart, ensuring that each BWP operates in a distinct 

frequency range. The central frequencies specified for each BWP, along with their 

corresponding bandwidths, are critical parameters that influence the 

communication characteristics. The use of multiple BWPs allows for efficient 

spatial resource allocation, enabling simultaneous communication in different 

frequency bands. Depending on the specific requirements of vehicular applications 

and the mobility patterns of vehicles, this design aligns with best practices in 5G 

network planning, ensuring that each frequency band operates independently to 

minimize interference between adjacent 5G gNBs or vehicles operating on 

different BWPs and enhance overall network performance. 

      TDD is often preferred in dynamic and mobile environments like vehicular 

networks, allowing efficient utilization of the available spectrum and flexibility in 
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adapting to varying traffic conditions. TDD, along with designated frequency 

ranges for each BWP, facilitates temporal resource allocation, optimizing 

communication slots for uplink and downlink transmissions. The details of this 

scenario are presented in Appendix (A). 

 

Table 4.4: Results of the second scenario-part 1 

BWP id Lower 

Frequency 

Central  

Frequency 

Higher  

Frequency 

BW 

0 2110 MHz 2130 MHz 2150 MHz 40 MHz 

1 2150 MHz 2170 MHz 2190 MHz 40 MHz 

2 2190 MHz 2210 MHz 2230 MHz 40 MHz 

 

4.2.5 Third Scenario: Simulation of the Edge Layer in the Proposed 

Architecture (Federated Learning) 

      In this section, two scenarios have been considered to simulate the proposed 

VFL algorithm in the SDNCA framework. Scenario 1 has 100 vehicles with one 

ES, whereas scenario 2 has 400 vehicles with four ESs. The Python programming 

language (Pytorch) is utilized to simulate both scenarios. We generate the training 

and testing datasets for each vehicle as integer values of “0”, “1”, and “2” as 

follows: 

•   𝑶𝑽𝒊
: “0” for free road, “1” for slow road, and “2” for blocked road.   

•   𝑾𝑽𝒊
: “0” for clear weather and “1” for rainy weather. 

•   𝑺𝑽𝒊
: “0” for low speed, “1” for medium speed, and “2” for high speed. 

•   𝑹𝑫𝑽𝒊
: “0” for far distance, “1” for medium distance, and “2” for close 

distance. 

•   𝑹𝑪𝑽𝒊
: “0” for excellent road condition, “1” for slippery road condition, and 

“2” for potholes road condition.  

•   𝑻𝑽𝒊
: “0” for daytime and “1” for nighttime. 
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By taking a random number for each feature, the estimated 𝑅𝑆𝑉𝑖
 takes a range of 

10 values (0–9). The proposed RS-ANN model is a deep neural network model. 

The datasets are generated with a batch size of 32 to feed the RS-ANN model 

implemented in the vehicles. The RS-ANN model consists of four fully connected 

layers with 32, 64, and 32 neurons in three hidden layers and a dropout of 0.2. 

Rectified Linear Units (ReLUs) are used as the activation functions of the three 

fully connected layers. The RS-ANN model is trained for 1000 epochs with cross-

entropy loss and an Adam optimizer with a learning rate of 0.0001. The simulation 

time for the two scenarios is 14820 s. 

 

4.2.6 Results Analysis and Discussion of the Third Scenario 
 

      The evaluation results of the real-time simulation of the proposed VFL 

algorithm are shown in figures 4.1–4.3. Figure 4.1 (a) shows the training and test 

accuracies in scenario 1. In this scenario, 95.60% training accuracy and 98.00% 

test accuracy have been achieved at epoch 346. Figure 4.1 (b) shows the training 

and test accuracies in scenario 2. This scenario results in 95.30% training accuracy 

and 96.00% test accuracy at the same epoch. Given an increase in the number of 

training vehicles, these values reach 98.10% training accuracy and 99.00% test 

accuracy at epoch 1000 in figure 4.1 (a), whereas training accuracy is 97.90% and 

test accuracy is 96.00% at epoch 1000 in figure 4.1 (b).  

      Overall, high average accuracy values are obtained in figure 4.1 (a) and figure 

4.1 (b) because an accurate RS-ANN training model has been designed, in addition 

to the participation of all vehicles in the training process, which results in higher 

accuracy values. Thus, the proposed VFL algorithm yielded identical results, 

except for a small gap in its convergence speed between the two scenarios. Using 

the ES that has the capacity of four ESs (each 100 vehicles handled by one ES) 
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that distribute the load in scenario 2 constitutes a key factor for obtaining these 

identical values. 

 

 
        (a) 

 

            
         (b)  

 Figure 4.1: (a) Training and test accuracy for 100 vehicles. (b) Training and test accuracy 

for 400 vehicles. 



82 

 

      Figure 4.2 (a) and figure 4.2 (b) demonstrate the training and test losses for the 

RS-ANN model in scenario 1 and scenario 2, respectively. The train and test losses 

significantly drop from more than 2.0 to 0.0760 train loss and 0.0493 test loss in 

figure 4.2 (a), and to 0.0657 train loss and 0.0727 test loss in figure 4.2 (b). Figure 

4.2 (a) and figure 4.2 (b) show smooth curves without any fluctuations and with 

little differences between them in both scenarios. This indicates that the proposed 

VFL algorithm is stable due to the load balancing of the data packets and because 

there are no major losses in the entire system. 
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           (a) 

 
       (b) 

  Figure 4.2: (a) Training and test losses for 100 vehicles. (b) Training and test losses for 400 

vehicles. 



84 

 

      The training and test latencies are critical parameters that should be 

investigated in the federated learning process as they affect the transmission 

latency of ESMs in any system model. These parameters have been measured, as 

shown in figure 4.3 (a) for scenario 1 and figure 4.3 (b) for scenario 2, with 

accurate and desirable values. Initially, the training latency is more than 0.025 s 

and then decreases to approximately 0.0150 s in figure 4.3 (a); however, the value 

of the test latency remains constant at 0.002 s in figure 4.3 (a). As shown in figure 

4.3 (b), the average training latency is 0.02 s; fluctuations are observed at some 

values (e.g., the training latency is 0.025 s when the training vehicles are more 

than 50). These fluctuations are due to the training process, and the same test 

latency value has been achieved, as shown in figure 4.3 (b). Technically, the test 

latency should be lower than the training latency, which our results scrutinize. 

Figure 4.3 (a) and figure 4.3 (b) also show that increasing the number of vehicles 

does not affect the training and test latencies, which makes our system model more 

adaptable to IoV as the number of vehicles is increased or decreased in a specific 

area at a certain time. 
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        (a) 

 
            (b) 

           Figure 4.3: (a) Training and test latencies for 100 vehicles. (b) Training and test 

latencies for 400 vehicles 
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4.2.7 Fourth Scenario: Simulation of the Edge and Backbone Layers in the 

Proposed Architecture (SDNCA Framework)  

      The proposed SDNCA framework has been simulated in a scenario of three 

5G gNBs (𝑔𝑁𝐵𝐶𝑖), 100 vehicles, one ES, and one SDN controller. The 5G gNBs 

at the backbone layer are connected through an SDN switch. An Open-Flow v1.0 

OpenVSwitch virtual switch is used. The switch is managed by a Ryu SDN 

controller, which is written in Python. Table 4.5 displays the simulated parameters 

of SDNCA. 

 

Table 4.5: simulated parameters of the fourth scenario 

Parameters Values/Types 

MAC protocol  OFDMA 

Transport protocol  TCP 

ESM packet size 1024 bytes 

Range of 𝑆𝑉𝑖
 values 

(km/hr) 

Low speed: 50-80 

Medium speed: 80-100 

High speed: 100-150 

𝑁 100  

Environment Highways 

𝐾 3 

SDN Controller 1 

ES 1 

Simulation time 2400 s 

𝐶𝑣 ≥ 5 

𝑄𝑜𝑆𝜎ℎ 1.06 

𝑄𝑜𝑆𝜎𝑚 0.7 

𝑄𝑜𝑆𝜎𝑙 0.3 

𝑀𝑆𝑉𝑖
 150km/hr 

𝑀𝑅𝐷𝑉𝑖
 150m 

𝑑𝜎 3 

𝑑𝑟 1 

𝑁𝑂𝑖 0 

𝐶𝐶𝑖 0 

𝑇𝑅𝑖 100 
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Parameters Values/Types 

𝐸𝑆𝑀𝑃𝑖 100 

Initial values of  𝑔𝑁𝐵𝑛𝑟𝑖
 

and 𝑔𝑁𝐵𝑐𝑟𝑖
 assigned by 

gNB 

𝐵𝑖 = 50MHz, 𝑅𝑖 = 500Mbps, 𝐴𝑖 = 1, 𝐶𝑖 = 1 core,  

𝑀𝑖 = 256MB 

Initial values of 𝑔𝑁𝐵𝑛𝑟𝑖
 

and 𝑔𝑁𝐵𝑐𝑟𝑖
 allocated by 

SDN 

𝐵 = 0, 𝑅 = 0, 𝐴 = 0, 𝐶 = 0, 𝑀 = 0 

Maximum values of 

𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

  

𝐵𝑚𝑎𝑥 = 10000MHz, 𝐴𝑚𝑎𝑥 = 10, 𝑀𝑚𝑎𝑥 = 4096MB, 𝐶𝑚𝑎𝑥 =
32 cores, 𝑅𝑚𝑎𝑥 = 10000Mbps 

𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

 in each 

VN allocated by SDN 

including highest, medium, 

and lowest values of 

(B, R, A, C, and M) 

𝑉𝑁ℎ (B: 80MHz, 60MHz, 50MHz) 

         (M: 1GB, 768MB, 512MB) 

         (R: 1Gbps, 750Mbps, 500Mbps) 

         (A: 3, C: 2) 

𝑉𝑁𝑚 (B: 60MHz, 50MHz, 50MHz) 

         (M: 768MB, 512MB, 256MB) 

         (R: 750Mbps, 650Mbps, 500Mbps 

         (A: 2, C: 2) 

𝑉𝑁𝑙 (B: 60MHz, 50MHz, 50MHz) 

         (M: 512MB, 256MB, 256MB) 

         (R: 650Mbps, 550Mbps, 500Mbps) 

         (A: 1, C: 1) 

Range of 𝑅𝐷𝑉𝑖
 values (m) Close distance: 150-400  

Medium distance: 400-700  

Far distance: 700-1000  

 

4.2.8 Validation Metrics of the Fourth Scenario 
 

      The effectiveness of SDNCA is evaluated based on the following validation 

metrics by varying the density and velocity of the vehicles: 

1. Network Overhead (NO) and Computational Complexity (CC): This study 

defined network overhead and computational complexity percentages in 

terms of consuming 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

. Network overhead represents the 

percentage of the consumption of 𝐵, 𝑅, and 𝑀 of the 𝑔𝑁𝐵𝑇𝑁. As well, 

computational complexity represents the percentage of the consumption of 

𝐴, 𝐶, and 𝑀 of the 𝑔𝑁𝐵𝑇𝐶. These metrics are computed at the selected gNB 

that forwards the ESM to the 𝐷 by the following equations: 
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          𝑁𝑂𝑡𝑖
=  

𝑁𝑂𝑐

𝑔𝑁𝐵𝑇𝑁
                                                                                        (4.5) 

 
 

Then, the total network overhead at a given time (𝑁𝑂𝑡𝑖

𝜎) is calculated by 

adding (𝑁𝑂𝑡𝑖
) to its value at the previous time (𝑁𝑂𝑡𝑖−1

) as follows: 

 

          𝑁𝑂𝑡𝑖

𝜎 = 𝑁𝑂𝑡𝑖−1
+ 𝑁𝑂𝑡𝑖

                                                                       (4.6) 

 

          𝐶𝐶𝑡𝑖
=  

𝐶𝐶𝑐

𝑔𝑁𝐵𝑇𝐶
                                                                                       (4.7)  

 

 

Then, the total computational complexity at a given time (𝐶𝐶𝑡𝑖

𝜎) is calculated 

by adding (𝐶𝐶𝑡𝑖
) to its value at the previous time (𝐶𝐶𝑡𝑖−1

) as follows:  

 

          𝐶𝐶𝑡𝑖

𝜎 = 𝐶𝐶𝑡𝑖−1
+ 𝐶𝐶𝑡𝑖

                                                                         (4.8) 

 
 

2. Collision Rate (CR) of ESMs: The packet collision rate has been defined as 

the number of data packet collisions occurring in a network over a specified 

period. This metric is computed as the ratio of the number of collisions (𝑁𝑐) 

of the packets at the gNB with respect to the number of packets received by 

gNB (𝑁𝑃𝑔𝑁𝐵) as follows:  

  

          𝐶𝑅 =
𝑁𝑐

𝑁𝑃𝑔𝑁𝐵
                                                                                          (4.9) 

 
 

3. End-to-End (E2E) Delay: This metric is defined as the difference between 

the time at which the source vehicle (𝑆) transmits the ESM packet to the 

SDN controller (𝑡𝑡𝐸𝑆𝑀) and the time at which the destination vehicle (𝐷) 

receives the ESM packet (𝑡𝑟𝐸𝑆𝑀). It can be measured as follows:   
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          𝐸2𝐸 𝐷𝑒𝑙𝑎𝑦 =  𝑡𝑡𝐸𝑆𝑀 − 𝑡𝑟𝐸𝑆𝑀                                                           (4.10) 

 
 

4. Packet (ESM) Transmission Reliability (TR): This metric evaluates 

network connectivity and its ability to successfully deliver ESMs from the 

𝑆 to the 𝐷 without errors, losses, or delays. This metric is affected by 

increasing the network overhead in terms of consuming 𝐵, increasing the 

computational complexity in terms of consuming 𝐴, and increasing the 

collision rate, respectively. The transmission reliability can be expressed 

mathematically as follows: 

 

          𝑇𝑅 = 𝑇𝑅𝑏 − 𝐶𝑅                                                                                   (4.11) 

 

 

4.2.9 Results Analysis and Discussion of the Fourth Scenario 
 

      The proposed SDNCA framework is simulated by considering vehicle density 

and vehicle speed and compared with (Prathiba et al., 2022) for one common point, 

that is, SDNCA and (Prathiba et al., 2022) simulated 5G technology for IoV. The 

novelty of the SDNCA framework compared with (Prathiba et al., 2022) relies on the 

following main facts: First, the SDNCA framework takes vehicle speed into 

account, but its implementations were not considered in (Prathiba et al., 2022), which 

is a drawback of the study. Second, the SDNCA framework implements federated 

learning, which is not simulated in (Prathiba et al., 2022). Third, the SDNCA 

framework performs a real-time simulation of the SDN core routers at the 

backbone layer, along with ES execution at the edge layer to handle the overall 

network load. However, the topology in (Prathiba et al., 2022) requires more than one 

SDN controller and one core router to balance the load of 800 vehicles, and it does 
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not mention the technical aspects of the core layer. Thus, technically, the system 

model in (Prathiba et al., 2022) has jitters, delays, and damage at a certain stage.  

      Controlling the network overhead and computational complexity is crucial for 

any real-time simulation. Figures 4.4, 4.5, 4.6, and 4.7 show the optimized network 

results of 17% and an average of 20%, respectively in the SDNCA framework, 

due to the intelligent utilization of 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

. By contrast, the study in 

(Prathiba et al., 2022) obtained less network overhead and computational complexity 

than the SDNCA framework when 𝑁 = 100 vehicles/km. In addition, when 𝑁 =

800 vehicles/km in (Prathiba et al., 2022), the network overhead is 21% and the 

computational complexity is 19.8%. Hence, the study in (Prathiba et al., 2022) did 

not simulate the federated learning and core layer because the real-time simulation 

for more network devices, core routers, and ESs will increase the network 

overhead and computational complexity by more than 21% and 19.8%, 

respectively. Thus, achieving 17% and an average of 20% in the SDNCA 

framework for the real-time simulation of 100 vehicles/km with different speeds, 

which is considered ideal values. 
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        Figure 4.4: Evaluation of Network Overhead vs. vehicle density 

 
   Figure 4.5: Evaluation of Network Overhead vs. vehicle speed 
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      Figure 4.6: Evaluation of Computational Complexity vs. vehicle density 

 
   Figure 4.7: Evaluation of Computational Complexity vs. vehicle speed 
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      The SDNCA framework possesses a 0% collision rate for ESMs, as shown in 

Table 4.6. With increasing vehicle density and vehicle speed, the collision rate 

remains at 0, which denotes the ideality of SDNCA and its proper configuration 

to transmit ESMs based on their priorities, thereby realizing the avoidance of 

vehicle collisions in 5G environment. The SDNCA framework outperforms the 

method in (Prathiba et al., 2022), with collision rates of approximately 4% and 9% at 

𝑁 = 100 vehicles/km implemented in two different scenarios.      

 

Table 4.6: Results of CR vs. vehicle density and vehicle speed 

Vehicle density 

(vehicles/km) 

CR Vehicle speed (km/hr) CR 

10 0 50 0 

20 0 60 0 

30 0 70 0 

40 0 80 0 

50 0 90 0 

60 0 100 0 

70 0 110 0 

80 0 120 0 

90 0 130 0 

100 0 140 0 

 

      In contrast with (Prathiba et al., 2022), the analysis of the average end-to-end 

delay of the SDNCA framework, which is depicted in figure 4.8 and figure 4.9, 

reveals that the end-to-end delay in the SDNCA framework is 18 ms at 𝑁 = 100 

vehicles/km, which is approximately equal to the value obtained in (Prathiba et al., 

2022) for more than 300 vehicles/km. The lower end-to-end delay values in the 

SDNCA framework, when vehicle density and speeds increase, are due to the 

utilization of high computing resources to transmit ESMs faster based on their 
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priorities. These results considered ideal values for simulating the core and edge 

layers compared with (Prathiba et al., 2022). 

 

         Figure 4.8: Evaluation of End-to-End delay vs. vehicle density 

 

 
          Figure 4.9: Evaluation of End-to-End delay vs. vehicle speed. 
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      The results shown in figure 4.10 and figure 4.11 indicate that the SDNCA 

framework can provide high reliability of ESM transmission because it has a 

constant value of 89%–90% as the vehicle density and vehicle speed increase. In 

comparison, the transmission reliability of ESM was not assessed in (Prathiba et al., 

2022). Achieving 0% collision rates in SDNCA leads to a constant value of 89%–

90%. 

 

 
            Figure 4.10: Evaluation of Packet (ESM) Transmission Reliability vs. vehicle density 
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          Figure 4.11: Evaluation of Packet (ESM) Transmission Reliability vs. vehicle speed 

 

      Table 4.7 details the comparison of the study in (Prathiba et al., 2022) and the 

proposed SDNCA framework based on the provided discussion.  

Table 4.7: Comparison of the SDNCA framework and related study 

 

 

Research 

 

Evaluation Metrics for 𝑵 = 𝟏𝟎𝟎 vehicles/km 

 

NO (%) CC (%) CR (%) 

 

E2E Delay (ms) 

 

TR (%) 

 

Vehicle 

density 

Vehicle 

speed  

Vehicle 

density 

Vehicle 

speed  

Vehicle 

density 

Vehicle 

speed 

Vehicle 

density 

Vehicle 

speed 

Vehicle 

density 

Vehicle 

speed 

(Prathiba 

et al., 

2022) 

9 ---- 8 ---- 4 and 9 ---- 0  ---- ---- ---- 

Proposed 

(SDNCA) 

17 20 17 20 0 0 18  18  89–90 89–90 
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4.3 Summary 

      Two main points can be concluded from figures 4.4–4.11 and Table 4.6 in the 

SDNCA framework that should be scrutinized in real-time simulation. First, the 

same values of network overhead and computational complexity have been 

achieved because these metrics are complementary and directly proportional to 

each other. Second, Table 4.6 and figures 4.8–4.11 have the same values of 

collision rates, end-to-end delay, ESM transmission reliability when increasing the 

vehicle density, and vehicle speed. These results show the effectiveness of the 

SDNCA framework, which handles the ESMs simultaneously to avoid vehicle 

collision compared with the system model in (Prathiba et al., 2022), which cannot 

consider an efficient system to cater to the critical requirements of ESM 

transmission in the network due to the reasons mentioned previously in section 

4.2.9.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



98 

 

CHAPTER FIVE 

SIMULATION RESULTS AND ANALYSIS OF THE SECOND 

SYSTEM MODEL 

 

5.1 Overview 
 

      In chapter five, a simulation of chapter four has been conducted in a different 

scenario (the fifth scenario) to assess the efficacy of the proposed SDNCA 

framework using the validation criteria described in section 5.2.1. This chapter 

discusses the significance of taking into account these metrics when disseminating 

the ESMs in IoV. 

 

5.2 Fifth Scenario: Simulation of the Edge and Backbone Layers in the 

Proposed Architecture (SDNCA Framework) 

      The proposed SDNCA framework has been simulated in a scenario of ten 5G 

gNBs (𝑔𝑁𝐵𝐶𝑖), 100 vehicles, one ES, and one SDN controller. The complete 

implementation of the fifth scenario is explained in the flowchart depicted in figure 

3.10. Table 5.1 displays the simulated parameters of SDNCA in this scenario.     

 

Table 5.1: Simulated parameters of the fifth scenario 

Parameters Values/Types 

MAC protocol  OFDMA 

Hidden layers 2 

Number of neurons 64, 256  

Activation function ReLU 

Number of epochs 1000 

Batch size 32 

Loss function Cross-entropy 

Optimizer Adam 

Learning rate 0.0001 
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Parameters Values/Types 

Transport protocol  TCP 

ESM packet size 1024 bytes 

Range of 𝑆𝑉𝑖
 values (km/hr) 

 

Low speed: ≥ 50 

Medium speed: > 80 

High speed: > 110 

𝑀𝑆𝑉𝑖
 (km/hr) 151  

𝑀𝑅𝐷𝑆,𝐷 (m) 1 

𝑁 100  

Environment Highways 

𝐾 10 

SDN Controller 1 

ES 1 

Simulation time 7200 s 

𝐶𝑣 ≥ 5 

𝑄𝑜𝑆𝜆ℎ 160 

𝑄𝑜𝑆𝜆𝑚 107 

𝑄𝑜𝑆𝜆𝑙 54 

𝑑𝜆 3 

𝑑𝑚𝑎𝑥 50 

𝑑𝑚𝑜 25 

Initial values of  𝑔𝑁𝐵𝑛𝑟𝑖
 and 

𝑔𝑁𝐵𝑐𝑟𝑖
 used by gNB 

𝐵𝑖 = 0MHz, 𝑅𝑖 = 0Mbps, 𝐴𝑖 = 0, 𝐶𝑖 = 0MHz,  

𝑀𝑖 = 0MB 

𝐵 𝐵𝑙𝑟: 5–20MHz 

𝐵𝑚𝑟: 20–100MHz 

𝐵ℎ𝑟: 100–200MHz 

𝑅𝑚𝑎𝑥 100Mbps    

𝐴𝑚𝑎𝑥 3 

𝐴𝑚𝑜 2 

𝐴𝑚𝑖 1 

𝐶𝑚𝑎𝑥 2GHz                    

𝑀𝑚𝑎𝑥 1024MB                 

Range of 𝑅𝐷𝑉𝑖
 values (1– 

900 m)  

Close distance: > 0  

Medium distance: > 300 

Far distance: > 600 

𝑠 “slow down” 

𝑚 “maintain a steady speed” 

𝑤 “watch out” 

 



100 

 

5.2.1 Validation Metrics of the Fifth Scenario  
 

      The performance of the SDNCA framework is carried out using the following 

validation metrics while altering the density and velocity of the vehicles: 

1. Packet (ESM) Drop Ratio (PDR): This metric measures the ratio of 

transmitted ESMs that do not successfully reach their intended destination 

vehicles and are therefore dropped or lost during the communication 

process. 

2. Successful Routing Ratio (SRR): It represents the distance that an ESM has 

to cover after being routed by the SDN controller. This metric emphasizes 

the success of routing in terms of covering short distances. 

3. Routing Efficiency (RE): It is defined as the time taken to transmit the ESM; 

less time means better efficiency for routing ESMs. It has been calculated 

as a percentage of the time taken by the SDN switch (5G gNB) in relation 

to the total processing time for transmitting the ESM to the 𝐷.  

4. V2I Channel Utilization (CU): It is defined as the time utilized by the 5G 

gNB (𝑡𝑔𝑁𝐵𝐶𝑖
) to send the ESM from the 𝑆 to the SDN controller. It is 

measured mathematically using the following equation: 

 

          𝐶𝑈 =  
𝑡𝑔𝑁𝐵𝐶𝑖

𝑇𝑟
                                                                                   (5.1) 

where 𝑇𝑟 is the total running time of the 𝑔𝑁𝐵𝐶𝑖 

In addition, the E2E delay and CR metrics, as stated in chapter four, section 4.2.8, 

have been evaluated in this particular scenario. 

 

5.2.2 Results Analysis and Discussion of the Fifth Scenario 
 

      This section compares the simulation results of the SDNCA framework with 

the existing method, which is (Prathiba et al., 2022). This method has been chosen 
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for comparison because the contribution is similar to the proposed SDNCA 

framework. Comparisons are made based on the metrics of PDR, SRR, RE, CU, 

and E2E delay 

      Table 5.2 displays the packet (ESM) drop ratio for the SDNCA framework. 

From the table, it is inferred that, due to the extensive performance of the SDNCA 

for routing the ESMs, it has a 0% packet drop ratio when vehicle density and 

vehicle speed change. Table 5.3 compares PDR for SDNCA and the existing 

method, it shows that the study in (Prathiba et al., 2022) obtains a 5% packet drop 

ratio considering vehicle density only. 

 

Table 5.2: Results of PDR vs. vehicle density and vehicle speed 

Vehicle density 

(vehicles/km) 

PDR Vehicle speed (km/hr) PDR 

10 0 50 0 

20 0 60 0 

30 0 70 0 

40 0 80 0 

50 0 90 0 

60 0 100 0 

70 0 110 0 

80 0 120 0 

90 0 130 0 

100 0 140 0 

 

      The evaluation of the successful routing ratio in the SDNCA framework is 

conducted by selecting shorter distances to forward the ESMs to the destination 

vehicles. This criterion results in enhanced ESM transmission efficiency, 

characterized by decreased latency, reduced bandwidth requirements, and 

mitigated the possibility of packet loss.  The SDN controller chooses the nearest 
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gNB to the 𝐷 in order to forward the ESM to it. Figure 5.1 and figure 5.2 

demonstrate that the ESMs have an average distance of 8.75 m and 10.5 m, 

respectively. Figure 5.3 and figure 5.4 indicate the successful routing ratio of 

ESMs in relation to varying the vehicle density and vehicle speed, based on the 

findings presented in figure 5.1 and figure 5.2. 

 
       Figure 5.1: Evaluation of short distances vs. vehicle density 
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   Figure 5.2: Evaluation of short distances vs. vehicle speed 

 
    Figure 5.3: Evaluation of Successful Routing Ratio vs. vehicle density 
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    Figure 5.4: Evaluation of Successful Routing Ratio vs. vehicle speed 

 

      The results of the SDNCA framework presented in figure 5.5 and figure 5.6 

show that the routing of ESM to the 𝐷 takes an average of 0.005 ms even when 

the number of vehicles and their velocities change. The achievement of these 

results can be attributed to the prioritization of transmitting the ESM to the 𝐷 by 

considering the shortest distances. In comparison, the study in (Prathiba et al., 2022) 

as depicted in Table 5.3 evaluates the successful delivery ratio based on the 

number of ESMs that are effectively routed. More specifically, the routing of 

ESMs necessitates the consideration of both short distances and timely delivery, 

the factors that have not been addressed in (Prathiba et al., 2022).  
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    Figure 5.5: Evaluation of Routing Efficiency vs. vehicle density 

 
    Figure 5.6: Evaluation of Routing Efficiency vs. vehicle speed 
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      The ability of 5G gNB to transmit the ESMs efficiently contributes to effective 

channel utilization, which is essential with different vehicle densities and speeds.       

Figure 5.7 and figure 5.8 display the channel utilization percentages in the SDNCA 

framework, with average values of 0.25 × 10−4 and 0.5 × 10−4, respectively. The 

low percentages seen in real-time simulation are indicative of ideal values, which 

implies that the communication between the 𝑆 and SDN controller is reliable and 

timely. These measurements are required in this study for quick decision-making 

and response times. Table 5.3 shows that the relevant research has not considered 

this aspect. 

 

 
     Figure 5.7: Evaluation of V2I Channel Utilization relative to vehicle density 

 



107 

 

 
  Figure 5.8: Evaluation of V2I Channel Utilization relative to vehicle speed 

        

      The specified bandwidth values of 5G gNB in the SDNCA framework 

determine the effective communication range for transmitting ESMs to the 

destination vehicles, resulting in an end-to-end communication delay of 4.5 ms in 

figure 5.9 and 4 ms in figure 5.10, with changing vehicle densities and speeds. The 

reason behind obtaining these results is due to the optimal utilization of the 𝐵 in 

the gNB to transmit the ESM to the 𝐷. The study in  (Prathiba et al., 2022) mentioned 

in Table 5.3 has not examined the impact of the allocated bandwidth on the end-

to-end delay.   
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                                                                                          Bandwidth (B) MHz  

Figure 5.9: Evaluation of E2E Delay vs. transmission range of 5G (relative to vehicle density) 

 

 
Bandwidth (B) MHz 

 Figure 5.10: Evaluation of E2E Delay vs. transmission range of 5G (relative to vehicle speed) 
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      Based on the given discussion and analysis, Table 5.3 presents a comparison 

between the study conducted by (Prathiba et al., 2022) and the proposed SDNCA 

framework.  

 

Table 5.3: Comparison of the SDNCA framework and related study 

 

 

Research 

 

Evaluation Metrics for 𝑵 = 𝟏𝟎𝟎 vehicles/km [Average] 

 

PDR (%) SRR (%) RE (%) (ms) CU ( × 10−4) 

(%) 

 

E2E Delay vs. 

transmission 

range of 5G (ms) 

Vehicle 

density 

Vehicle 

speed  

Vehicle 

density 

Vehicle 

speed  

Vehicle 

density 

Vehicle 

speed 

Vehicle 

density 

Vehicle 

speed 

Vehicle 

density 

Vehicle 

speed 

(Prathiba 

et al., 

2022) 

5 ---- 99 and 

98 

---- ---- ----  ---- ---- ---- ---- 

Proposed 

(SDNCA) 

0 0  99.5 99.4 

 

0.0050 0.0050 0.25 0.5 4.5 4 

      

       The risky distances between vehicles (𝑅𝐷𝑆,𝐷) are directly linked to safety in 

the context of vehicular communication. The following figures provide an 

assessment of the SDNCA framework’s performance in terms of SRR, RE, CR, 

and E2E delay. The evaluation is conducted for distances up to 30 meters between 

the 𝑆 and 𝐷, taking into account different vehicle densities and speeds.  

      The observed decrease in the successful routing ratio as 𝑅𝐷𝑆,𝐷 increases is 

attributed to the prolonged path from the 𝑆 to the destination gNB assigned by the 

SDN controller. The ESM traverses through several stages, starting from the 𝑆 to 

the gNB, then through the SDN controller for decision-making, and finally 

reaching the destination gNB. The simulation results in figure 5.11 and figure 5.12 

specify a significant impact of the 𝑅𝐷𝑆,𝐷 on the successful routing ratio. 

Specifically, the comparison between 𝑅𝐷𝑆,𝐷 = 30m and 𝑅𝐷𝑆,𝐷 = 5m reveals a 
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notable difference in the SDNCA framework’s performance. When 𝑅𝐷𝑆,𝐷 = 30m, 

which means the 𝑆 and 𝐷 are poisoned 30 meters apart, the successful routing ratio 

is measured at 97%. However, as the 𝑅𝐷𝑆,𝐷 decreases to 5 meters, the successful 

routing ratio improves to an impressive 99.5%. These results assure that the 

SDNCA framework evaluates the successful routing ratio based on the short 

distances traversed by the ESMs. 

 

 
   Figure 5.11: Evaluation of Successful Routing Ratio vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle density) 
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      Figure 5.12: Evaluation of Successful Routing Ratio vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle speed) 

       

      By leveraging SDN controller to prioritize shorter distances for ESM 

transmission, the latency induced by transmitting the ESM to the 𝐷 has been 

reduced, as illustrated in figure 5.13 and figure 5.14. Figure 5.13 and figure 5.14 

display the optimal values of the routing efficiency, which are 4 ms and 3.5 

ms, respectively. 
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  Figure 5.13: Evaluation of Routing Efficiency vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle density) 

 
   Figure 5.14: Evaluation of Routing Efficiency vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle speed) 
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      The achieved 0% collision rate of ESMs in Table 5.4 and Table 5.5 

underscores the effectiveness of the SDN controller and 5G gNBs in providing 

reliable communication for collision avoidance. These results suggest that the 

implemented routing mechanism is robust in dynamically managing the network 

to prevent interference and collision while transmitting the ESM from the 𝑆 to the 

𝐷. 

 

Table 5.4: Evaluation of CR vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle density) 

𝑹𝑫𝑺,𝑫 (m) CR 

2 0 

5 0 

10 0 

15 0 

20 0 

25 0 

30 0 

 

 

Table 5.5: Evaluation of CR vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle speed) 

𝑹𝑫𝑺,𝑫 (m) CR 

1 0 

2 0 

4 0 

6 0 

8 0 

10 0 

14 0 

16 0 
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      The average end-to-end delay of 4.5 ms in figure 5.15 and figure 5.16, 

respectively, suggests that the SDNCA framework is capable of providing quick 

responses within 1–7 meters. The average end-to-end delay being consistent at 4.5 

ms across different risk distances is due to the utilization of high computing 

resources to transmit ESMs faster based on their QoS values.  

 

 
     Figure 5.15: Evaluation of E2E Delay vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle density) 
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    Figure 5.16: Evaluation of E2E Delay vs. 𝑅𝐷𝑆,𝐷 (relative to vehicle speed) 

 

5.3 Summary 
 

      This chapter provides a detailed explanation of the fifth scenario that has been 

implemented to assess the performance of the SDNCA framework. The results of 

this evaluation are reported in Table 5.3, figures 5.11–5.16, Table 5.4, and Table 

5.5. Based on the obtained results, the following conclusions can be drawn 

regarding the desired outcomes that must be reached while routing the ESM from 

the 𝑆 to the 𝐷 to keep vehicles from colliding, even when the number of vehicles 

and their speeds change:  

1. The PDR in the SDNCA framework is consistently 0%. These results are 

required because routing ESMs in vehicular networks should have a PDR 
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of 0% to guarantee that ESMs have been received by the destination 

vehicles successfully. This is because the ESMs contain crucial information 

about vehicle actions.  

2. higher values of SRR have been obtained, which ensure that the ESM 

travels a short distance to reach the 𝐷. This evaluation is significant since 

the ESMs need to cover the shortest distances to the destination vehicles.  

3. Based on the observation mentioned in point 2, the SDNCA framework 

achieves RE averages of 0.005 ms, 4 ms, and 3.5 ms. This indicates that 

when the ESM is routed over the shortest distances, it takes less time to 

attain the 𝐷. The aspect that should be realized while routing the ESM from 

the 𝑆 to the 𝐷.  

4. The channel utilization percentages presented in the table highlight the 

importance of the 5G gNB in the SDNCA framework. It facilitates rapid 

and efficient ESM dissemination, which is essential for real-time response 

in emergency scenarios.  

5. The choice of bandwidth can significantly influence communication 

performance in the SDNCA framework. The SDNCA framework finds the 

best balance between data capacity, delay, and overall system performance 

by testing and evaluating the end-to-end delay with different bandwidth 

values. This optimizes it for effective transmission of ESMs. Average 

values of 4.5 ms and 4 ms end-to-end delays are quite promising for 

avoiding vehicle collisions.  

6. The results shown in figures 5.11-5.16, Table 5.4, and Table 5.5 indicate 

that the SDNCA framework can handle the varying risk distances 

effectively in terms of SRR, RE, CR, and E2E delay.  
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7. Maintaining a constant 0% packet collision rate across the simulation is 

crucial to ensuring seamless and reliable communication between the gNBs 

and destination vehicles.  

8. The findings in this chapter illustrate how the SDNCA framework 

contributes to collision avoidance and enhanced safety in vehicular 

communications.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

6.1 Conclusions   

  

      The SDN can be a prominent technology for 5G-IoV communications, 

particularly for ESM transmission. This study proposes an SDNCA framework to 

efficiently transmit ESMs from the source vehicles to the destination vehicles and 

avoid vehicle collisions. The core contribution of the SDNCA is optimizing the 

network communication of ESMs to vehicles in terms of QoS. The SDNCA 

framework simulates two proposed system models. In the first and second system 

models, the SDNCA implements VFL algorithm, which provides the following 

conclusions related to research questions 1–4:  

1. The proposed VFL is unaffected by the number of vehicles in terms of 

training accuracy, test accuracy, train loss, test loss, training latency, and 

test latency. 

2. Desirable results are obtained when all vehicles (not some vehicles) 

participate in the training process.  

3. The system model is stable and adaptable to the vehicular networks for any 

number of vehicles because it achieves load balancing according to the ESs, 

backbone routers, and gNBs that have been used. 

Further, the research questions 5–6 have been answered through the following: 

1. In the first system model, SDN algorithm is applied to calculate the 𝑄𝑜𝑆𝜎, 

allocate the 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

, and select the best route to the destination 

vehicle. gNB algorithm then schedules the ESMs based on their priorities 

and configures the 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

 of the selected gNB based on the 
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SDN OpenFlow control message. SDN and gNB algorithms handle each 

ESM independently to achieve improved V2V communication. 

2. The SDNCA framework focuses on the 𝑅𝐷𝑆,𝐷 in the second system model 

to provide more precise analysis in terms of 𝑄𝑜𝑆𝜆 calculations, allocation 

of 𝑔𝑁𝐵𝑛𝑟𝑖
 and 𝑔𝑁𝐵𝑐𝑟𝑖

, and setting up reliable and low-latency 

communication paths. This system model enables the achievement of 

collision avoidance in vehicular networks. 

      Finally, the SDNCA performance is validated through nine evaluation metrics, 

namely, Network Overhead (NO), Computational Complexity (CC), Collision 

Rate (CR), End-to-End (E2E) Delay, Packet (ESM) Transmission Reliability 

(TR), Packet Drop Ratio (PDR), Successful Routing Ratio (SRR), Routing 

Efficiency (RE), Channel Utilization (CU), and compared with the related study. 

The SDNCA framework achieves a 0% collision rate, which is an ideal value that 

can fulfill the stringent requirements for ESM transmission in 5G-IoV 

environment. 

 

 6.2 Future Research Directions 
 

✓ Investigate and implement advanced model aggregation techniques to improve the 

accuracy and convergence speed of the proposed RS-ANN learning model. 

✓ Develop secure aggregation methods to protect the confidentiality of individual 

contributions in federated learning. 

✓ The integration of 6G technology in the SDNCA framework holds substantial 

promise for advancing the capabilities of vehicular communication systems. The 

anticipated enhancements in data rates, ultra-reliable low-latency communication 

(URLL), and advanced edge computing offered by 6G can significantly augment 

the efficiency and responsiveness of the proposed framework. Leveraging the 
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higher throughput of 6G can accelerate the delivery of ESMs, which is crucial for 

mitigating vehicular collisions. Furthermore, the emphasis on URLL in 6G aligns 

with the real-time requirements of safety-critical applications, presenting an 

opportunity to minimize communication delays. The advanced edge computing 

capabilities of 6G facilitate localized decision-making, further optimizing the 

allocation of network and computing resources within the SDNCA framework. 

✓ Examine a scalable SDN architecture that can handle the increasing number of 

vehicles and their communications. This study suggests designing a more 

complicated network using the same proposed SDNCA framework, but on an 

extremely large scale. Specifically, simulating a larger network consisting of 5G 

or 6G with 1000 vehicles, two SDN controllers, and 20 backbone routers to 

enhance coverage. 

✓ Explore sustainable and eco-friendly infrastructure solutions for deploying 5G and 

SDN components in the SDNCA framework. 
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APPENDICES 
 

Appendix A – Results of The Second Scenario 
 

      The simulation results presented in Table A.1 give comprehensive information 

on the connection of vehicles to 5G gNBs, with details such as vehicle id, cell 

index, vehicle frequency, gNB frequency, sector, distance, and azimuth. Each 

vehicle is associated with a specific gNB frequency. For example, a vehicle with 

id 0 is connected to a gNB with a frequency of 2.13 GHz, and so on. This frequency 

association is crucial for managing communication resources and ensuring proper 

connectivity between vehicles and 5G gNBs. The sector information indicates 

which sector of the site is serving the specific vehicle. Sectors are often used to 

divide the coverage area of a site, and each sector can serve a specific set of 

vehicles. For instance, a vehicle with id 1 is served by the gNB in sector 1. The 

“distance” parameter represents the physical distance between the vehicle and the 

associated gNB. The “azimuth” parameter provides the azimuth angle from the 

gNB to the vehicle. The combination of distance and azimuth information helps in 

understanding the spatial distribution of vehicles relative to their serving gNBs. 

Analyzing this spatial distribution is essential for optimizing cell planning, 

antenna beamforming, and the overall efficiency of the network.  

      Table A.2 provides a concise overview of vehicle application start and end 

times, offering useful insights into the temporal dynamics of the simulated 5G 

network for vehicles, along with the predicted 𝑅𝑆𝑉𝑖
 value for each vehicle. 
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Table A.1: Results of the second scenario-part 2 

Results of attaching UEs (vehicles) to the 5G gNBs 

Ue Id Cell 

Index 

Ue 

frequency 

(GHz) 

gnb 

frequency 

(GHz) 

Sector Id distance 

(m) 

azimuth 

gnb͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢͢ ->ue 

(degrees) 

0 0 2.13 2.13 0 713.257 -113.444 

1 1 2.17 2.17 1 376.319 -68.2647 

2 2 2.21 2.21 2 803.547 110.448 

3 3 2.13 2.13 0 335.493 -129.206 

4 4 2.17 2.17 1 299.431 -38.1378 

5 5 2.21 2.21 2 521.172 45.1648 

6 6 2.13 2.13 0 721.457 -146.386 

7 7 2.17 2.17 1 591.622 -65.7942 

8 8 2.21 2.21 2 1030.28 93.6672 

9 9 2.13 2.13 0 233.451 -171.56 

10 10 2.17 2.17 1 956.206 -45.1146 

11 11 2.21 2.21 2 413.177 127.064 

12 12 2.13 2.13 0 592.83 -127.075 

13 13 2.17 2.17 1 188.06 -61.3911 

14 14 2.21 2.21 2 518.374 93.014 

15 15 2.13 2.13 0 1006.48 -147.32 

16 16 2.17 2.17 1 679.933 -71.6111 

17 17 2.21 2.21 2 680.365 51.1228 

18 18 2.13 2.13 0 608.963 -139.106 

19 19 2.17 2.17 1 495.455 -65.5914 

20 20 2.21 2.21 2 547.854 67.5269 

21 21 2.13 2.13 0 848.311 -146.278 

22 22 2.17 2.17 1 610.09 -2.05835 

23 23 2.21 2.21 2 480.485 60.6701 

24 24 2.13 2.13 0 227.989 -101.463 

25 25 2.17 2.17 1 545.889 -63.8433 

26 26 2.21 2.21 2 728.399 69.1528 

27 27 2.13 2.13 0 728.399 -165.119 

28 28 2.17 2.17 1 768.138 -1.22899 

29 29 2.21 2.21 2 861.886 47.1363 

30 30 2.13 2.13 0 404.302 179.776 

31 31 2.17 2.17 1 640.726 -38.7931 

32 32 2.21 2.21 2 812.779 123.306 

33 33 2.13 2.13 0 515.542 -134.687 

34 34 2.17 2.17 1 597.921 -60.0048 

35 35 2.21 2.21 2 791 89.4005 

36 36 2.13 2.13 0 546.143 -115.92 

37 37 2.17 2.17 1 326.55 -64.1379 

38 38 2.21 2.21 2 725.463 115.219 

39 39 2.13 2.13 0 786.442 -143.61 
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40 40 2.17 2.17 1 242.508 -10.591 

41 41 2.21 2.21 2 506.356 61.664 

42 42 2.13 2.13 0 486.631 -155.962 

43 43 2.17 2.17 1 1009.45 -26.2896 

44 44 2.21 2.21 2 758.913 98.2372 

45 45 2.13 2.13 0 298.473 -154.342 

46 46 2.17 2.17 1 862.23 12.6117 

47 47 2.21 2.21 2 351.179 66.945 

48 48 2.13 2.13 0 620.867 173.142 

49 49 2.17 2.17 1 621.549 -36.4901 

50 50 2.21 2.21 2 816.958 126.517 

51 51 2.13 2.13 0 503.408 -156.397 

52 52 2.17 2.17 1 296.415 1.29328 

53 53 2.21 2.21 2 298.622 59.6451 

54 54 2.13 2.13 0 363.894 -168.181 

55 55 2.17 2.17 1 604.621 -35.3358 

56 56 2.21 2.21 2 732.343 136.315 

57 0 2.13 2.13 0 474.213 -115.636 

58 1 2.17 2.17 1 294.06 -45.7994 

59 2 2.21 2.21 2 811.997 117.539 

60 3 2.13 2.13 0 255.607 -114.007 

61 4 2.17 2.17 1 426.6 -41.4144 

62 5 2.21 2.21 2 552.863 101.765 

63 6 2.13 2.13 0 620.584 -121.169 

64 7 2.17 2.17 1 346.576 -66.8329 

65 8 2.21 2.21 2 505.98 46.9964 

66 9 2.13 2.13 0 473.935 -113.621 

67 10 2.17 2.17 1 773.927 -53.8191 

68 11 2.21 2.21 2 506.672 70.0063 

69 12 2.13 2.13 0 585.745 167.475 

70 13 2.17 2.17 1 167.888 -62.752 

71 14 2.21 2.21 2 773.196 56.1584 

72 15 2.13 2.13 0 191.523 -127.942 

73 16 2.17 2.17 1 677.446 11.1177 

74 17 2.21 2.21 2 914.488 98.9005 

75 18 2.13 2.13 0 326.85 179.705 

76 19 2.17 2.17 1 796.595 -56.1609 

77 20 2.21 2.21 2 800.828 123.257 

78 21 2.13 2.13 0 556.632 179.477 

79 22 2.17 2.17 1 357.339 -17.2512 

80 23 2.21 2.21 2 920.37 75.8827 

81 24 2.13 2.13 0 559.461 -117.865 

82 25 2.17 2.17 1 768.297 -0.922931 

83 26 2.21 2.21 2 976.993 73.7236 

84 27 2.13 2.13 0 300.141 -130.423 
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85 28 2.17 2.17 1 306.557 17.5357 

86 29 2.21 2.21 2 561.605 96.0885 

87 30 2.13 2.13 0 268.027 156.726 

88 31 2.17 2.17 1 130.969 -11.3385 

89 32 2.21 2.21 2 305.816 129.777 

90 33 2.13 2.13 0 615.423 176.378 

91 34 2.17 2.17 1 744.83 -11.2479 

92 35 2.21 2.21 2 637.774 48.7927 

93 36 2.13 2.13 0 531.038 -131.008 

94 37 2.17 2.17 1 652.326 -28.1634 

95 38 2.21 2.21 2 362.496 76.3309 

96 39 2.13 2.13 0 144.676 -157.869 

97 40 2.17 2.17 1 378.702 -61.0939 

98 41 2.21 2.21 2 915.061 77.7757 

99 42 2.13 2.13 0 869.986 -140.196 

100 43 2.17 2.17 1 599.817 -30.032 

101 44 2.21 2.21 2 303.74 131.831 

102 45 2.13 2.13 0 970.278 -169.609 

103 46 2.17 2.17 1 633.521 -32.4293 

104 47 2.21 2.21 2 478.468 132.091 

105 48 2.13 2.13 0 702.97 171.939 

106 49 2.17 2.17 1 296.032 2.50757 

107 50 2.21 2.21 2 489.336 132.83 

108 51 2.13 2.13 0 495.439 -141.827 

109 52 2.17 2.17 1 606.244 -28.2843 

110 53 2.21 2.21 2 706.002 112.394 

111 54 2.13 2.13 0 467.337 -156.293 

112 55 2.17 2.17 1 654.819 0.846854 

113 56 2.21 2.21 2 567.391 115.06 
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Table A.2: Results of the second scenario-part 3 

Results of application start and end times Results of 

𝑹𝑺𝑽𝒊
 

Ue Id Cell Id Sector 

Id 

Site Id  Start time of 

the application 

End time of 

the application 

Predicted 

Risk 

0 0 0 0 +435ms +1435ms 3 

1 1 1 0 +434ms +1434ms 4 

2 2 2 0 +431ms +1431ms 5 

3 3 0 1 +444ms +1444ms 5 

4 4 1 1 +425ms +1425ms 4 

5 5 2 1 +407ms +1407ms 5 

6 6 0 2 +406ms +1406ms 2 

7 7 1 2 +410ms +1410ms 5 

8 8 2 2 +407ms +1407ms 6 

9 9 0 3 +406ms +1406ms 6 

10 10 1 3 +415ms +1415ms 7 

11 11 2 3 +429ms +1429ms 1 

12 12 0 4 +442ms +1442ms 5 

13 13 1 4 +411ms +1411ms 5 

14 14 2 4 +407ms +1407ms 2 

15 15 0 5 +415ms +1415ms 7 

16 16 1 5 +403ms +1403ms 5 

17 17 2 5 +418ms +1418ms 6 

18 18 0 6 +443ms +1443ms 5 

19 19 1 6 +444ms +1444ms 9 

20 20 2 6 +417ms +1417ms 2 

21 21 0 7 +403ms +1403ms 4 

22 22 1 7 +448ms +1448ms 5 

23 23 2 7 +437ms +1437ms 6 

24 24 0 8 +422ms +1422ms 5 

25 25 1 8 +416ms +1416ms 5 

26 26 2 8 +441ms +1441ms 6 

27 27 0 9 +413ms +1413ms 5 

28 28 1 9 +412ms +1412ms 7 

29 29 2 9 +442ms +1442ms 5 

30 30 0 10 +436ms +1436ms 9 

31 31 1 10 +402ms +1402ms 4 

32 32 2 10 +407ms +1407ms 6 

33 33 0 11 +426ms +1426ms 6 

34 34 1 11 +415ms +1415ms 8 

35 35 2 11 +419ms +1419ms 6 

36 36 0 12 +429ms +1429ms 2 

37 37 1 12 +417ms +1417ms 7 

38 38 2 12 +407ms +1407ms 4 
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39 39 0 13 +400ms +1400ms 6 

40 40 1 13 +427ms +1427ms 6 

41 41 2 13 +401ms +1401ms 6 

42 42 0 14 +409ms +1409ms 5 

43 43 1 14 +414ms +1414ms 5 

44 44 2 14 +432ms +1432ms 9 

45 45 0 15 +415ms +1415ms 6 

46 46 1 15 +422ms +1422ms 5 

47 47 2 15 +439ms +1439ms 2 

48 48 0 16 +402ms +1402ms 8 

49 49 1 16 +425ms +1425ms 2 

50 50 2 16 +409ms +1409ms 4 

51 51 0 17 +427ms +1427ms 7 

52 52 1 17 +440ms +1440ms 4 

53 53 2 17 +407ms +1407ms 4 

54 54 0 18 +447ms +1447ms 5 

55 55 1 18 +434ms +1434ms 2 

56 56 2 18 +438ms +1438ms 5 

57 0 0 0 +424ms +1424ms 2 

58 1 1 0 +439ms +1439ms 2 

59 2 2 0 +404ms +1404ms 4 

60 3 0 1 +406ms +1406ms 3 

61 4 1 1 +410ms +1410ms 5 

62 5 2 1 +432ms +1432ms 2 

63 6 0 2 +407ms +1407ms 3 

64 7 1 2 +410ms +1410ms 3 

65 8 2 2 +436ms +1436ms 3 

66 9 0 3 +418ms +1418ms 1 

67 10 1 3 +414ms +1414ms 5 

68 11 2 3 +446ms +1446ms 3 

69 12 0 4 +427ms +1427ms 5 

70 13 1 4 +437ms +1437ms 5 

71 14 2 4 +429ms +1429ms 5 

72 15 0 5 +444ms +1444ms 5 

73 16 1 5 +414ms +1414ms 7 

74 17 2 5 +405ms +1405ms 4 

75 18 0 6 +440ms +1440ms 7 

76 19 1 6 +437ms +1437ms 4 

77 20 2 6 +420ms +1420ms 5 

78 21 0 7 +426ms +1426ms 8 

79 22 1 7 +428ms +1428ms 6 

80 23 2 7 +423ms +1423ms 5 

81 24 0 8 +410ms +1410ms 6 

82 25 1 8 +405ms +1405ms 1 

83 26 2 8 +400ms +1400ms 5 
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84 27 0 9 +411ms +1411ms 3 

85 28 1 9 +414ms +1414ms 7 

86 29 2 9 +437ms +1437ms 4 

87 30 0 10 +416ms +1416ms 4 

88 31 1 10 +421ms +1421ms 5 

89 32 2 10 +402ms +1402ms 2 

90 33 0 11 +407ms +1407ms 5 

91 34 1 11 +402ms +1402ms 7 

92 35 2 11 +406ms +1406ms 4 

93 36 0 12 +426ms +1426ms 6 

94 37 1 12 +442ms +1442ms 2 

95 38 2 12 +400ms +1400ms 2 

96 39 0 13 +438ms +1438ms 4 

97 40 1 13 +409ms +1409ms 5 

98 41 2 13 +443ms +1443ms 6 

99 42 0 14 +423ms +1423ms 5 

100 43 1 14 +442ms +1442ms 5 

101 44 2 14 +404ms +1404ms 6 

102 45 0 15 +447ms +1447ms 5 

103 46 1 15 +441ms +1441ms 7 

104 47 2 15 +427ms +1427ms 5 

105 48 0 16 +436ms +1436ms 9 

106 49 1 16 +404ms +1404ms 5 

107 50 2 16 +436ms +1436ms 2 

108 51 0 17 +404ms +1404ms 5 

109 52 1 17 +419ms +1419ms 7 

110 53 2 17 +430ms +1430ms 4 

111 54 0 18 +400ms +1400ms 6 

112 55 1 18 +402ms +1402ms 2 

113 56 2 18 +411ms +1411ms 9 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 .  پوختە
 
  کات،ە( د IoV)  کانەلێمب ۆت ۆئ   یتێ رنەنتی ئ  بە  شەشکێ سوود پ  نیند ە( چ5G)  مەنجێ پ  ەیوەن  ێینو  یای ژۆلەکن ەت

. خێراتر  ڵەیجو  ۆب  پاڵپستیکردنو    ،ترریگ ێج  بەیکبەستنەوەی  یند ەوەی پو    وتن،ەدواککەمتری    یئاست  کەو

  ەکانی امەیپ  کردنەوەیو ڵاب  ۆیه ەب   قورسە  یکێرکەئ   (IoV)  ەل  لێمبۆت ۆئ  یکدادانێپ  ەل  خۆبەدوورگرتن  مەڵ ب

  ۆ ب   .کردنێپە متمان  تووندەکانی  ەرجەمپەیڕەوکردنی  و   وتنە دواک  ێبە ( بESMs)   یاگوزاریفر  یتە لامەس

  کات ەد   کە ریز  نوێ و  بەرنامەکاری  یکەیەوێ چوارچ  یاری شنێپ  ەیەوەن یژ ێتو  و ەئ  ،ەپرسو  ە ئ  ی رکردنەسەچار

چوارچێوەکاری    ەک لە  بۆ    کراوەناسێ پبریتیە  ئینتەرنێتی  تۆڕبەندی  لەسەر  بنەمادار  و  سۆفتوێر  بە 

لە لەڕێگەی(  SDNCA)  کدادانێپ   خۆبەدوورگرتن  دەکرێت   (5G)   تەکنەلۆژیای  کە  پاڵپشتی  ئەو    .یەوە 

 ێ س   ەل  انەی کیەرەه  ەک  ت،ێن ێه ەکارد ەب  مەست یس  یل ێد ۆدوو م   SDNCA  یەارکراویشن ێپ   کاریەەوێ چوارچ

  SDNCA  م،ە کیە  ەیپل  ەب  ا،ەکەد مەست یس  یمە ک یە  یل ێد ۆم  ەل.  ت ێکد ێپ  ارکراویشن ێ پ  یتم یر ۆلگەئ

  ەکان یترسە م  مەودای سەختی  یورد   ەب  ەک   دەخاتەگەڕ(  VFL)   لێمبۆتۆ ئ   یەکانگیری  یربوونێف  یتم یر ۆلگەئ

 ۆڕی ت -یترس ەم  سەختی  یارکراویشنێپ  یلێد ۆم  ینان ێاهڕ  ەیگڕێ  ەل  ت ێن ڵێمەخەد   کێلێمب ۆت ۆ ئ  رەه  بەردەم

ئەو  .  کانەلێمب ۆت ۆئ   وانێن   ەل  یەکانگیر  یربوون ێف  یکردن ێجە بێج وبە    (RS-ANN)  ستکرد ەد   یمارەد 

 ێ س   ەب  شتنەیگ  ۆب  ت ێ ن ێه ەکارد ەب   SDN  ەیکەتم یر ۆلگەئ   SDNCA  یەارکراویشنێپ  کاریەەوێ چوارچ

لە  .  یک ەرەس  یامانجئ بریتیە  پەیامەکانی    ی(QoS)  یتگوزارەخزم  یت یکوال  کردنی سابیحیەکەمیان 

  ە رچاو ەو س  5G  ۆڕیت   ردووەه  یکینام یدا  یکەیەوێ ش  ەب  یان بریتیە لەوەیمە. دوو (ESM)   فریاگوزاری

تVN)  یجازەم  ۆڕی ت   ێس  ۆب   حساباتیەکان سکات ەد   رخانە(  کەمێیە.  لەوەی  بریتیە   ەی ستگێو  یشیان 

  ۆ ب   (ESM) پەیامەکانی فریاگوزاری      یوکردنڕێڕە  ۆب  ت ێرێبژ ەد ەڵه  (gNB)ی  گونجاو   ی 5Gی تەڕە بن

ی  ک ێپەیام  رەه   ۆب  رەگی کار   ی خزمەتگوزاریەکیشکردنەشکێپ   ەل  ابوونی نڵد   ۆ. بست ەبە مشوێنی    یلێمبۆتۆ ئ

  (ی دەستنیشانکراو gNB)   ( دەخاتەگەڕ لەسەرgNB)  یتمی رۆلگ ەئ  (SDNCA)  ،(ESM)فریاگوزاری  

  ، انیکان ەتیەوە ولەئ   یرچاوگرتنەبەل  ەب (  ESM)  فریاگوزاریپەیامەکانی    کاتی بۆ ناردنی    ەیخشت  دانانی  ۆب

س س  (5G)  ۆڕیت  یکان ەرچاو ەو    ی کردن ۆڵنترۆک   یامەیپ   یماەبن  رەسەلحساباتیەکان    ەرچاوەو 

(OpenFlow )ەل ەک (SDN وەردەگیرێت ) خات ەکد ڕێ. 

  ی گرنگ   ەک  خات،ەکد یە gNB و VFL   ،SDN ی کانەتمی رۆلگەئ   مە دوو  یمەست یس   یلێد ۆم  یکردن ێجە بێج

  ی م ەستیس  یل ێد ۆم  ی. ئامانجدات ەد   ست ەبە مشوێنی  و    ەرچاوەس  یکانەلێمب ۆت ۆئ   وانێ ن  یترسە م  یوداە م  ەب



 

 

  ک ێ کات  یانەدایۆناری س  وە ل(  ESM)   پەیامەکانی فریاگوزاری یوتووەرک ەس  ەیوە گواستن  ەل  ەابوون ین ڵد   مەدوو

 .ت ێریگەد   رچاوەبە ل کانەلێمبۆتۆ ئ  وانێ ن  یکانییەترسە م یوداەم ەک

کراون:    ێج ەبێ ج  )سمیولەیشن(  کردنەوێ هاوش  یئامراز  ێس  ینانێ کارهەب  ەب  ەک ەمەستیس  یلێد ۆم   هەردوو 

  ی کان ەنجامە . ئت ێنی نیم  ۆڕی ت   یکارەوێو هاوش   نۆت ی پا  یسازەرنام ەب  ی(، زمانNS3)  ۆڕت   یکارەو ێهاوش 

  ە ب   ن،ەد ەد   شانین  شەدوو ب  لە  SDNCAکاری  ەوێ چوارچ  ینگاندن ە سەڵه  ەنیقە استڕ  یکات  یکردنەو ێهاوش 

  کاری ەوێ چوارچ  یداەئ  ۆب  نگاندنەسەڵه   مە کیە  یشە . بداستاێئ   یکان ەداریند ە وەیپ   ەوە نۆڵی ک ێل  ەڵگەل  راورد ەب

SDNCA   20% و  17  ەل  نی تی بر  کانیشەنجامانە . ئکانەل ێمبۆتۆ ئ  ییراێو خ  ڕیچ  ین ۆڕیگ  ەب  کات ەد  %

، (CR)  کدادانێپ   ەیژڕێ%  0،  (CC)  یساباتیح  یز ڵۆ% ئا20% و  17،  (NO)  ۆڕت  زیاد لەسەرباری  

پاکێتی    ەیوە گواستن  یکراوێپ ە متمان  –89 %90%،  (E2E)  لایەکی تر  ۆب   لایەک  یوتنە کدوا  چرکە  یلیم   18

  ی ل یم  0.0050،  (SRR)  وڕێڕە  ەیوتووانەرکەس  ەی ژڕێ%  99.4% و  99.5،  (TR) (ESM)  پەیامەکانی

   0.5  ×4−10 و   10−40.25 × ،  (PDR)  ێت پاک  ینی زەداب  ەیژڕێ%  0،  (RE)  وڕێڕە   ییکارا  چرکە

  (E2E)  لایەکی تر  ۆب  لایەک  یوتنە کدوا  چرکە  یل یم   4و    چرکە  ی لیم  4.5(، و  CU)  ڵناەک  ینان ێکاره ەب

  کاری ەوێ چوارچ  یداەئ  ۆب   نگاندنە سەڵه  مە دوو  یش ەب.  رخانکراوەت  یویز باند   یکان ەاوازیج   هاە ب  ەڵگەل

SDNCA   ە ب ،  ترە م  30  ەگاتەد   ەک  ستداەبەمشوێنی  و    ەرچاوە س  یکانەلێمبۆت ۆئ   وانێ ن  یودا ەم  ەل  کات ەد  

و  99.5%   –% 97  ەل  ن یت یبر   کانیش ەنجامانەئ  .  کانەل ێمبۆتۆ ئ  یاوازیج   ییراێ و خ  ڕی چ  ی رچاوگرتنەبەل

98.4 %–  SRR %99.8  ،4  چرکە  یلیم   3.5و    چرکە  یلیم  RE  ،0  %CR  ی وتنە دواک  چرکە  یلیم  4.5، و  

E2E . 

 
 


