

A new Scheduling Scheme in Fog Computing system

using Deep Reinforcement Learning Algorithm

 A Doctoral Dissertation

Submitted to the council of the college of Erbil Technical

Engineering at Erbil Polytechnic University in Partial

Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Information Systems Engineering

By

Media Ali Ibrahim

B.Sc. Software Engineering 2007

M.Sc. Advanced Software Engineering 2013

Supervised By

Prof. Dr. Shavan Kamal Askar

Erbil Kurdistan

February 2024

I

DECLARATION

I declare that the Ph.D. Dissertation entitled:

“A new Scheduling Scheme in Fog Computing system using Deep

Reinforcement Learning Algorithm” is my original work, and hereby I

certify that unless stated, all study contained within this dissertation is my own

independent research and has not been submitted for the award of any other

degree at any institution, except where due acknowledgment is made in the text.

Signature:

 Student Name: Media Ali Ibrahim

Date: 18/2/2024

II

LINGUISTIC REVIEW

I confirm that I have reviewed the dissertation titled “A new Scheduling

Scheme in Fog Computing system using Deep Reinforcement Learning

Algorithm” written by the postgraduate student (Media Ali Ibrahim) has been

proofread and checked for grammatical, punctuation, and spelling mistakes.

Therefore, after making all the required corrections by the student for further

improvement, I confirm that this last copy of the dissertation is ready for

submission.

Signature:

Name of Reviewer: HONAR OSMAN KHIDR

E-mail: honar.hawler@gmail.com

Phone No.: 0750 8989088

Date: 8-01-2024

III

SUPERVISOR CERTIFICATE

This dissertation has been written under my supervision and has been

submitted for the award of the degree of Doctor of Philosophy in Information

Systems Engineering with my approval as supervisor.

Signature

Name: Prof. Dr. Shavan Kamal Askar

Date:

I confirm that all requirements have been fulfilled.

Signature:

Name: Mr. Bayad Ahmed

Head of the Department of Information Systems Engineering

Date:

I confirm that all requirements have been fulfilled.

Postgraduate Office

Signature:

Name:

Date:

IV

EXAMINING COMMITTEE CERTIFICATION

We certify that we have read this Dissertation: “A new Scheduling Scheme in

Fog Computing system using Deep Reinforcement Learning Algorithm” and

as an examining committee, examined the student (Media Ali Ibrahim) in its

content and what related to it. We approve that it meets the standards of a

dissertation for the degree of Doctor of Philosophy in Information Systems

Engineering.

Signature: Signature:

Name: Assist. Prof. Dr. Bzar Khidir Hussan Name: Assist. Prof. Dr. Reben MS KURDA

Member Member

Date: Date:

Signature: Signature:

Name: Assist. Prof. Dr.Marwan Aziz Name: Assist. Prof. Dr.Moayad Yousif Potrus

Member Member

Date: Date:

Signature: Signature:

Name: Professor Dr. Shavan Kamal Askar Name: Professor Dr. Subhi R. M. Zeebaree

Supervisor Chairman

Date: Date:

Signature

Name: Professor Dr. Ayad Zaki Saber

Dean of the College of Erbil Technical Engineering

Date:

V

ACKNOWLEDGEMENTS

First of all, I would like to thank ALLAH almighty, the most merciful and

compassionate, for His support, help, and generosity.

I am deeply indebted to my supervisor’s Prof. Dr. Shavan Askar. I would like

to express my sincere gratitude to him for his continuous support, his patience,

motivation, and immense knowledge during my Ph.D. study and writing this

dissertation.

Lastly, I would like to express my heartfelt thanks to my family for their

unwavering support during the study and the process of writing my dissertation.

Their encouragement and understanding have been invaluable throughout this-

--- journey.

VI

ABSTRACT

Fog Computing (FC) has recently emerged as a promising new paradigm

that provides resource-intensive Internet of Things (IoT) applications with low-

latency services at the network edge. However, the limited capacity of

computing resources in Fog colonies poses great challenges for scheduling and

allocating application tasks. In this dissertation, an Intelligent Scheduling

Strategy Algorithm in a Fog Computing system based on Multi-Objective Deep

Reinforcement Learning (MODRL) is proposed. MODRL algorithm select

nodes (Fog nodes or Cloud nodes) for task processing based on three

objectives; current node’s Load, node Distance, and task Priority. MODRL is

a smart method that integrates the ideas of Multi-Objective Optimization and

Deep Reinforcement Learning to tackle intricate decision-making situations

involving several conflicting objectives. This technique is especially valuable

in situations when there is a requirement to maximize numerous criteria

simultaneously, even if they do not exactly line, and where trade-offs need to

be taken into account. The proposed model addresses two main problems; task

allocation and task scheduling. Employ three Deep Reinforcement Learning

(DRL) agents based on a Deep Q Network (DQN), one for each objective. It is

a specific form of Artificial Neural Network structure employed in

Reinforcement Learning. The DQN algorithm utilizes a Deep Neural Network,

commonly a Convolutional Neural Network (CNN), to estimate the Q-function.

This enables the model to effectively process intricate input domains. However,

this is a more challenging scenario because there is a trade-off among these

objectives, and eventually, each algorithm may select different processing

nodes according to its own objective, which brings to a Pareto Front problem.

To solve this problem, propose using Multi-Objective Optimization, a Non-

dominated Sorting Genetic Algorithm (NSGA2), and a Multi-Objective

Evolutionary Algorithm based on Decomposition (MOEA/D), which are Multi-

VII

Objective Optimization algorithms that can choose the optimal node by

considering three objectives.

 Simulation investigation and experiments using a Python environment

with TensorFlow, PyTorch, Pymoo, and PQDM libraries in PyCharm, which is

a powerful Python IDE, to simulate and train the Intelligent Scheduling

Strategy. As well as, Virtualized data using MatPlotLib in the Jupyter

Notebook, indicates that the proposed Intelligent Scheduling Strategy could

attain better results for the several employed efficiency, adaptability, and

performance metrics: Task Completion Time, Makespan, Transmission Delay,

Queueing Delay, Processing Delay, Propagation Delay, Computational Delay,

Latency, Network Congestion, Throughput, CPU Load, and Storage

Utilization, with an average value of 2.02ms, 10ms, 25ms, 2ms, 1.0ms,

9.5ms,3ms, 3.5ms, 0.10ms, %100, %10, and % 99, respectively.

VIII

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... V

ABSTRACT ... VI

TABLE OF CONTENTS ... VIII

LIST OF FIGURES ... XI

LIST OF TABLES ... XII

ABBREVIATIONS ... XIII

CHAPTER ONE .. 1

1.1 OVERVIEW ... 1

1.2 PROBLEM STATEMENTS ... 5

1.3 STUDY QUESTIONS: ... 5

1.4 AIM AND OBJECTIVES .. 6

1.4.1 AIM: ... 6

1.4.2 OBJECTIVES: ... 7

1-5 SCOPE OF THE STUDY ... 7

1-6 CONTRIBUTIONS AND PROPOSED SYSTEM OF THE STUDY .. 8

1-7 STRUCTURE OF THE DISSERTATION ... 9

CHAPTER TWO ... 10

2.1 INTRODUCTION .. 10

2.1.1 FOG /CLOUD COMPUTING WITH IOT………………………............…………12

2.1.2 RESOURCE MANAGEMENT IN FOG COMPUTING .. 13

2.1.2.1 SCHEDULING IN FOG COMPUTING: .. 14

2.1.3 DEEP REINFORCEMENT LEARNING .. 16

2.1.3.1 MODEL-FREE ALGORITHMS .. 19

 2.1.3.1.1 DEEP Q-NETWORK...22

2.1.4 MULTI-OBJECTIVE DEEP REINFORCEMENT LEARNING 22

2.1.5 MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS 24

2.1.5.1 Multi-Objective EVOLUTIONARY ALGORITHM BASED ON

DECOMPOSITION .. 26

2.1.5. NON-DOMINATED SORTING GENETIC ALGORIYHM 29

2.2 RELATED WORK .. 32

IX

2.3 SUMMARY OF THE CHAPTER ... 38

CHAPTER THREE ... 39

 3.1 INTRODUCTION ………………….......………......………….....………………42

 3.2 PROPOSED SYSTEM ARCHITECTURE ... 39

3.3 PROPOSED SYSTEM MODEL .. 42

3.3.1 Communication Model ... 42

3.3.2 Processing Model .. 44

3.3.3 Task Model .. 45

3.4 SYSTEM FRAMEWORK... 46

3.4.1 The Reinforcement Learning Environment .. 47

A. Environment Design ... 47

 1. State Space ..50

 2. Action Space ...50

 3. SystemRepresentation..50

 B. Environment Daynamics ...50

1.Task Allocation and Task scheduling

 2. Reward Calculation ..51

3.5 PROPOSED ALGORITHM: DQN + MULTI-OBJECTIVE

OPTIMISATION............. .. 51

3.6 IMPLEMENTATION DETAILS ... 58

3.7 SUMMARY .. 61

CHAPTER FOUR ... 62

4-1 INTRODUCTION ... 62

4.2 TRAINING PROCESS/ TRAINING ENVIRONMENT .. 63

4.3 REWARD STRUCTURE.. 64

4.4 EXPLORATION/EXPLOTATION .. 65

4.5 VALIDATING THE DQN ALGORITHM BASED ON LOAD, DISTANCE, AND PRIORITY.

 ..67

4.6 THE MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM (MOEAD AND NSGA2) 71

4.6 VALIDATION METRICS .. 72

A. PROPOSED ALGORITHM: DQN + NSGA2 .. 73

1-Resource Utilization: .. 73

A. CPU Load .. 73

X

B. Storage Capacity ... 74

2-Latency: ... 74

3-Task Completion Time: ... 76

4-Makespan Time: ... 77

5-Queueing Delay: ... 78

6- Communication Delay: ... 79

A. Propagation Delay .. 79

B. Transmission Delay ... 80

C. Processing Delay ... 81

7-ComputationalDelay: ... 82

8- Throughput: ... 83

9- Network Congestion: .. 84

B. PROPOSED ALGORITHM: DQN + MOEA/D ... 85

1- Resource Utilization .. 86

A. CPU .. 86

 B. Storage Capacity………………………………... 87

2- Latency ... 87

3- Task Completion Time ... 87

4- Makespan Time ... 88

5- Queu eing Delay ... 88

6- Communication Delay .. 89

A. Propagation Delay .. 89

 B. Transmission Delay...91

C. Processing Delay ... 90

7- Computational Delay .. 90

8- Throughput .. 91

9- Network Congestion .. 91

C- RESULTS COMPARISON ... 92

4.8 SUMMARY .. 96

CHAPTER FIVE - CONCLUSIONS AND FUTURE WORKS 97

 5.1 CONCLUSION..98

 5.2 FUTURE WORKS..98

REFERENCES ... R1

XI

LIST OF FIGURES

Figure 2. 1: Fog computing is an extension of cloud but closer to IoT.............................. 12

Figure 2. 2: The taxonomy of scheduling in a Fog computing Environment…………….16

Figure 2. 3: A Taxonomy of RL algorithms ... 19

Figure 2. 4: DQN Process. .. 22

Figure 2. 5 :System architecture of MODRL Framework .. 24

Figure 2. 6: Flow chart of MOEA/D .. 29

Figure 2. 7: Flow chart NSGAII. .. 31

Figure 3. 1: Proposed System Architecture .. 41

Figure 3. 2: Communication Delay .. 44

Figure 3. 1: Reward Function Process..52

Figure 3. 4: Illustration of Deep Reinforcement Learning Environment.. 52

Figure 3. 5: Proposed ALGORITHM/ DQN Flowchart ... 53

Figure 3. 6: Proposed System Environment. .. 55

FIGURE 3. 7: Proposed Mult-iobjective Optimization using (DQN + MOEA/D) and (DQN

+ NSGA2) Flowchart .. 56

Figure 4. 1: Episode/Return Load, Distance, and Priority .. 64

Figure 4. 2: Reward/Return Load, Distance, and Priority .. 65

Figure 4. 3: Exploration/Explotation .. 66

Figure 4. 4: The average training episodic return of the three DQN algorithms 68

Figure 4. 5: The average episodic return of the three DQN algorithms 69

Figure 4. 6: The average episodic return of the Multi-Objective Evolutionary algorithm 71

Figure 4. 7: CPU Load .. 73

Figure 4. 8: Storage Capacity ... 74

Figure 4. 9: Latency .. 75

Figure 4. 10: Task completion time .. 76

Figure 4. 11: Makespan Time ... 77

Figure 4. 12: Queueing delay ... 78

Figure 4. 13: Propagation delay .. 79

Figure 4. 14: Transmission delay ... 80

Figure 4. 15: Processing delay .. 81

Figure 4. 16: Computational delay ... 82

file:///C:/Users/BEST%20TECH/Desktop/Media%20Dissertation/MEDIA%20Dissertation%20(2).docx%23_Toc156081512
file:///C:/Users/BEST%20TECH/Desktop/Media%20Dissertation/MEDIA%20Dissertation%20(2).docx%23_Toc156081517

XII

Figure 4. 17: Throughput .. 83

Figure 4. 18: NetworkCongestion. ... 84

Figure 4. 19: CPU Load .. 86

Figure 4. 20: Storage Capacity ... 86

Figure 4. 21: Latency .. 87

Figure 4. 22: Task completion time .. 87

Figure 4. 23: Makespan Time ... 88

Figure 4. 24: Queueing delay ... 88

Figure 4. 25: Propagation delay .. 89

Figure 4. 26: Transmission delay ... 89

Figure 4. 27: Processing delay .. 90

Figure 4. 28: Computational delay ... 90

Figure 4. 29: Throughput .. 91

Figure 4. 30: Network Congestion ... 91

LIST OF TABLES

Table 2. 1: Comparation among the Reviewed works .. 37

Table 3. 6: Environment Hyperparameter .. 59

Table 3. 7 :DQN Hyperparameters ... 59

Table 3. 8: MOEA/D Hyperparameters .. 60

Table 3. 9: NSGA2 Hyperparametrs ... 60

Table 4. 1: Comparison of proposed algorithm and most relevant existing works………. 95

Table 4. 1: Comparison of proposed algorithm and most relevant existing works………. 95

XIII

ABBREVIATIONS

4G Fourth Generation

5G

A2C

Fifth Generation

Advantage Actor-Critic

AI Artificial Intelligent

ANN Artificial Neural Network

CC Cloud Computing

CNN Convolutional Neural Network

CPU

DDPG

Central Processing Unit

Deterministic Policy Gradients

DDQN Double Deep Q Network

DISA Deep Intelligent Scheduling Algorithm

DNN Deep neural Network

DQBRA Deep-learning-Q-Network based resource-allocation

DQN Deep Q Network

DRL Deep Reinforcement Learning

DRLIS Deep Reinforcement Learning-based IoT application

Scheduling

EA Evolutionary Algorithm

EATS Efficient Algorithm Task Scheduling

EC Edge Computing

EMO Evolutionary Multi-Objective

EO Evolutionary Optimization

FC Fog Computing

FN Fog Node

GPU Graphical Processing Unit

IDE Integrated Development Environment

IoT Internet of Things

MatplotLib Matlab Plotting Library

ML Machine Learning

XIV

MODRL Multi Objective Deep Reinforcement Learning

MOEA/D Multi Objective Evolutionary Algorithm

/Decomposition

MOMDPs Multi Objective Markov Decision Process

NN Neural Network

NSGA2 Non-Dominated Sorting Genetic Algorithm

PAES Pareto Archived Evoalutionary Strength

POF

PPO

Pareto Optimal Front

Proximal Policy Optimization

PQDM Power Quality Data Manager

PSO Particle Swarm Optimization

PyCharm PythonCharm

Pymoo Python Multi-Objective Optimization

PyTorch Python Torch

PF Pareto Front

QMTSF Q-learning-based Multi-Task Scheduling Framework

QoS Quality of Service

ReLU

RL-G

Rectified Linear Unit

Reinforcement Learning - Greedy

RR Round-Robin

SDN Software Defined Network

SLAs Service Level agreements

SPEA Strength Pareto Evolutionary Algorithm

UCB Upper Confidence Bound

UQRL UCB-based Q-Reinforcement

Learning

VM Virtual Machine

WIFI Wireless Fidelity

WSGA Weighted Sum Genetic Algorithm

1

 CHAPTER ONE

INTRODUCTION

1.1 Overview

In recent years, due to the growing progress in the use of the Internet of Things

(IoT), there has been a significant rise in both the number of applications and the

amount of data being demanded. In addition, the demand for real-time data

processing and analysis is increasing. However, traditional cloud computing faces

several threats, such as latency, performance, network breakdown, and security.

Moreover, the traditional Cloud Computing architecture is not compatible

with IoT applications because of its inherent limitations, such as limited bandwidth,

high latency, and high-power consumption (Alizadeh et al., 2020a)-(Roheed

Khaliqyar et al., 2023)-(Sabireen et al., 2021). With the discovery of Fog Computing

(FC), these problems have been addressed by computing clouds nearer to IoT. FC

provides storage and computation such that all services can be transferred over the

network between the IoT and cloud layers. Furthermore, FC can provide full

authentication using local computers and share secure information locally or through

distributed computing (Laghari et al., 2021)-(Rahman et al., 2021).

Researchers from Cisco Systems proposed FC in 2012. FC acts as a link

between the IoT layer, storage devices, and cloud computing (CC). FC in a

distributed environment, in which several heterogeneous Fog nodes (FN) can share

and connect their computing and storage resources among neighboring nodes for

further analytics and processing (Sabireen et al., 2021)-(Alizadeh et al., 2020a)-

(Gazori, Rahbari et al., 2020a). Therefore, FC is not a replacement for CC but

extends the computation, storage, and communication facilities from the cloud to the

2

edge of the networks(Mukherjee et al.2018). The main objectives of FC are to

reduce network traffic, latency, power consumption, and operational costs(Ghobaei-

Arani et al., 2020a). FC is a novel approach that aims to bring the Cloud layer closer

to the IoT user as well as enhance the Quality of Service (QoS)(Rani et al., 2022).

QoS includes optimizing the response time until real-time applications can rapidly

make their final decision at the same time as the actions(Abdel-Basset et al., 2021a).

Compared with CC, FC delivers services with a quick response time and high

quality. Hence, FC might be the best option to allow IoT to deliver highly and

efficiently secure services to several IoT clients. It is eventually at places specified

by Service Level Agreements (SLAs) or permits the administration of resource

provisioning and services outside Cloud Computing, nearer to nodes, at the network

edge network layer (Sabireen et al., 2021)

On the other hand, compared to CC, FC does not have sufficient storage and

computing resources. Therefore, efficient resource allocation is a significant

research problem for FC(Mukherjee et al., 2018). Hence, one of the key challenges

in a FC environment for running IoT applications is resource allocation(Naha et al.,

2018)(Alizadeh et al., 2020a)(Ghobaei-Arani et al., 2020b)(Islam et al., 2021).

Moreover, executing tasks in the FC layer for IoT applications requires efficient

resource management and allocation and physical servers in cloud data centers to

satisfy QoS requirements. However, achieving this objective faces many serious

challenges due to the limitations and complex heterogeneity of Fog resources, the

dynamic nature of resource demands, and locality restrictions (Tran-Dang et al.,

2022). To improve the operation of FC and further achieve its objectives, a practical

and exact scheduling approach is required(Alizadeh et al., 2020a). Additionally, the

FC manages services and resources in a decentralized manner. Fog devices provide

services to IoT users in a decentralized manner(Niranjan et al., 2018). In general,

IoT nodes are connected to a FN in a FC environment. These FNs are responsible

3

for intermediate storage and computation and are located in close proximity to IoT

users(Naha et al., 2018). In addition, IoT nodes do not have sufficient resources to

analyze or store the generated data, and some of the connected nodes have no

intelligence to process the analyzed data in order to make decisions. Thus, they

require an external controller to schedule tasks and make decisions(Gazori et al.,

2020a). Typically, task scheduling includes assigning which resources will process

which tasks. In large-scale systems, including the Cloud layer IoT layer and Fog

layer, the possible resources for computation execution contain servers in the Cloud-

tier IoT nodes and Fog nodes(Tran-Dang et al., 2022). In addition, scheduling aims

to reduce response time, enhance resource utilization, increase user satisfaction, and

improve performance(Alizadeh et al., 2020b). Thus, efficient resource management

will improve Fog Computing performance, and task scheduling is an essential

requirement for performance optimization in Fog Computing environments(Gazori

et al., 2020a).

Nowadays, Artificial Intelligence (AI) has become a new technology in the

area of information and knowledge technology for the control of heterogeneous and

homogeneous nodes connected in FC, as well as the management of data(Hazra et

al., 2023). Machine Learning (ML), specifically Deep Reinforcement Learning

(DRL), is considered an effective technique that has appealed to the research

community (Nassar et al., 2018)to tackle numerous resource management problems.

DRL has a strong ability to deal with decision-making problems (Gazori et al.,

2020a)so that agents can respond efficiently to the dynamics of the environment.

This vision suggests great potential for the application of RL in the concept of FC

concerning resource allocation for task execution and offloading to attain improved

performance. In addition, RL has been progressively applied and studied to

successfully solve resource allocation problems in Fog Computing

environments(Tran-Dang et al., 2022). By exploiting a deep neural network (DNN),

4

DRLs can provide accurate regression and estimate precise value functions for RL

problems(Nassar et al., 2018). DRL- and deep Q-learning (DQL) based schemes

were combined to optimize resource allocation(Liu et al., 2019). In the

Reinforcement Learning-based model, Q-Learning with the epsilon-greedy

algorithm is applied to derive the best action selection (Tran-Dang et al., 2022)For

Multi-Objective which results in a Pareto Front problem that is solved by an

optimization algorithm.

Optimization plays an important role in daily life. In computing, optimization

refers to application performance with minimum resources or a maximizing system.

In optimization, meta-heuristic techniques are more effective in solving realistic

problems in several fields, such as computing and engineering, and population-based

techniques transform and manipulate a set of solutions through the optimization

procedure. These can be categorized into Single-Objective and Multi-Objective

techniques. A Multi-Objective method was used to optimize two or more competing

goals by simultaneously considering the constraints at the same time(Sharma et al.,

2022). The performance of three Multi-Objective Evolutionary Algorithms, namely

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D),

Non-Dominated Sorting Genetic Algorithm 2 (NSGA 2), and Weighted Sum

Genetic Algorithm (WSGA) to find the best solution for task scheduling in FC to

minimize network delay, allocate services, and use resources effectively. The test

results show that both MOEA/D and NSGA-II can effectively optimize the

objectives compared to WSGA, whereas MOEA/D can minimize the execution time

the most (Abdel-Basset et al., 2021b)(Guerrero et al., 2019).

In this study, A scheduling strategy for an FC system utilizing a MODRL

algorithm has been proposed. The proposed model tackles two primary issues: task

allocation and task scheduling. The DRL algorithm is necessary to formulate an

optimal approach for assigning tasks generated by IoT devices to appropriate

5

processing nodes (Fog or Cloud), and subsequently arranging those tasks in the

designated Fog nodes according to various criteria. The experimental findings

demonstrate that the proposed (DQN+ Multi-Objective Optimization) algorithm is

superior and adaptable in comparison to the existing relevant research studies.

1-2 Problem Statements

The investigated problems in this dissertation can be summarized as follows:

1- In Fog Computing environments, efficient resource management for running

IoT applications is a critical challenge, often approached through single-

objective scheduling, neglecting concurrent optimization of multiple

objectives (Load, Distance , and Priority).

2- Existing research exhibits shortcomings such as inadequate consideration of

task scheduling and task allocation, insufficient utilization of proper

Orchestrator in the Fog layer for management, and a lack of Multi-Objective

agents for accurate provisioning of Quality-of-Service requirements.

3- Addressing these gaps necessitates exploring Multi-Objective Optimization

schemes, conducting studies that integrate performance, efficiency, and

adaptability metrics, and developing approaches that concurrently optimize

task scheduling, task allocation, and Quality-of-Service provisioning in Fog

Computing environments.

1-3 Study of the Questions:

This dissertation aims at addressing the problems specified in the statement of

the problem section. During the study made in this work, some critical research

questions have been raised. The following are the research questions of this

dissertation:

6

1- How can task scheduling and task allocation be optimized in Fog Computing

environments to enable computing resource utilization and efficient storage

for IoT applications?

2- What scheme can satisfy the target of handling tasks scheduling as well as

task allocation and at the same time it can be optimized for Multi-Objectives?

3- How to fit the proposed adaptive resource management techniques in the Fog

layer to dynamically alter task scheduling and task allocation based on

resource availability and changing workloads within the Fog Computing

management layer?

4- How can the proposed work achieve a balanced trade-off between response

time and task number in the Fog Computing system?

1-4 Aim and objectives

1.4.1 Aim:

 Specifically in the context of running IoT applications, the aim of this study

is to solve the issue of resource management in Fog computing settings. By

simultaneously taking into account numerous goals, the study aims to enhance task

scheduling, thereby boosting the Fog Computing system's overall performance,

efficiency, and adaptability.

7

1.4.2 Objectives:

1- Adaptive Resource Management: Create adaptive system that dynamically

conduct task scheduling and task allocation in response to resource

availability and changing workloads.

2- Multi-Objective Task Scheduling: Implement and design a task scheduling

algorithm that simultaneously optimizes a variety of objectives. For example,

maximize resource utilization and minimize response time.

3- Optimize task Allocation: Develop task allocation strategies that effectively

compute resources and distribute storage in Fog Computing environments

while taking into account the unique requirements and constraints of IoT

applications.

4- Performance Enhancement: Improve the performance of intelligent

scheduling in Fog Computing environments, with an emphasis on better

reliability, increased throughput, and reduced latency.

1-5 Scope of the Study

1- Fog Computing Environment: The study pays particular attention to Fog

Computing environments, which act as a middle layer between IoT nodes and

cloud computing.

2- Resource Management: The main emphasis of the study is on resource

management, including computing resources and storage, within the FC

environment.

3- Multi-Objective Deep Reinforcement Learning: The study addresses the

challenge of Multi-Objective optimization for task allocation and task

scheduling. It explores methods to concurrently optimize multiple objectives,

including Load, Distance, and Priority.

8

1-6 Contributions and Proposed System of the Study

In this study, an Intelligent Scheduling Strategy for a FC system based on a DRL

algorithm has been proposed. The proposed model addresses two main problems:

resource allocation and task scheduling. The DQN algorithm of the DRL is required

to develop the best strategy to allocate the tasks generated from IoT devices to

suitable processing nodes (Fog or Cloud), as well as to schedule those tasks in the

allocated Fog nodes based on multiple criteria. Finally, this research study provides

the following contributions:

1- Deployed a Central Smart Fog Orchestrator that manages the Fog system. The

Fog nodes host IoT applications to process tasks received from the IoT layer.

2- Proposes the use the MODRL based on a DQN to select the nodes for task

processing (Fog nodes or Cloud) based on three objectives: Load, Distance,

and Priority.

3- Using a Multi-Objective Optimization Algorithm (MOEA/D and NSGA2). It

is a metaheuristic optimization method employed for solving Multi-Objective

optimization problems that can choose the optimal node by considering three

objectives. To validate the performance, efficiency, and adaptability of the

proposed (DQN+Multi-Objective Optimization) algorithm, the Task

Completion Time, Makespan, Processing Delay, Propagation Delay,

queueingDelay, Transmission Delay, Computational Delay, Latency, CPU

Load, and Storage Utilization metrics have been used. The experiment results

prove the high performance, effectiveness, and adaptive of the proposed

algorithm across all three objectives (Load, Distance, and Priority) compared

with the existing related research studies.

9

1-7 Structure of the Dissertation

This dissertation is divided into five chapters and organized as follows:

 Chapter 1 includes an overview, problem statements, questions, aims, objectives,

scope of the study, contributions, and proposed system of the dissertation.

 Chapter 2 presents the literature review and the theoretical background of

resource management based on reinforcement learning. Based on the literature,

resource management can be categorized as task scheduling and task allocation for

a single objective.

 Chapter 3 dedicated to task scheduling and task allocation based on Multi-

Objective Deep Reinforcement Learning as well as include the proposed system

architecture, system model, system environment, and proposed system algorithm.

 Chapter 4 illustrates the results of the experimental study as well as compares the

proposed algorithm with the current related research studies.

 Finally, chapter 5 presents the conclusion of the study. In addition, future work

is given at the end of the conclusion section.

10

CHAPTER TWO

 BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

Scheduling in Fog Computing, especially when utilizing Deep Reinforcement

Learning (DRL) methods, is a complicated and dynamic area of research. Dynamic

Resource Allocation (DRL) approaches have the capability to enable intelligent

decision-making in Fog environments that have limited resources. Low delay and

high resource utilization are crucial measures for evaluating the effectiveness of

scheduling algorithms in this context. Attaining a minimal delay guarantees prompt

and responsive execution of tasks, while optimizing resource usage improves the

capacity and overall efficiency of FN. The investigation of advanced scheduling

algorithms supported by DRL is crucial for improving the adaptability and

performance of FC system. Moreover, scheduling in Fog Computing is crucial for

maximizing resource utilization, distributing workloads evenly, minimizing delays,

promoting energy efficiency, controlling QoS, responding to changing

environments, improving fault tolerance, and prioritizing jobs. Efficient scheduling

enhances the overall efficiency, dependability, and promptness of FC systems.

 This chapter addresses the background of scheduling in FC based MODRL.

It also mentions previous and related research works. A summary table of the

mentioned research, the architecture and methods used, the objective of each one,

the tool simulated, and the limitations will be shown at the end of this chapter. This

table will assist in proposing an intelligent scheduling strategy that will fulfill the

shortages of these modified or proposed networks.

11

2.1.1 Fog /Cloud Computing with IoT

With the Internet of Things, billions of physical things can be connected to

each other and share data for a wide range of uses. On the other hand, some IoT

applications may find it problematic when unsupported capabilities like geographic

distribution, location awareness, and low latency are included in IoT. On the other

hand, a number of risks, including latency, performance, network outages, and

security, affect traditional cloud computing. Furthermore, due to its intrinsic

restrictions, like constrained bandwidth, high latency, and high-power consumption,

the traditional Cloud Computing architecture is incompatible with Internet of Things

applications. FC is coupled with IoT to expand networking capabilities, storage, and

compute to the Edge layer in order to provide these functions (Ni et al., 2018).

FC brings the cloud closer to IoT nodes, as shown in figure 2.1 (Dizdarevic et

al., 2018). FC, a concept presented by Cisco, is the extension of Cloud Computing

capabilities to the network's edge, closer to IoT devices and sensors. It offers several

benefits, including low latency, bandwidth efficiency, privacy and security,

scalability, reliability, edge intelligence, and adaptability. By processing data closer

to the source, Fog Computing reduces latency, optimizes bandwidth usage, and

minimizes the need for sensitive data to be sent to the Cloud. It also enhances

reliability by ensuring that local processing at the edge continues even in the event

of a centralized cloud service downtime. Fog Computing also facilitates edge

intelligence, enabling devices to make complex decisions locally without relying

heavily on cloud services. Rather than transferring IoT data to the Cloud layer, the

FN enable local IoT data processing and storage at IoT nodes. The FN offers higher-

quality services with faster reaction times than the cloud. Therefore, FC may be

regarded as the greatest option to enable the IoT to offer efficient and safe services

for a variety of IoT nodes. On the other hand, FN are regularly network nodes

12

equipped with additional storage and computing power. Though it is problematic for

such nodes to match the resource capacity of Cloud Computing servers,

Consequently, sensible management of Fog resources is essential for the effective

operation of the FC system (Atlam et al., 2018). Typically, task scheduling includes

assigning which resources will process which tasks. In large-scale systems,

including Cloud-layer IoT layers and Fog layers, the possible resources for

computation execution contain servers in the cloud-tier IoT nodes and Fog nodes

(Tan et al., 2017).

 Figure 2. 1: Fog Computing is an extension of cloud but closer to IoT

13

2.1.2 Resource Management in Fog Computing

 As FC is still a developing part of research, there is insufficient research

focusing on resource management. FC is essential to operate separately to ensure

uninterrupted services even once there are variable connections with the cloud layer.

It is also mandatory to fully integrate with the Cloud layer when complete resource

connectivity is restored. So, there is a requirement for the development of effective

orchestration mechanisms and resource management to confirm acceptable

performance of services and applications while taking advantage of Cloud skills

(Dlamini et al., 2019).

FC includes the utilization, efficient allocation, and monitoring of computing

resources in a distributed environment. It involves resource discovery, allocation,

Load balancing, dynamic scaling, QoS management, energy efficiency, fault

tolerance, security and privacy, monitoring and analytics, task scheduling,

adaptability to dynamic environments, and elasticity. Resource discovery involves

determining available devices or Fog nodes' capabilities, allocation based on task

requirements, and load balancing to prevent bottlenecks. Dynamic scaling allows the

Fog Computing infrastructure to scale up or down in response to changing

workloads. QoS management prioritizes meeting QoS requirements for user

satisfaction. Security measures protect computing resources and data, and

monitoring and analytics help identify trends and make informed decisions. Task

scheduling intelligently optimizes resource use, and adaptability to dynamic

environments allows for dynamic resource allocation. Thus, the aim of resource

management in FC is to select FNs that take the form of algorithms and best process

IoT data and are implemented within specific Fog layer controllers or Fog nodes. As

well as, resource management relies on additional software and hardware structures,

14

such as the Application Programming Interface (API), or controllers, to be

implemented within the Fog system for suitable FN selection. Furthermore, resource

management is the key aspect that determines the performance of FC (Fahimullah et

al., 2022).

Currently, a central Reinforcement Learning agent is used in Fog layer

resource management techniques. Distributed multi-agent Reinforcement Learning

has been applied to huge systems, where each agent manages a portion of the total

FNs, hence improving overall system resource management (Martinez et al., 2020).

2.1.2.1 Scheduling in Fog Computing:

 Task allocation and task scheduling are two closely connected ideas in FC,

but they refer to separate aspects of handling computational tasks within a FC

system. Scheduling plays a significant role in Fog resource management; task

scheduling is the facility to plan tasks for the suitable resources in FC. As FC

contains distributed and heterogeneous resources, task scheduling becomes

complex, which is the main challenge in Fog computing. Scheduling in Fog

computing offers numerous advantages, such as optimizing resources, balancing

workloads, reducing latency, improving energy efficiency, managing QoS, adapting

to changing environments, ensuring fault tolerance, prioritizing tasks, enabling

scalability, optimizing costs, and enhancing user experience. The combined benefits

of these characteristics help to the efficient functioning of Fog Computing systems

in diverse applications and sectors. The scheduling problems have also been

categorized into five groups: task allocation, task scheduling, workflow scheduling,

job scheduling, and resource scheduling (Matrouk et al., 2021)

In a distributed computing environment, task scheduling refers to the

procedure of determining when and where to execute an exact task. As well as, the

15

main challenge of task scheduling in FC is to satisfy IoT users’ dynamic

requirements in real-time with FNs incomplete resource capacities. So, it is not

conceivable to schedule the complete task on one node; it is distributed among

multiple Fog colonies and separated into sub-tasks. These FNs are distributed in a

colony and are typically achieved by a Fog scheduler. It plays an important role in

processing the Priority tasks locally within a colony to moderate service delays

(Kaur et al., 2021).

Scheduling is a crucial aspect of FC, aiming to efficiently allocate and manage

computing resources for tasks or applications in a distributed and dynamic

environment as shown in figure 2.2. It involves making decisions about when and

where to execute tasks, considering factors such as resource availability, task

priorities, latency requirements, and energy efficiency. Scheduling algorithms

optimize resource utilization, distribute tasks across available resources, reduce

latency, optimize energy consumption, and manage QoS requirements. They also

adapt to dynamic environments, ensuring efficiency in a shifting environment.

Overall, scheduling is essential for optimizing resource usage, balancing loads,

reducing latency, improving energy efficiency, managing QoS, adapting to dynamic

environments, enhancing fault tolerance, prioritizing tasks, and supporting elasticity.

Therefore, scheduling plays a vital role in FC to professionally manage these

resources and assign them to each task simultaneously. On the other hand, task

allocation includes deciding which exact resources should be allocated to execute a

specific task. Thus, task allocation is one of the key challenges in running IoT

applications in Fog Computing. FC needs to manage job distribution in highly

efficient ways to enhance the QoS of these latency-sensitive applications (Alsmirat

et al., 2020).

16

Figure 2. 2: The taxonomy of task scheduling in a Fog computing System

17

2.1.3 Deep Reinforcement learning

 In recent years, remarkable advancements have been made in solving

challenging problems across numerous fields using DRL. DL and RL, two important

sub fields of ML, have made important strides in both the progress of the study of

practical applications and theoretical frameworks, allowing high-dimensional,

interactive learning. Reinforcement Learning is the process of teaching an agent to

make a series of decisions in an environment by interacting with it and receiving

feedback in the form of rewards or punishments. DL, particularly deep neural

networks, is utilized to process input spaces with a large number of dimensions and

intricate mappings. In addition, Deep Reinforcement Learning has demonstrated

exceptional efficacy in resolving intricate issues and attaining performance beyond

human capabilities in several fields. The capability to process input spaces with a

large number of dimensions and acquire hierarchical representations renders it an

influential method for numerous practical applications. Nevertheless, it necessitates

meticulous examination of the obstacles and factors associated with instruction and

implementation. For example, resource management (scheduling), automatic

driving, and game strategy design (Henderson et al., 2018)(Wang et al., 2023)

Deep RL = RL Algorithm + Artificial Neural Network (ANN)

A main reason for interest in DRL is that it functions well on current

computers and appears to have various applications. The aim of DRL is to Find the

optimal course of action that maximizes reward across all possible states of the

environment (the Fog layer) is the goal of DRL. The system tries out actions, learns

from the feedback, and interacts with high-dimensional and complicated settings to

do this. Deep Neural Networks (DNN) are used by DL to estimate complex and high-

18

dimensional environments. issues whose complexity prevents tabular approaches

from offering precise solutions. The DL has advanced significantly; machines can

now recognize pedestrians in a series of photos and can understand sentences.

Moreover, the field of RL involves by trial and error. And it learns from feedback;

RL doesn't rely on pre-exist datasets for training; it independently selects actions and

learns by receiving feedback from the environment (Plaat, 2022)(Tan, Yan and

Guan, 2017b)

(Mao et al., 2016)believes RL methods are particularly well-suited to resource

management systems. First, the decisions made by these systems frequently follow

repetitive patterns, resulting in a wealth of training data that proves advantageous

for RL algorithms. This is exemplified in scenarios like cluster scheduling decisions

and the consequent performance outcomes. Second, RL can model complex systems

and decision-making policies as DNN equivalent to the models used for game-

playing agents. In addition, RM problems are ubiquitous in networks and computer

systems. Examples include scheduling in compute colonies, virtual machine

placement in CC, and relay selection in Internet telephony.

Various profound Reinforcement Learning (DRL) methods have been created

to tackle distinct aspects of instructing agents to make sequential judgments in

settings. DRL algorithms fall into two primary categories: Both model-based and

model-free algorithms, as shown in figure 2.3. These methods are merely a fraction

of the wide array of techniques in the field of DRL. The selection of an algorithm is

frequently influenced by the specific attributes of the problem being addressed, such

as the characteristics of the environment, the type of behaviors involved, and the

desired trade-off between exploration and exploitation. Task scheduling is defined

as deciding which tasks are processed by the IoT layer, the Fog layer, or the Cloud

layer in order to achieve the goal design purposes of minimizing the computation

cost and long-term service delay for the FC environments under the scheduler in the

19

IoT-Fog or IoT-Cloud systems. So, a DQL-based scheduling algorithm is introduced

(Tran-Dang et al. 2022).

2.1.3.1 Model-free Algorithms

Model-free algorithms nature make up the first main category of DRL

algorithms, as well as establish the epitome of a straight learning procedure over

experience. More precisely, an agent in an environment tries to learn the best policy

for solving a task by straight altering the experience collected as a consequence of

achieved actions, into a consequential policy. Model-free RL algorithms are a type

of approaches that work without having explicit knowledge of the dynamics of the

environment they are operating in. These techniques acquire optimal tactics by

directly interacting with the environment, depending on trial and error instead of a

pre-established model (Tran-Dang et al. 2022).

 Figure 2. 3: A Taxonomy of RL algorithms

20

 Value-based algorithms, such as Q-Learning methods, use the value function

to inform decision-making, whereas policy-based techniques, like REINFORCE and

Proximal Policy Optimization (PPO), explicitly define the agent's strategy through

parameterize. Actor-Critic approaches, such as Deep Deterministic Policy Gradients

(DDPG) and Advantage Actor-Critic (A2C), integrate elements from both value and

policy-based methods. They involve an actor for decision-making and a critic for

evaluating actions. Model-free Reinforcement Learning is especially advantageous

in situations when the environment is intricate or its dynamics are uncertain. It

provides flexibility in a wide range of applications where learning is achieved

through direct interactions, without the need for explicit models. Some examples of

these algorithms are Q-Learning, REINFORCE, A2C, and DDPG. Deep QL is one

of the main categories of model-free family as described in below section (Lazaridis,

2020).

 2.1.3.1.1 Deep Q-Network

Q-Learning is arguably one of the off-policy strategies and one of the most

applied representative RL approaches. Currently, due to the overall advancements

in Reinforcement Learning (RL), there has been a widespread exploration and

implementation of several adaptations of Q-Learning. One such modification is

Deep Q-Learning, which integrates traditional Q-Learning with Deep Neural

Networks (DNN). In addition, one of the most popular algorithms is Deep Q-

Learning, developed in 2016 at Google. Furthermore, Deep Q-Learning adds two

techniques to the value estimation via an ANN. The target Q technique is one, and

an experience replay is the other. The Q technique's value approximation via Neural

Network (NN) is highly imbalanced; this is stabilized by the experience replay.

Every action, every state, and every reward in the experience replay technique are

21

valued based on past states. Thus, there are relationships among states, incentives,

and actions. These relationships mean that learning the estimate function in a steady-

state manner is not possible. Furthermore, the experience replay removes

connections by buffering the experience and extracting the learning data at

random(Jang et al., 2019).

Moreover, A Deep Q-Network (DQN) is an approach for Reinforcement

Learning that integrates the ideas of Q-Learning with DNN. This permits for the

acquisition of optimum strategies in environments characterized by state spaces with

a large number of dimensions. DeepMind introduced DQN, which use Deep Neural

Networks to estimate Q-values, enabling it to effectively deal with intricate, practical

scenarios. The approach utilizes experience replay to improve the stability of

training by storing and randomly selecting previous experiences, and target networks

to produce more consistent estimations of Q-values during updates. DQN rose to

attention because of its remarkable performance in playing Atari 2600 video games,

demonstrating its capacity to generalize across diverse settings. The incorporation

of ε-greedy exploration in DQN has established it as a fundamental algorithm in the

realm of Deep Reinforcement Learning, exerting significant influence on later

advancements and practical implementations. DQN is an adaptation of the

traditional Q-Learning method that offers three key improvements: (1) estimating

the Q-values of the upcoming state using previous network parameters (2) utilizing

mini-batches of arbitrary training data as an alternative to updating the most recent

experience in steps; and (3) a deep CNN architecture for Q-function approximation,

as shown in the figure 2.4 (Roderick et al., 2017).

22

Figure 2. 4: DQN Process.

2.1.4 Multi-Objective Deep Reinforcement Learning

MODRL has been observed as a significant research topic due to the Multi-

Objective characteristics of adaptive optimal control problems and several

practical sequential decision-making scenarios in the real-world. In conventional

Deep Reinforcement Learning (DRL), the objective usually revolves around

maximizing a solitary cumulative reward signal. In addition, MODRL entails the

23

establishment of several objective functions, each of which represents a separate

goal or criterion that the agent strives to optimize. The presence of varying sizes

and units among these objectives poses a challenge to the optimization process.

On the other hand, MODRL tackles issues that involve many objectives, which

may potentially be in conflict, and require an agent to find a balance. This is

especially pertinent in intricate real-life situations when decision-making entails

balancing various objectives. (Liu, Xu and Hu, 2015).

 As well as, numerous real-world problems have multiple, probably

incompatible objectives. For instance, an agent may want to maximize the

performance of a web application server while minimizing its power

consumption. So, such problems can be demonstrated as Multi-Objective Markov

Decision Processes (MOMDPs) as well as solved with MODRL. As it is typically

not clear how to assess accessible trade-offs between different objectives a priori,

there is no single best policy. MODRL is an extension of traditional DRL that

handles situations where there are multiple incompatible objectives to optimize

concurrently. In addition, MODRL aims to find policies that provide a trade-off

between these objectives. In MODRL, the main goal is to learn policies that can

handle a Pareto-optimal trade-off between different purposes as opposed to a

single best objective. Furthermore, each objective is considered a separate task

in MODRL, which is a type of multi-task learning. The agent gains the ability to

weigh the objectives when making decisions as shown in Figure 2.5 (Mossalam

et al., 2016) (Thi Nguyen et al., 2020).

24

Figure 2. 5 :System architecture of MODRL Framework

2.1.5 Multi-Objective Optimization Using Evolutionary Algorithms

Recently, Evolutionary Multi-Objective Optimization (EMO) has become a

useful and popular field of application and research. As well as a specific area of

Artificial Intelligence and optimization that focuses on solving problems with

multiple objectives. Evolutionary Optimization (EO) algorithms use a population-

based approach in which a new population of solutions evolves with each iteration,

and more than one solution contributes in an iteration. Multi-Objective optimization

is the process of optimizing many objectives that are in conflict with each other. The

objective is to identify a collection of solutions that are situated on the Pareto Front,

where improving one objective requires sacrificing others. Evolutionary Algorithms

(EAs), which draw inspiration from natural selection, are frequently employed to

address intricate challenges, giving rise to Multi-Objective Evolutionary Algorithms

(MOEAs). MOEAs, such as Genetic Algorithms and Differential Evolution, utilize

populations of potential solutions, apply genetic operators, and iteratively improve

solutions over generations to explore the Pareto Front. Evaluations of solutions are

25

conducted using Pareto dominance, while diversity preservation approaches

guarantee the presence of a well-balanced collection of Non-Dominated solutions.

MOEAs are utilized in various fields such as engineering design and finance to

tackle complex decision-making situations that involve numerous conflicting

objectives. They offer decision-makers a variety of trade-off solutions along the

Pareto Front to facilitate informed decision-making. Furthermore, Multi-Objective

Optimization problems by their very nature led to a set of Pareto-optimal solutions

that need to be further processed in order to arrive at a single optimal solution. Since

the usage of population in an iteration allows an EO to concurrently locate numerous

non-dominated keys, achieving the first task node becomes a very natural

proposition for using an EO. This reflects a trade-off between objectives in a single

simulation run (Deb and Deb, 2014).

Furthermore, MOEA are suitable for handling a wide range of difficult Multi-

Objective issues that involve two or three objectives. MOEAs have been developed

to effectively handle complex Multi-Objective Optimization problems (MOPs) that

involve two or three objectives. (Von Lücken et al., 2014). In addition, Multi-

Objective Optimization, specifically MOEAs, is essential for addressing intricate

issues that entail conflicting aims. This method enables a sophisticated

comprehension of trade-offs by showcasing a varied array of solutions on the Pareto

Front, providing decision-makers with a broad spectrum of possibilities. The

practicality of this approach is relevant in practical situations, such as engineering

design and resource allocation, when decision-makers need to take into account

numerous objectives at the same time. Multi-Objective Evolutionary Algorithms are

highly effective in enhancing the variety of solutions, managing uncertainties, and

adjusting to changing settings. They offer a strong foundation for optimizing many

interrelated objectives simultaneously. MOEAs, by preventing premature

convergence, provide flexibility and scalability, making them important tools for

26

solving NP-Hard problems and various complex optimization issues in different

areas. Several Multi-Objective Optimization Algorithms are to discover a large

number of Pareto ideal vectors that are consistently distributed along the PF and

therefore good representatives of the whole PF (Zhang et al., 2007). MOEA/D and

NSGA are two significant MOEAs that are widely recognized. (Özdemir et al.,

2013).

2.1.5.1 Multi-Objective Evolutionary Algorithm based on Decomposition

MOEA/D is a widely used optimization algorithm employed for solving

problems involving Multiple-Objectives. The process involves breaking down a

Multi-Objective Problem (MOP) into several individual optimization sub-problems

and then optimizing them collaboratively. MOEA/D is an algorithmic approach that

breaks down Multi-Objective Optimization problems into Single-Objective sub-

problems, allowing parallelized optimization. It balances convergence and diversity,

providing a comprehensive set of trade-off solutions. It's adaptable, suitable for

large-scale optimization challenges, and can be enhanced through hybridization with

other optimization techniques. As well as, it is designed to find a set of explanations

that represent a trade-off between conflicting objectives. In MOEA/D,

decomposition mechanisms are used to push the population to the Pareto Optimal

Front (POF), whereas a set of consistently distributed weight vectors is implemented

to preserve the variety of the population. In addition, MOEA/D works by

decomposing the Multi-Objective problem into multiple Single-Objective sub-

problems and then optimizing them simultaneously. Additionally, the concept of

sub-problem area—which was initially introduced in MOEA/D—can help advance

the harmony between the algorithm's exploration and exploitation as it is being

developed. Furthermore, the value of the combination function determines which

27

solutions are chosen in the MOEA/D, greatly increasing the pressure to pick for the

genuine POF and providing additional benefits while resolving MOPs. In order to

implicitly achieve good population diversity, a set of regularly distributed weight

vectors is utilized simultaneously (Qiao et al., 2019)(Chen et al., 2021).

Typically, MOEA/D works as (Li, 2021):

(1) Initialization: Choose a heuristic method or initialize a population of

potential solutions at random.

(2) Decomposition: Divide the Multi-Objective problem into several smaller

scalar problems. While focusing on a single target to be optimized, each sub-problem

takes the other objectives into account as constraints or reference points.

(3) Evolution: Apply an evolutionary algorithm to each sub-problem to

generate a population of solutions over numerous generations (evolutionary

algorithms are often a version of genetic algorithms). Operations like selection,

crossover, mutation, and replacement are part of the evolution process.

Solutions are assessed during evolution based on how well they perform in

relation to the relevant sub-problem. Scalarization is frequently used to measure

performance, such as the Tchebycheff approach, weighted sum, or Pareto

dominance.

(4) Update External Archive: Keep the finest solutions thus far in a repository

or archive that is external to the organization. This repository records all Non-

Dominated (Pareto-optimal) solutions found during the optimization process.

 (5) Neighborhood Selection: MOEA/D often services a neighborhood

assembly that describes how sub-problems are organized. The optimization process

can be made better by exchanging information between solutions to nearby sub-

problems.

28

(6) Convergence Criterion: MOEA/D characteristically has a termination

condition based on the computational budget or the number of generations. When

this requirement is satisfied, the algorithm ends.

(7) Result Extraction: The Pareto-optimal answers kept in the external archive

once the algorithm finishes up represent the trade-off solutions for the Multi-

Objective problem. These solutions offer a variety of possibilities for distinct trade-

offs between objectives to and decision-makers. Figure 2.6 shows the flow chart of

MOEA/D.

Thus, MOEA/D is essential for addressing intricate issues that have

contradictory aims. This method enables a sophisticated comprehension of trade-

offs by showcasing a varied array of solutions on the Pareto Front, providing

decision-makers with a broad spectrum of possibilities. The practicality of this

concept can be applied to real-life situations, such as engineering design and

resource allocation, where decision-makers need to take into account numerous

objectives at the same time.

29

Figure 2. 6: Flow chart of MOEA/D

2.1.5.2 Non-Dominated Sorting Genetic Algorithm

NSGA II is an Evolutionary Algorithm advanced as a response to the limitations

of early evolutionary algorithms. It is a popular evolutionary optimization algorithm

30

used in Multi-Objective Optimization problems. NSGA II starts with the

initialization of random populations. In addition, it is considered to be the discovery

of a set of solutions that are considered Pareto-optimal or Non-Dominated(Mohamad

Shirajuddin et al., 2023). As well as, NSGA-II outperforms two contemporary

MOEAs: strength-Pareto EA (SPEA) and Pareto-archived evolution strategy

(PAES) in terms of converging near the true Pareto-optimal set and finding a diverse

set of solutions. Pareto optimality means that no solution in the set can be enhanced

in one objective without worsening another objective. Constrained Multi-Objective

Optimization is significant from the point of view of applied problem solving. the

application of NSGA-II to real-world and more complex Multi-Objective

Optimization problems (Deb et al., 2002a). The NSGA-II-Algorithm has three

features (Kaur et al, 2018):

1- Elitist principle: The most effective responses (Non-Dominated solutions)

from the current population are kept and passed on directly to the following

generation without any modification under the elitist method used by NSGA-

II. This makes sure that the most well-known solutions do not disappear

during the course of evolution. Over generations, elitism helps to retain a set

of Pareto-optimal solutions and prevents the algorithm from accelerating its

convergence to less-than-ideal solutions.

2- Non-Dominated solutions: A set of Non-Dominated (Pareto-optimal)

solutions will be discovered using NSGA-II. It tries to find solutions that,

without affecting at least one other target, cannot be used to improve any one

objective. The algorithm clearly divides the population into various Pareto

Fronts based on non-dominance, guaranteeing that the best options for

balancing the competing goals are included in the outcome.

3- An explicit diversity-preserving mechanism. It is included in NSGA-II,

mostly through crowding Distance sorting. Solutions are further arranged

31

according to their crowding distances after being divided into Pareto Fronts.

Higher crowding distance solutions are selected during the selection process.

In order to ensure that the final set of solutions takes place over a broad range

of objective space and captures many trade-offs, this technique promotes

variation within each Pareto Front.

The original population is generated as typical. After preparing, the population is

divided into fronts and sorted by Non-Domination. Only non-dominant individuals

of the present population reside by the first-front. The entities of the second front are

dominated by first front entities only. Each member of every front is given a fitness

value, and these values are determined by the level of the front. Individuals at the

first level receive one fitness value, those at the second level receive two, and so on,

as shown in figure 2.7 (Verma, et al, 2021)(Deb et al., 2002b).

Figure 2. 7: Flow chart NSGAII.

32

2.2 RELATED WORK

FC is a novel approach. Resource management is one of the most significant

research directions in FC models. Efficient resource management will improve the

FC system's performance. Task scheduling and Task allocation are necessary

requirements for performance optimization in the FC, and this study aims to

investigate the problems in scheduling tasks and allocating tasks. Numerous

representative works in the literature are discussed and listed below.

 (Wu et al., 2021) employed Deep Reinforcement Learning (DRL) to address the

scheduling issue in Edge Computing (EC) with the aim of enhancing the QoS

delivered to users of industrial Internet of Things (IoT) applications. The authors

introduced a novel scheduling algorithm called the Deep Intelligent Scheduling

Algorithm (DISA), which utilizes a Double Deep Q Learning. That is an EC-based

network architecture for communication scheduling, and makes sure policies that

are created dynamically are stable. Simulation results were implemented, indicating

that the DISA can attain better network performance than the traditional scheduling

algorithm.

 (Gazori et al., 2020c) outlined the task scheduling of Fog Computing system

based IoT applications with the purpose of computing cost under the resource,

minimizing long-term service delay, and meeting deadline constraints. The authors

introduced a novel scheduling technique that utilized the target network, employing

a Double Deep Q-Learning (DQL) approach. The goal of the algorithm was to

maximize its objective function so that results would be more stable. The results

demonstrate that the suggested algorithm outperforms several baseline methods in

33

terms of computation cost, energy consumption, task accomplishment, and service

delay, as well as handling load balancing and single point of failure challenges.

 (Wei et al., 2018) investigated whether Cloud-based application users Could

learn to make wise job dispatching choices on their own. This problem is solved

using a smart QoS-aware job-scheduling framework for application providers. A

DRL-based job scheduler is a main element of this system. With respect to the

characteristics of RL, the proposed algorithm could dynamically familiarize itself

with the fluctuations and uncertainties of workloads. According to the simulation

results, the proposed job-scheduling strategy can effectively decrease the average

work response time compared with other baseline algorithms in the IoT edge system.

 (Sheng et al., 2021) studied the computationally intensive task scheduling

problem. Both the task assignment and the task execution order had to be optimized

while taking into account the different tasks and resources that were available. The

authors formulated optimization problems as a Markov Decision Process model. A

policy-based reinforcement learning (RL) technique was presented to address the

task scheduling problem, utilizing a fully connected Neural Network (NN) to extract

the relevant characteristics. Evaluation results validated that the proposed algorithm

achieves a better success ratio and cumulative task satisfaction degree than the

baseline task scheduling algorithms.

(Sellami et al., 2020) introduced Deep ReinforcemenLearning energy

efficient task scheduling in a Software-Defined Network, that is based Fog IoT

network, which reduces traffic overhead and network latency by centralizing

network control. In addition, the proposed algorithm addresses the resource-

planning problem and performs efficient energy-task allocation in a distributed and

dynamic IoT environment. The performance evaluation of the simulation findings

shows the effectiveness of the proposed solution in increasing energy efficiency,

34

ensuring lower-latency communication, and performing both global and local

optimizations.

 (Qi, Zhuo et al., 2020b) defined a task scheduling problem for a Cloud-Edge

computing architecture. To address the problem of long delays in achieving DL tasks

in the EC layer. proposed a scheduling algorithm dependent on asynchronous

advantage Actor-Critic based on DRL and modeled it as a Markov Decision Process.

The results showed that the proposed algorithm can reduce task processing time

compared to the existing RL-G and DQN algorithms.

 (Lakhan et al., 2022) examines the issue of resource allocation in Fog networks

enabled by Software-Defined Networking (SDN). The study presents a novel

architecture that utilizes containers and incorporates several Fog nodes. In addition,

develops Deep-Learning-Network-Based Resource Allocation (DQBRA) by

considering the architecture. This approach has multiple components to address the

problem. The components consist of a mobility controller, a resource search

mechanism, and a resource allocation and task migration module. Performance

evaluation shows suggested runtime and schemes outperform existing schemes and

frameworks.

(Mseddi et al., 2019) presents a novel online resource allocation method

designed for dynamic FC environments. The objective is to maximize the number of

user requests that are fulfilled within a predetermined latency threshold. The FC

environment is represented as a Markov discrete method, taking into account the

dynamic behavior and movement of FN as well as the availability of resources. Next,

introduce an intelligent Deep-Reinforcement Learning system for resource

allocation. The suggested technique demonstrates near-optimal performance

compared to heuristic, state-of-the-art alternatives.

(Zheng et al., 2022) presented a novel approach for workload scheduling with

Deep Reinforcement Learning to achieve workload balance, minimize service time,

35

and decrease the rate of failed tasks. Meanwhile, employ Deep-Q-Network (DQN)

techniques to address the intricacy and large dimensionality of the workload

scheduling problem. The simulation findings demonstrate that the proposed

technique outperforms current approaches in terms of service time, Virtual Machine

(VM) use, and unsuccessful job rate. The utilization of the DRL method offers an

effective resolution to the task allocation issue in Edge Computing.

(Jin et al., 2023) address the job scheduling problem specifically with IoT

systems within a Cloud Computing environment. The objective is to minimize the

duration of the task. The task scheduling problem is well recognized as a formidable

challenge. Present a unique and efficient Reinforcement Learning algorithm for

addressing the task scheduling problem in IoT systems. This algorithm integrates

combinatorial optimization techniques to ensure that it achieves stable lower limits.

Perform tasks in a group, select tasks using reinforcement learning, and solve them

using combinatorial optimization techniques. The experimental results demonstrate

that the suggested algorithm exhibits exceptional performance across many contexts.

(Wang et al., 2023) introduce a framework called QMTSF, which utilizes Q-

learning for Multi-task Scheduling Framework. The framework comprises two

stages: Initially, jobs are given to appropriate servers in the cloud environment based

on server type. Furthermore, a more advanced Q-Learning algorithm known as

UCB-based Q-Reinforcement Learning (UQRL) is used on each server to allocate

tasks to a Virtual Machine. The agent employs a sophisticated decision-making

process by using its prior experiences and interactions with the environment.

Furthermore, the agent acquires knowledge through the use of rewards and

punishments in order to develop the most effective approach for allocating tasks and

scheduling them on various virtual machines. The goal is to minimize the total length

of task execution, and the average time used for processing jobs while still

guaranteeing that task deadlines are met. Performed simulation studies to assess the

36

efficacy of the suggested mechanism in comparison to conventional scheduling

techniques such as Particle Swarm Optimization (PSO), random, and Round-Robin

(RR). The experimental results indicate that the proposed QMTSF scheduling

framework surpasses previous scheduling techniques in terms of both the makespan

and average task processing time.

(Goudarzi et al., 2023)introduce a novel technique, namely Deep

Reinforcement Learning Intelligent Strategy (DRLIS), which utilizes Deep

Reinforcement Learning to effectively enhance the response time of diverse IoT

systems and evenly distribute the workload among Fog and Edge servers. utilized

DRLIS as an operational scheduler within the Fog function-as-a-service system

architecture to establish an integrated Fog-Edge-Cloud server-less Computing

environment. The results show that, in comparison to metaheuristic algorithms and

other Reinforcement Learning techniques, DRLIS efficiently reduces the operating

costs of Internet of Things applications in load balancing, reaction time, and

weighted cost, respectively.

After reviewing most of the articles published recently to tackle task

scheduling. They distributed this problem as a single objective. However, this

problem must be solved by concurrently optimizing more than one objective. In

addition, Resource Utilization and Latency are crucial factors in Fog Computing

schedulers. However, it is significant to note that numerous previous works tend to

prioritize different metrics, resulting in outcomes that may not accurately reflect the

critical aspects of Resource Utilization and Delay management. Thorough analysis

of the performance aspects

37

Table 2. 1: Comparative among the Reviewed works

Ref. Architecture Algorithm Objectives MODRL Simulation

Tools

Shortcomings

Wei et

al.

Centralized DRL based

on a (DQN)

Response time,

and

resourceutilization

rate

× Python,

TensorFlow

High response

time

Mseddi

et al.

Cluster DRL Success ratio

,Cumulative

reward

× Not mentioned Lack of resource

utilization, and

Latency

Sellami

et al.

Centralized

SDN

Scheduler

DRL based

SDN

Available Energy

and Latency

× Not mentioned High latency and

not taken resource

utilization

Qi, Zhuo

et al.

Centralized DRL

according to

the (MDP)

Task Failure and

delay

× Tensorflow the training model

needs expensive

GPU resources.

Gazori et

al.

Hierarchical RL based on

a (DDQN)

Latency,

Response time,

makespan time,

and waiting time

× Python,Keras

SimPy

High Latency,

Response,

makespan , and

waiting time

Wu et al. Centralized DRL based

on a

(DDQN)

Latency,

bandwidth,

delivery time

× Python,

Tensorflow

Not involved

resource

utilization.

Sheng et

al.

Only Edge

Layer

DRL

according to

the (MDP)

Cumulative task

satisfaction degree

vs Task arriving

rate

× Python, Pytorch Not involved

resource

utilization, and

task completion

time

38

2.3 Summary of the Chapter

In this chapter, two main topics are explained. Firstly, a background on these tools

that have been used in this work, such as scheduling in Fog Computing, their

implementation, and some methods (DQN, NSGA2, and MOEA2). Secondly, a

literature review about scheduling in Fog Computing based on Reinforcement

Learning. In addition, a comprehensive table is provided, outlining important aspects

of significant contributions to scheduling in Fog Computing, along with their

corresponding limitations.

Lakhan

et al.

Centralized

SDN

Scheduler

DRL based

on a (DQN)

Total cost × Python-Ruby-

Perl

delay-sensitive

and delay-tolerant

of IoT workloads

Zheng et

al.

Centralized DRL based

on a (DQN)

Failed Tasks × CloudSim Not involved

resource

utilization, and

task completion

time

Jin et al. Not mentioned RL based

QL.

task runtime × Not mentioned exclusive analysis

of theperformance

aspects

Wang et

al.

Not mentioned QRL Makespan and

complete time

× CloudSim High Makespan

and complete time

Goudarzi

et al.

Hierarchical DRL

according to

the (MDP)

load balancing,

response time,

and weighted cost

× FogBus2 the limited

resources

39

CHAPTER THREE

 Research Methodology

3.1 INTRODUCTION

 Multi-Objective Deep Reinforcement Learning, which supports scheduling in

Fog Computing, addresses the challenging problems of task scheduling and task

allocation in Edge environments. By integrating MODRL, the scheduler gains the

ability to optimize many objectives simultaneously, including reducing latency,

maximizing resource use, and improving the QoS. This sophisticated method utilizes

Deep Reinforcement Learning to adjust and develop scheduling policies according

to the dynamic and diverse characteristics of Fog Computing systems. The objective

of MODRL-based scheduling is to achieve a balance between opposing goals by

considering many objectives. This leads to FC systems that are more adaptive,

capable of efficiently handling varying tasks and meeting the strict requirements of

various applications.

3.2 Proposed System Architecture

The system model consists of a three-layer architecture:

• The IoT layer generates high-rate tasks . The IoT layer consists of multiple

IoT devices and gateways that communicate with the upper layers. IoT

devices have the following characteristics:

o Provided with computation capability (CPU, RAM, storage, etc.).

o Have very strict constraints in terms of CPU, and memory.

o Provided sensors that generate the tasks.

o Supported wireless communication (4G, 5G, and WIFI)

40

• The FC layer consists of multiple Fog colonies, and each Fog colony has

multiple Fog nodes endowed with computing capabilities. Deployed a

Central Smart Fog Orchestrator that manages the Fog system. The FN hosts

IoT applications to process tasks received from the IoT layer. The Fog nodes

can be:

o Provided with computing capability (CPU, RAM, storage, etc.).

o Passive Fog node (battery-powered).

o Fog devices are provided with wireless and wired capabilities.

o The Smart Fog Orchestrator is endowed with the intelligence to

allocate tasks and instruct each Fog node on how to schedule the tasks.

• The Cloud Computing layer comprises one or multiple powerful Cloud

servers that run IoT applications to process tasks. The Cloud Computing layer

is:

o Deployed after the Fog layer (far from the IoT layer).

o Provided with high computation capability (CPU, RAM, storage, etc.).

o Support wireless or wired communication.

o Have limited communication capability: Communication between

Cloud servers and mobile devices is slow, usually through the Internet.

The proposed system architecture is summarized in Figure 3.1:

41

Figure 3. 2: Proposed System Architecture

42

 3.3 Proposed System Model

In this section, the communication, processing, and task models have been defined.

3.3.1 Communication Model

Because communication between the IoT and the upper layers is entirely

wireless, impact factors in wireless communication are considered, such as

o Distance/Signal area.

o Bandwidth.

o Transmission rate, data rate, and speed.

o Transmission power and signal strength.

o Channel gain.

o Path Loss.

o Fading.

o Interference.

o Noise power.

o Uplink and downlink.

Consequently, these parameters have an impact on the transmission time

(communication delay). However, the connection between the Cloud and Fog layer

uses wired technologies; thus, it is not subjected to the same factors.

Formally, the communication model is designed based on two transmission

supports and the Shannon formula (Verdú, 1998).

● The wireless transmission support that IoT devices use transmits tasks to the

upper layer (Fog, Cloud).

● The wired transmission support is used to transmit the intra- and inter-Fog

colonies to the Cloud.

● The communication delay is the total transmission time 𝑇𝑟𝑖 of task 𝑖 from the

source IoT device to the destination Fog node.

43

 𝑇𝑟𝑖 = 𝐷𝑝𝑖 + 𝐷𝑐𝑖 (3.1)

Where 𝐷𝑝𝑖 is the wireless communication delay required to transmit the task from

the IoT device to the wireless gateway and 𝐷𝑐𝑖 is the wired communication delay.

The wireless communication delay 𝐷𝑝𝑖 required to transmit the task from the IoT

device to the wireless gateway is submitted to wireless communication constraints.

Moreover, a scheduling delay is considered (the scheduling delay is discussed

below). Wireless communication delay is expressed as follows:

 𝐷𝑝𝑖 = 𝐷𝑠𝑖 +
𝜃𝑖

𝑅𝑖
 (3.2)

Where R is the data rate. R is expressed as follows:

 𝑅𝑖 = 𝑊𝑙𝑜𝑔2 (1 +
𝑃𝑖 𝐻𝑖

𝑁0
) (3.3)

where W represents the channel bandwidth, 𝑃𝑖 is the transmission power, 𝐻𝑖 is the

channel gain, and 𝑁0 is Noise power.

The wired communication delay 𝐷𝑐𝑖 is generated whereas transmitting task 𝑖 from

one node to another until the task reaches its destination. This type of delay depends

on the number of hops crossed by the task and the bandwidth 𝐵𝑘 of the transmission

support link 𝑘 used to transmit the task. Similar to communication delay, scheduling

delay was also considered.

 𝐷𝑐𝑖 = 𝐷𝑠𝑖 + ∑
𝜃𝑖

𝐵𝑘

𝑘
0 (3.4)

The scheduling delay 𝐷𝑠𝑖 represents the waiting time 𝜑𝑛 of task 𝑖 in the queue of

the network device before transmission. The scheduling delay depends not only on

the task position 𝑛 in the queue but also on the task Priority 𝑃𝑖 , the tasks with higher

priorities are immediately scheduled first to be delivered, whereas tasks with fewer

44

priorities are more delay-tolerant; hence, they can have more waiting time in the

queue. The scheduling delay is expressed as follows:

 𝐷𝑠𝑖 = ∑ 𝜑𝑛
𝑛
0 (3.5)

where 𝑛 is the waiting time equal to the throughput of the network device.

The communication delay model is summarized in the next Figure 3.2:

Figure 3. 3: Communication Delay

3.3.2 Processing Model

Supposing that all processing entities (Fog node and Cloud) are provided with

the same parameters but with different power characteristics.

● CPU Frequency/computing rate

● CPU Load

The computing time or processing delay is affected by CPU Frequency, task CPU

requirement, and waiting time.

Formally, similar to the communication model, the tasks are processed based on their

Priority; high-Priority is processed first, and low-Priority tasks are delayed.

The total computing delay 𝑇𝑐𝑖 is described in the next equation:

45

 𝑇𝑐𝑖 = 𝐶𝑠𝑖 + 𝐶𝑝𝑖 (3.6)

Where 𝐶𝑠𝑖 is the scheduling delay for the task to be processed and 𝐶𝑝𝑖 is the time

required for the task to be processed by the computing node.

Scheduling delay 𝐶𝑠𝑖 represents the waiting time of task 𝑖 in the queue of the

computing node. As in the communication model, the scheduling delay for

computing depends on both task position m in the CPU queue and task Priority 𝜌𝑖.

In this case, the scheduling delay is related to 𝐶𝑝𝑖 of the leading task m, which by

itself relies on the CPU speed and CPU requirements of the tasks. The scheduling

time is expressed as follows:

 𝐶𝑠𝑖 = ∑ 𝐶𝑝𝑚
𝑚
0 (3.7)

The computing time 𝐶𝑝𝑖 of task 𝑖 is the time required by the computing node to

process tasks. The computing time is calculated based on the CPU speed 𝜔𝑧

allocated by the computing node (VM, container, etc.) to process task 𝑖, and the task

CPU requirement 𝛿𝑖. The computing time is described by the following equation:

 𝐶𝑝𝑖 =
𝛿𝑖

𝜔𝑧
 (3.8)

3.3.3 Task Model

The generated tasks from the IoT can be modeled with the following parameters:

● Task size

● Task CPU requirement

● Task generation rate

● Task Priority based on application type

46

Formally, IoT devices generate multiple tasks 𝑖, the task generation rate follows

the Poisson process, and the Poisson distribution is expressed as follows

(Sherbrooke, 1968):

 𝑃𝑟(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
 (3.9)

where 𝜆 is the rate parameter, which is a measure of frequency (the average rate of

events, in our case, traffic rate) per unit time (for example 10kbps).

The generated task is defined with the following tuple < 𝜃𝑖, 𝛿𝑖, 𝜌𝑖 >:

● 𝜃𝑖 is the size of the task in bytes. It impacts communication delays.

● 𝛿𝑖 is the CPU requirement, which represents the number of CPU instructions

required to process a task. It can influence the load in the computing layers

(Fog and Cloud). Heavy processing tasks can result in node overload.

● 𝜌𝑖 is the task Priority, which is classified into three categories: high, medium,

and low. Priority depends on the type of IoT application; for instance, critical-

latency applications are classified as high-Priority.

3.4 System Framework

The core mechanism of the system framework revolves around seamless

Orchestration and efficient allocation of computing resources to tackle tasks in

dynamic environments. The mechanism of the system framework works as follow:

● To keep track of the environment, the system state is periodically sent as “state

information messages” to the Smart Fog Orchestrator.

● Based on the state information of the environment, the Fog Orchestrator runs

the Intelligent DRL algorithm to select the most suitable Fog colony or

Cloud to process tasks.

● After that, the tasks will be sent for processing

47

● Although the results of the processing sent to the users are neglected, the Fog

Orchestrator receives SLA feedback for each allocated and scheduled task.

3.4.1 The Reinforcement Learning Environment

In this section, a custom-Reinforcement-Learning environment is introduced,

designed specifically for task assignment in such systems. The environment provides

an interface for the agent to interact with the system, observe its state, take action,

and receive rewards based on different performance criteria.

A. Environment Design

The Reinforcement Learning environment is implemented as a subclass of the

‘gym.Env’ class, OpenAI Gym Environment is a fundamental component of the

OpenAI Gym toolkit, which is a Python library widely used for developing and

comparing Reinforcement Learning algorithms. It provides a standardized interface

for defining and interacting with Reinforcement Learning environments. In addition,

ensures compatibility with various Reinforcement Learning algorithms and

frameworks. The environment takes several parameters during initialization,

including the number of nodes in the system, reward mode, and maximum number

of time steps.

1. State Space

The state space of the environment represents the state of the system and the task

to be assigned. It is defined as a continuous box space with the following

components:

48

● Load of each node: The Load of each node in the system is represented as a

floating-point value between zero and the maximum load value.

● Task size: The size of the task waiting to be assigned, represented as a

floating-point value between zero and the maximum task size.

● Task CPU requirement: The CPU requirement of the task waiting to be

assigned is represented as a floating-point value between 0 and the maximum

CPU requirement.

● Task Priority: The Priority of the task waiting to be assigned is encoded as a

one-hot vector with three values (low, medium, and high).

2. Action Space

The action space of the environment represents the actions that the agent can

take to assign a task to a specific node. It is defined as a discrete space in which the

number of nodes is the number of possible actions.

3. System Representation

The environment maintains an internal representation of the system consisting

of multiple nodes. The system class encapsulates the behavior of nodes and provides

methods for task assignment, load processing, and task generation.

B. Environment Dynamics

The environmental dynamics simulate the interaction between the agent and

the system. For each time step, the agent takes action by assigning a waiting task to

a node. The system processes assigned tasks, updates node loads, and generates new

tasks. The reward is calculated based on different criteria, including the load

distribution, communication cost, and task priorities.

49

1. Task allocation and Task Scheduling

When an agent assigns a task to a node, the environment updates the system

accordingly. The node processes the assigned task, and its load is updated based on

the CPU requirements of the task. The task assignment action is represented as an

index of a node in the action space. The agent systematically sends the task to the

cloud instance (a node with high resources that imposes a large communication cost,

as it is supposed to be far in the network) when no resources are left unused in the

Fog colonies. At the node level, tasks are first scheduled based on their Priority and

then based on their order of arrival. If the CPU capacity is insufficient to handle the

next task in the queue, it will systematically try to allocate the task until no task that

can fit within the node’s resources is left. The Orchestrator receives the system state

about task Fog nodes and Fog colonies and commands the IoT device to send a task

to write to the Fog node and command the Fog node to schedule those tasks based

on the Orchestrator's decision.

2. Reward Calculation

The reward function's design is essential in influencing the learning process

of the MODRL algorithm. The reward function determines the numerical feedback

that the agent receives as a result of its actions and decisions in the environment as

shown in figure 3.3. When considering Fog Computing scheduling with objectives

like Load, Distance, and Priority, the reward function should accurately represent

the desired balance and priorities. The reward function in deep reinforcement

learning for scheduling directs the agent's decision-making process, aiming to

optimize resource use and minimize task execution delays. It is based on three

factors: Load, Distance, and Priority. Pareto's goals guide the agent's behavior,

50

enabling adaptability to changing Fog environment conditions. The scheduling

agent's efficiency and intelligence are enhanced through reward calculation,

improving the efficacy and productivity of Fog Computing systems.

Figure 3. 4: Reward Function Process.

51

3.5 PROPOSED ALGORITHM: DQN + MULTI-OBJECTIVE

OPTIMISATION

Proposing the employment of MODRL to select nodes for task processing (Fog

nodes or Cloud) based on three objectives:

● Node current Load: The processing time is improved by selecting the least-

loaded node.

● Node Distance: Improves the communication time, which depends on the

Distance between the selected node and the amount of traffic on the link.

● Task Priority: Improve the scheduling time by selecting the node that has

fewer Priority tasks in their queue (i.e., selecting nodes with less load is not

enough, because even unloaded nodes may have Priority tasks).

 Deep Reinforcement Learning contains training DNN to make serial results in

an environment to maximize a reward function. DRL is probably employed to create

dynamic and adaptive scheduling decisions in task processing. Hence, employ three

DRL agents, one for each objective. However, this is a more challenging scenario

because there is a trade-off among these objectives, and eventually, each agent may

select a different processing node according to its own objective, which brings us to

a Pareto Front problem.

DQN algorithm with the epsilon-greedy algorithm was employed to solve the

provided environment. The DQN is a popular Reinforcement-learning algorithm that

combines Deep Neural Networks with the Q-Learning algorithm to handle high-

dimensional state and action spaces. In this setting, trained three separate DQN

agents, each with a different reward mode: Load, Distance, and Priority.

The epsilon-greedy strategy was used to balance exploration and exploitation

during training. At each step, the agent chooses either to exploit the current

knowledge by selecting the action with the highest estimated Q-value or to explore

52

the environment by selecting a random action. Initially, the exploration rate is high,

allowing the agent to explore various actions and states; however, over time, it

gradually decays to favor the exploitation of learned knowledge, as shown in Figure

3.4.

Figure 3. 4: Illustration of Deep Reinforcement Learning Environment. It depicts the

fundamental constituents of the environment, comprising the state, agent, and action. The

exploration and exploitation phases are illustrated as a means of achieving a balance between

discovering new methods and utilizing existing ones, with the agent and action serving as key

components. After the action is taken, the subsequent reward is stored in memory. The iterative

process of storing experiences in memory and subsequent training enhances the learning and

decision-making abilities of the reinforcement learning algorithm.

53

Figure 3. 5: Proposed ALGORITHM/ DQN Flowchart

54

To train the DQN agents, utilize the step function provided by the

environment. At each step, the agent selects an action based on its current state, and

the environment returns the next state, reward, and additional information. The

reward function was customized based on the reward mode, with Load, Distance,

and Priority as the three different modes for our agents. DQN agents learn to

optimize their actions by updating the Q-values using a combination of discounted

future rewards and the Q-Learning update rule.

The proposed ALGORITHM/ DQN Flowchart outlines the main steps of the

DQN algorithm. It initializes the replay memory, Q-Network, and target network. It

then iterates over episodes, and within each episode, it iterates over time steps. At

each time step, the algorithm selects an action based on an epsilon-greedy strategy,

executes the action, and stores the transition in replay memory. Then, it samples a

mini-batch from the replay memory and performs a Q-Learning update to train the

Q-Network. The target network was periodically updated to stabilize learning. The

algorithm continues until a specified number of episodes is reached.

After running the algorithm, each DRL measures the quality Q of each

possible action that corresponds to the processing; thus, the vector of the nodes is

sorted from high-quality action to low; in other words, the best nodes of each DRL

are those with the highest Q.

Because each DRL may have a different sorting of the nodes, it is necessary

to choose the optimal node that can provide the best possible results for all three

objectives. Multi-Objective Optimization of the FN service placement problem,

considering a replication level, scalable service, and using pure Multi-Objective

genetic algorithms. For example, MOEA/D or NSGA-II. Tested NGSA-II and

55

MOEAD, which are Multi-Objective Evolutionary Algorithms that aim to find the

optimal node for task processing based on objectives. As shown in figure 3. 6.

Figure 3. 6: Proposed (DQN + MULTI-OBJECTIVE OPTIMISATION) System

Environment.

56

FIGURE 3. 7: Proposed Multi-Objective Optimization using (DQN + MOEA/D) and

(DQN + NSGA2) Flowchart.

The main loop iterates over a fixed number of iterations; within each iteration,

an episode loop runs for a fixed number of episodes. At the start of each episode, the

environment was reset, and the episode-specific variables were initialized.

57

Inside the episode loop, the algorithm selects the best action based on the three Q-

Networks using a Multi-Objective Optimization approach. The action values for

each objective were obtained by passing the current state through each respective Q-

Network. These values are normalized, and an instance of the Multi-Objective

Optimization problem class is created. The MOEAD and NSGA2 algorithms were

then used to find the best solution (action) for the given objectives. The selected

action was chosen randomly from the solutions obtained by the MOEAD and

NSGA2 algorithms. The combination of DQN agents with the MOEAD and NSGA2

algorithm allows the exploration of different trade-off solutions on the Pareto Front

of the Multi-Objective Optimization problem, ensuring that the Intelligent

Scheduling Algorithm finds solutions that align with the preferences and constraints

of decision-makers as well as balance the conflicting objectives efficiently. DQN

agents offer perceptions into the trade-offs between conflicting objectives (Load,

Distance, and Priority), enabling more informed selection and exploration of results

on the Pareto Front. Thus, the proposed Intelligent Scheduling Algorithm (DQN+

Multi-Objective Optimization) handles trade-offs between objectives by utilizing

the RL capabilities of DQN agents to learn real scheduling policies and integrating

them with Multi-Objective Evolutionary Algorithms.

58

3.6 SIMULATION EXPERIMENT

All simulation experiments are implemented in a Python environment with

TensorFlow, PyTorch, Pymoo, and PQDM libraries in PyCharm, which is a

powerful Python IDE. To simulate and train the Intelligent Scheduling Strategy,

OpenAI Gym is utilized. A computer with a 5.0 GHz Intel Core i7 GPU and 16 GB

of ARM has been used. Virtualized data using MatPlotLib in the Jupyter Notebook.

The simulation environment contains 250 nodes and 1000 steps per episode for 400

tasks. Random seeds were fixed for each experiment to ensure reproducibility. The

Neural Network architecture consisted of three fully connected layers with ReLU

activation. The Q-Network takes the state as an input and outputs Q-values for each

action. The replay buffer was used to store and sample transitions to train the Q-

Network. It has a capacity of 500,000 and stores tuples of (state, next state, action,

reward, and done). The buffer allows efficient sampling of mini batches for training.

Simulation hyperparameters that are used in the simulation environment are listed

in table 3.1, DQN hyperparameters in Table 3.2, MOEAD hyperparameters in table

3.3, and NSGA2 hyperparameters in table 3.4. Thus, the dataset is created with the

environment hyperparameters that define the state, action, and reward spaces of the

MODRL environment. The dataset serves as the foundation for training and

evaluating the MODRL algorithm.

59

1. ENVIRONMENT HYPERPARAMETERS

Table 3. 1: Environment Hyperparameter

Parameter value

Task

- task size (min, max)

- task cpu req (min, max)

IoT Layer

- iot layer average rate (λ)

Computing Node

- node cpu freq (min, max) (cloud)

- node max load (min, max)

(cloud)

Communication Model

- comm channel bandwidth (W)

- comm transmission power (Pi)

- comm channel gain (Hi)

- comm bandwidth (Bk)

- comm N0

Orchestrator

- Orchestrator number of

timesteps

1-10

25-500

3

10-50(250)

10-

100(5000)

1

1

1

1

1

100-1000

2. DQN HYPERPARAMETERS

Table 3. 2 :DQN Hyperparameters

Hyperparameter Value

Discount factor (γ)

Evaluation frequency

Batch size

Replay buffer capacity

Target network update frequency

Initial epsilon

Epsilon decrease parameter

Minimum epsilon

Epsilon decrease start step

0.99

Every 2 episodes

256

500,000

Every 100 episodes

1

10,000

0.2

150,000

60

Stop exploring episode

Number of training episodes

Number of iterations

Learning rate

Number of nodes

Maximum timesteps per episode

5,000

7,500

1

0.001

250

1,000

3. MOEAD HYPERPARAMETERS

TABLE 3. 3: MOEA/D HYPERPARAMETERS

Parameter Value

Population Size 20

Integer Random Sampling

SBX (Simulated Binary Crossover)

Polynomial Mutation

20

0.7

Sampling

Crossover

Mutation

Number of Neighbors

Prob. Neighbor Mating

4. NSGA2 HYPERPARAMETERS

TABLE 3. 4: NSGA2 HYPERPARAMETRS

Parameter Value

Population Size 20

IntegerRandomSampling

SBX (Prob=1.0, Eta=3.0, Vtype=float,

Repair=RoundingRepair())

PM (Prob=1.0, Eta=3.0, Vtype=float,

Repair=RoundingRepair())

True

Sampling

Crossover

Mutation

Eliminate Duplicates

61

3.7 Summary

In this chapter, the system architecture, system model, system framework, and

DQN + Multi-Objective Optimization algorithm has been proposed. An Intelligent

Scheduling Strategy is proposed in a Fog Computing system based on a Multi-

Objective Deep Reinforcement Learning Algorithm. The proposed model will tackle

two main problems: task allocation and task scheduling. The MODRL algorithm is

required to develop an optimal strategy to allocate the tasks generated from IoT

devices to the suitable processing nodes (Fog or Cloud), as well as schedule those

tasks in the allocated Fog nodes based on multiple criteria (Load, Priority, and

Distance).

62

CHAPTER FOUR

 Experimental results

4-1 Introduction

 This chapter provides a comprehensive analysis and evaluation to the

proposed approach for addressing the problem at hand. Describing the specific

hyperparameters and configurations used in the experiments to ensure

reproducibility and consistency. Furthermore, reporting and discussing the results

obtained, highlighting the performance of the DQN agents and the Multi-Objective

Optimization algorithm employed in terms of the defined objectives and analyzing

any interesting trends or observations. Through these experiments, aiming to gain

insights into the effectiveness and trade-offs of different reward functions and the

impact of Multi-Objective Optimization in addressing the complexities of the

problem.

In the context of evaluating and validating the proposed Intelligent Scheduling

Strategies, performance, efficiency, and adaptability metrics such as Task

Completion Time, QueueingDelay, Makespan, CPU Load, Storage Capacity,

Latency, Computational Delay, Propagation Delay, Processing Delay, and

Transmission Delay, Throughput and Network Congestion were used as

benchmarks. These metrics are crucial for assessing its efficiency, effectiveness, and

adaptability, as well as serving as key indicators of how well the scheduling strategy

performs in Fog Computing based on MODRL

63

4.2 Training Process/ Training Environment

The deployment of MODRL for Fog Computing scheduling entails training a

DQN to navigate the complex decision space. The scheduling is based on three

objectives: Load, Distance, and Priority. The DQN's purpose is to train a policy that

efficiently assigns jobs to Fog nodes, taking into account the trade-offs associated

with the three objectives. Throughout the training process, the agent engages with

the environment, utilizing its existing policy to make judgments and earning

incentives as feedback. The rewards are obtained based on the performance in terms

of load, Distance, and Priority, which encompasses the Multi-Objective

characteristic of the scheduling problem. While the agent explores the decision

space, the parameters of the DQN are continuously updated by methods like

experience replay and target network updates.

The objective of the learning process is to identify a strategy that effectively

manages the computational burden on Fog nodes, minimizes the distance between

tasks and Fog nodes, and meets priority restrictions. The three plots function as

visual representations, demonstrating the agent's policy development over time in

order to negotiate the intricate terrain of scheduling choices. They offer valuable

insights into the compromises and collaborations between the conflicting aims

during the training process. The repeated improvement of the DQN's policy

demonstrates the model's capacity to acquire a sophisticated and efficient scheduling

approach that simultaneously optimizes Load, Distance, and Priority in Fog

Computing environments, as shown in the figure 4.1:

64

Figure 4. 1: Episode/Return Load, Distance, and Priority

4.3 Reward Structure

Reward calculation in the environment is based on three components: Load,

Distance, and Priority. The load component penalizes high load values and favors a

balanced load distribution among the nodes (the Load of a single node is computed

based on the processing model introduced in section 3.3). The Distance component

represents the communication cost (described by the equations in section 3.3) of

sending an assigned task to the chosen node. The Priority component penalizes the

average Priority of the tasks in each node queue. These objectives can include

optimizing resource utilization and minimizing task execution delays, as shown in

65

figure 4.2. Thus, the role of the reward function in the context of Deep

Reinforcement Learning for scheduling is to guide the agent's decision-making

process. Pareto defines the objectives of the scheduling problem, which allow

shaping the agent's behavior to achieve trade-offs and specific scheduling goals,

influence the agent’s learning process, and enable adaptability to changing Fog

environment conditions. Through reward calculation, the scheduling agent evolves

and learns to make optimized, intelligent scheduling decisions. Therefore, it

enhances the effectiveness and efficiency of Fog Computing systems.

Figure 4. 2: Reward/Return Load, Distance, and Priority

4.4 Exploration/Explotation

MODRL for Fog Computing uses a dynamic strategy to transition between

exploration and exploitation. The strategy involves setting a parameter, epsilon (ε),

66

to 1 during the exploration phase, allowing the agent to explore various scheduling

decisions. As ε decreases, the agent shifts towards exploitation, prioritizing actions

with high rewards based on learned Q-values. This adaptive strategy ensures the

MODRL-based scheduler remains flexible and responsive to changes in the

environment, combining the benefits of exploration with the efficiency of

exploitation.

Figure 4. 3: Exploration/Explotation

The consistency in plot outcomes can be attributed to the scheduling algorithm

converging around a specific solution that ideally fulfills all three objectives. This

convergence indicates that the algorithm has discovered a scheduling policy that

efficiently distributes the workload, minimizes the distance between tasks and Fog

nodes, and simultaneously meets Priority requirements.

67

4-5 Validating the DQN algorithm based on Load, Distance, and Priority.

Figure 4.4 shows the evaluation of DQN agents (in terms of the three learning

objectives) during the training steps. The plots show three tendencies that correspond

to full exploration (first 1500 steps), exploration-exploitation balancing (until 5000

steps), and finally a full exploitation phase. It can be observed from the plots that for

each objective, the DQN agent that was trained specifically to optimize the objective

achieved the best result, as expected. Thus, the algorithm dynamically adapts its

approach to successfully manage the trade-off between exploring new potentials and

exploiting identified, high-performing policies.

68

Figure 4. 4: The average training episodic return of the three DQN algorithms (trained on three

different reward functions: Load, Distance, and Priority) in terms of the three objectives: load,

Distance, and Priority. (Number of nodes = 5, Number of timesteps per episode = 100)

69

Figure 4. 5: The average episodic return of the three DQN algorithms (trained on three different

reward functions: Load, Distance, and Priority) in terms of the three objectives: Load, Distance,

and Priority. The total objective is the sum of the three scores normalized between 0 and 1.

(Number of nodes = 250, Number of timesteps per episode = 1000)

70

Figure 4.5 shows the DQN evaluation for 250 nodes and 100 steps per

episode. The DQN algorithm trained on the Load reward function achieved moderate

performance in load balancing, whereas its performance in minimizing task distance

and prioritizing was relatively lower. The algorithm trained on the Distance reward

function excelled at minimizing the task distance but struggled with load balancing

and prioritization. Finally, the DQN algorithm trained on the Priority reward

function showed moderate performance in load balancing and task distance

minimization but had challenges in prioritizing tasks.

The unexpected finding that the DQN trained on the Load reward function

scored higher in the Priority objective compared to the DQN trained specifically for

the Priority reward function raises interesting insights. One possible explanation

could be that the Load reward function indirectly encourages prioritization by

incentivizing the agent to allocate resources efficiently and balance the workload

across nodes. As a result, the DQN trained on the Load reward function may have

learned to implicitly consider task priorities when optimizing load balancing.

However, the DQN trained explicitly on the Priority reward function might

have focused primarily on maximizing the Priority objective without sufficiently

accounting for load balancing and task distance. This specialization on Priority

might have led to sub-optimal load-balancing decisions, resulting in lower overall

performance in the Priority objective compared to the DQN trained on the Load

reward function.

These results highlight the trade-offs and varying performance of the three

DQN algorithms. The findings emphasize the importance of carefully selecting and

balancing the reward functions when training DQN algorithms for Multi-Objective

Optimization tasks, as different reward functions can lead to distinct trade-offs in

performance across the Load, Distance, and Priority objectives.

71

4-6 The multi-objective Evolutionary algorithm (MOEAD and NSGA2)

Figure 4.6 shows the average episodic return of the Multi-Objective Evolutionary

Algorithms (MOEAD and NSGA2) in comparison with naive approaches (selecting

random nodes and systematically selecting the closest free node).

Figure 4. 6: The average episodic return of the Multi-Objective Evolutionary Algorithm (MOEAD

and NSGA2) in comparison with Naive approaches (Selecting random nodes, and systematically

selecting the closest free node). The total objective is the sum of the three scores normalized

between 0 and 1. (Number of nodes = 250, Number of timesteps per episode = 1000)

72

4.6 VALIDATION METRICS

In this section, the evaluation of the performance, effectiveness, and

adaptability of the proposed intelligent scheduling strategy with other existing

scheduling strategies has been conducted. That is based on the most important

performance, efficiency, and adaptability metrics for evaluating such a schedule. To

evaluate the performance, emphasis will be placed on five different metrics, which

are Resource Utilization (CPU Load, Storage Capacity), Latency, Throughput, and

Network Congestion. To evaluate the efficiency, emphasis will be placed on three

different metrics, which are Task Completion Time, Makespan Time, and Queueing

Delay. To evaluate adaptability, emphasize four different metrics, which are

Communication Delay, Transmission Delay, Processing Delay, and Computational

Delay. These metrics provide insights into how well the strategy performs in terms

of different objectives and trade-offs. In addition, these metrics provide insights into

the efficiency, performance, and adaptability of the MODRL system in handling

tasks within the Fog Computing environment. Monitoring these metrics helps assess

the system's efficiency in task scheduling, data processing, and network

management.

In order to prove the performance, effectiveness, adaptability, and QoS of the

planned intelligent scheduling strategy, a thorough validation will be conducted

using all of the above metrics based on DQN+NSGA2, and DQN +MOEA/D.

73

 A. PROPOSED ALGORITHM: DQN + NSGA2

1-Resource Utilization:

Assess how effectively Fog resources are utilized. High resource utilization

implies efficient use of available storage, computing, and network resources. High

Resource Utilization without delays or congestion is ideal. The two main

components are:

A. CPU Load: It is calculated by getting the current Load of the CPU as a

percentage of the assigned Load from the results of processing the CPU

instructions. Maintaining the CPU Load below 50% whereas having low

storage usage for a large number of tasks shows the MODRL is efficient and

the performance of the nodes is effective as tasks are processed faster, as

shown in Figure 4.7.

Figure 4. 7: CPU Load

74

B. Storage Capacity: It refers to the amount of storage space available on Fog

nodes or Cloud nodes for the management and storage of data. Storage

Measures the remaining storage after queueingtasks. Appropriate

management of storage capacity is critical for performance and optimizing the

responsiveness of an Intelligent Scheduling Strategy, as shown in Figure 4.8.

Figure 4. 8: Storage Capacity

2-Latency:

In Fog Computing, latency will measure the time it takes for some of the data to

get to its destination over the network. Latency can be considered a measurement

used for measuring delays, which is usually represented as a round-trip delay as

shown in Figure 4.9. as well as Latency is often a key component of QoS

75

requirements. Low latency is essential in Fog Computing because an Intelligent

Scheduling Strategy requires rapid data processing and decision-making. The

Latency was proved mathematically as follows:

 𝐿 =
𝑇𝑆

𝑅
∗ 𝐷 (4.1)

Where 𝐿 represents the latency, 𝑇𝑆 is the task size, 𝑅 is the rate, and 𝐷 is the

Distance.

 Figure 4. 9: Latency

76

3-Task Completion Time:

Measures the time taken for tasks to be completed from their submission to the

Fog system. Task Completion Times store scheduled times, with task numbers

processed in Fog nodes. Figure 4.10 represents the average time for each task. Lower

completion times indicate efficient scheduling. The Task Completion Time is

illustrated mathematically as follows:

 𝑇𝐶𝑇 = 𝐸𝑇 − 𝑅𝑇 (4.2)

Where 𝑇𝐶𝑇 represents the Task Completion Time, 𝐸𝑇 is the end time, and 𝑅𝑇 is the

received time.

Figure 4. 10: Task Completion Time

77

4-Makespan Time:

Measures the total time taken to complete all scheduled tasks. Lower Makespan

values are required. Makespan stores the total time that each node takes to compute

assigned tasks. Figure 4.11 displays the average Makespan time taken by each node

to process tasks during the simulation. Lower Makespan indicates efficient task

completion. The Makespan time is expressed as follows:

 𝑀𝑇 = 𝐸𝑇 − 𝑆𝑇 (4.3)

Where 𝑀𝑇 denotes the Makespan time, 𝐸𝑇 is the end time (empty ques), and 𝑆𝑇 is

the (start of processing the ques).

Figure 4. 11: Makespan Time

78

5-Queueing Delay:

Represents delays when data or tasks are queued before processing. The

Orchestrator stores the total Queueing time for different Fog nodes. The scheduled

time showcases Queueing times for different nodes over scheduled periods. Figure

4.12 shows Queueing times for different nodes over scheduled periods. Lower

Queueing delays indicate more efficient task allocation. It can be measured as

follows:

 𝑄𝐷 = ∑ 𝑊𝑇𝑇
𝑚
0 (4.4)

Where 𝑄𝐷 represents the Queueing delay, 𝑊𝑇𝑇 is the summation of waiting times

for each task queued.

Figure 4. 12: Queueing Delay

79

6- Communication Delay:

Communication delays in FC refer to the delays experienced when information

or data is transmitted between nodes or sensors within a Fog Computing system.

Lower delays indicate faster data processing and allocation. Communication Delay

includes:

A. Propagation Delay (data travel time): It is defined as the total time a task takes

from start to completion, which includes the total lifetime of the task existing

in the Orchestrator, as shown in Figure 4.13.

Figure 4. 13: Propagation Delay

80

B. Transmission Delay (time to send data over a link): refers to the time it takes

for data to be transmitted from a source to a destination within a Fog

Computing system. This delay is a serious element of end-to-end data

transmission. Figure 4.14 shows the average delay for each node. The

transmission delay was calculated as follows:

𝑇𝐷 = 𝑇𝑆/𝐷𝑅 (4.5)

Where 𝑇𝐷 signifies the Transmission Delay, 𝑇𝑆 is the task size, and 𝐷𝑅 is the

data rate.

Figure 4. 14: Transmission delay

81

C. Processing Delay (time taken to process data at Fog nodes): It is the time

taken to process a task in computing time, as shown in Figure 4.15. Lower

delays indicate faster data processing and allocation. It can be measured as

follows:

𝑃𝐷 = 𝐶𝑅/𝐶𝐹 (4.6)

Where 𝑃𝐷 is the Processing Delay, 𝐶𝑅 is the CPU requirements, and 𝐶𝐹 is

the CPU frequency.

Figure 4. 15: Processing Delay

82

7-Computational Delay:

Measures the time taken to process data or perform tasks at Fog nodes. In

Computation Delay, data is derived from total processing and scheduling time for

tasks. Figure 4.16 displays the Computation Delay against the data size. A lower

Computation Delay indicates faster task computation. Mathematically express it as

follows:

𝐶𝐷 = 𝐷𝑇 + 𝑆𝐷 (4.7)

Where 𝐶𝐷 is the Computation Delay, 𝐷𝑇 is the computing time, and 𝑆𝐷 is the

scheduling delay

Figure 4. 16: Computational Delay

83

8- Throughput:

Measures the rate at which tasks are processed by the Fog system. Higher

throughput indicates better scheduling. Throughput records the processing rate for

each Fog node after handling tasks. Higher throughput indicates better scheduling

and high processing power at the nodes, which improves the QoSs, as shown in the

figure 4.17 (the Throughput plot shows the average rate for each node after several

iterations). It expresses itself as follows:

𝑇𝐻 =
𝑃𝑇

∑ 𝑇𝑛
𝑚
0

 (4.8)

Where 𝑇𝐻 is the Throughput's rate, 𝑃𝑇 is the number of processed tasks, and ∑ 𝑇𝑛
𝑚
0

is the total number of tasks received by the node

Figure 4. 17: Throughput

84

9- Network Congestion:

Indicates high network traffic leading to increased delays. In Network

Congestion, data extracted from each node's task processing iterations is used

to plot network congestion, as shown in figure 4.18. Illustrates the

effectiveness of MODRL in preventing network congestion. Preventing

network congestion improves overall system performance. Formulate it

mathematically in the following manner:

𝑁𝐶 = ∑ 𝑇𝑞
𝑚
0 (4.9)

Where 𝑁𝐶 is the Network Congestion, and ∑ 𝑇𝑞
𝑚
0 is the total number of tasks

being queued in the Fog nodes.

Figure 4. 18: NetworkCongestion.

85

B. PROPOSED ALGORITHM: DQN + MOEA/D

When determining the metrics for MOEA/D, it is important to notice that the

underlying ideas and equations are consistent with those already developed for

NSGA-II. MOEA/D, similar to NSGA-II, follows the Multi-Objective Optimization

approach, with the goal of optimizing a group of conflicting objectives concurrently.

The metrics include key indications such as Latency, Throughput, Task Completion

Time, Makespan Time, Queueing Delay, Communication Delay, Transmission

Delay, Processing Delay, and Computational Delay. In addition, the evaluation also

takes into account indirect measures such as CPU Load, Storage Capacity, and

Network Congestion. Due to the similar characteristics of the optimization issue and

the common objective of optimizing multiple conflicting goals, the definitions and

equations for these metrics remain consistent in both NSGA-II and MOEA/D. The

consistency in metric definitions enables a smooth and fair comparison of the two

methods, guaranteeing a thorough assessment of their individual performances in

the context of Intelligent Scheduling for Fog Computing.

86

1- Resource Utilization

A. CPU

Figure 4. 19: CPU Load

B. Storage Capacity

Figure 4. 20: Storage Capacity

87

2-Latency

Figure 4. 21: Latency

3-Task Completion Time

Figure 4. 22: Task Completion Time

88

4-Makespan Time

Figure 4. 23: Makespan Time

 5-Queueing delay

Figure 4. 24: Queueing Delay

89

6-Communication delay

A. Propagation Delay

Figure 4. 25: Propagation Delay

B. Transmission Delay

Figure 4. 26: Transmission Delay

90

C.Processing Delay

Figure 4. 27: Processing Delay

7-Computational Delay

Figure 4. 28: Computational Delay

91

8-Throughput

Figure 4. 29: Throughput

9-Network Congestion

Figure 4. 30: Network Congestion

92

The divergence in results between NSGA-II and MOEA/D can be attributed

to differences in their optimization mechanisms, strategies, and the specific

characteristics of the optimization problem. These differences include the search

mechanism, population initialization, problem characteristics, parameter settings,

problem complexity, stochastic nature, and algorithm sensitivity. NSGA-II uses a

Non-Dominated Sorting method, while MOEA/D Decomposes the Multi-Objective

problem into sub-problems. The initialization of the population and diversity

maintenance mechanisms also contribute to the exploration of different areas of the

key space. The performance of evolutionary algorithms is sensitive to parameter

settings, as well the difficulty of the optimization problem can favor one algorithm

over the other. To understand the specific reasons for these differences, a thorough

analysis of the Pareto Fronts and convergence behavior can provide valuable

insights.

C- RESULTS COMPARISON

In this study, a comparative analysis was conducted between the proposed

Intelligent Scheduling Strategy, based on MODRL algorithm, and the most relevant

scheduling strategy presented in table 2.1. With a focus on key performance

indicators. The validation includes three critical aspects: efficiency, performance,

and adaptability. In terms of efficiency, which involves Task Completion Time,

Makespan, and Queueing delay, the proposed MODRL-based strategy displayed

more effectiveness by yielding the lowest values in these metrics, compared to the

approach in table 2.1. Regarding performance, which considers Computation Delay,

Storage Capacity, CPU Load, Throughput, and Network Congestion. The scheduling

strategy excelled with a lower Computation Delay, a CPU Load maintained below

50%, a higher amount of storage space available, higher Throughput, and achieving

93

low Network Congestion, whereas the approach outlined in table 2.1 lacked a

simulation. Thus, the proposed Intelligent Scheduling Strategy showed it had higher

performance. Lastly, in terms of adaptability, which comprises Communication

Delay (Transmission Delay, Propagation Delay and Processing Delay), the proposed

MODRL algorithm demonstrated advantages by achieving lower Communication

Delay and effectively justifying Network Congestion, an aspect not addressed in

existing algorithm in table 2.1. Thus, this enhanced adaptability. Table 4.1 details

the comparison of the proposed Intelligent Scheduling and existing scheduling

algorithms. From this comparison, it can be concluded that the proposed

(DQN+MULTI-OBJECTIVE OPTIMIZATION) algorithm achieves better

performance and is more effective and adaptive compared to the most relevant

existing methods in table 4.1.

 When considering scheduling in Fog Computing using DRL, multiple metrics

are used to evaluate the QoS offered by the system. QoS-related metrics encompass

Latency, Throughput, Task Completion Time, Makespan Time, and several delay

components such as Queueing Delay, Communication Delay, Transmission Delay,

Processing Delay, and Computational Delay. Latency is a crucial statistic for

measuring QoS, since it represents the time, it takes for data to travel over the

network and finish processing. Throughput, which refers to the speed at which tasks

are successfully completed, is an additional crucial aspect that affects the QoS. The

Task Completion Time and Makespan time offer valuable insights into the efficiency

of the scheduling system, with lower values suggesting quicker and more efficient

job execution. Queueing Delay is the amount of time that jobs wait in a queue before

being processed, and it directly affects how quickly the system responds. Delays,

such as those in Communication, Transmission, Processing, and Computing, have

an impact on the overall QoS by affecting the speed and reliability of data transfer

94

and task execution. An efficiently optimized scheduling method, led by DRL, aims

to collectively minimize these metrics. This ensures a Fog Computing environment

that is responsive, efficient, and dependable while also meeting the QoS

requirements of various applications and users. Resource Utilization does not

directly measure QoS, but it does have an indirect impact on QoS by affecting the

efficiency and performance of the system. Optimal allocation of tasks enhances the

dependability and agility of the Fog Computing ecosystem.

 The reason behind the proposed Intelligent Scheduling Strategy's success is

the prominent role of the MODRL algorithm, which is dedicated to the minimization

of task execution times and the effective optimization of objectives within the Fog

Orchestrator. As well as reduced waiting times for tasks.

95

Table 4. 1: Comparison of proposed algorithm and most relevant existing works.

Ref. Described

Algorithm

Core

Contributio

n

MO-

DRL

PERFORMANCE(Average) EFFICIENCY

(Average ms)

ADAPTABILITY (Average ms)

CPU

Load

%

Stora

ge

%

L.(ms

)

TH % NC

(rate)

TCT

.

MT. QD. Propagati

on delay

TD. PD. CD.

Gazori

et al.

DRL Task

scheduling

× -- -- 7500 -- -- 1900

0

250 2500 -- -- -- 7500

Wang et

al.

RL Task

scheduling

× -- -- -- -- -- 2000

0

2000 -- -- -- -- --

Wu et

al.

DRL Task

scheduling

× -- -- -- -- -- -- -- -- -- -- -- --

Qi,

Zhuo et
al.

DRL Task

scheduling

× -- -- -- -- -- -- -- -- -- -- -- --

Sheng

et al.
DRL Task

scheduling

× -- -- -- -- -- -- -- -- -- -- -- --

Jin et
al.

DRL Task
scheduling

× -- -- -- -- -- -- -- -- -- -- -- --

Propose
d

(DQN+

NSGA2

)

DRL+Mult
i objective

optimizatio

n

Intelligent
scheduling

strategy

(task

scheduling
and task

allocation

√ 10 99.9 3.5 100 0.10 2.02 10 2 9.5 25 1 3

Proposed

(DQN+M

OEA/D)

DRL+Mult

i objective

optimizatio

n

Intelligent

scheduling

strategy

(task
scheduling

and task

allocation

√ 10 99.9 4.0 100 0.07 2.02 10 2 10.5 25 1 2.5

96

4.8 SUMMARY

The proposed Intelligent Scheduling technique aims to optimize task

scheduling and task allocation in the quickest time possible, with a focus on

maximizing resource use. The integration of Multi-Objective Deep Reinforcement

Learning is achieved by combining Deep Q-Network with Multi-Objective

Optimization approaches. The suggested technique outperforms conventional

methods by prioritizing crucial validation parameters, including Task Completion

Time, Queueing Delay, Makespan, CPU Load, Storage Capacity, Latency,

Computational Delay, Propagation Delay, Processing Delay, and Transmission

Delay, Throughput and Network Congestion. By utilizing the learning capabilities

of DQN and the efficiency improvements from Multi-Objective Optimization, the

system adjusts dynamically to various and changing Fog Computing environments.

The distinct combination of these elements establishes the suggested algorithm as a

superior performer, showcasing improved effectiveness in reducing delay,

optimizing CPU usage, and maximizing data processing capacity. The combination

of Deep Reinforcement Learning and Multi-Objective Optimization paradigms in

this technique represents notable progress in Intelligent Scheduling algorithms for

Fog Computing environments.

97

CHAPTER FIVE - CONCLUSIONS AND FUTURE WORKS

With the development of Cloud Computing technology, FC has

gradually become a significant middle layer in Cloud Computing, which has

less time delay, enhanced interactivity, and stronger processing capacity

terminal equipment. In addition, Fog Computing offers an edge-centric and

distributed approach to enhance and complement overall computing

capabilities.

5.1 Conclusion

This study aims to resolve the resource management problem in Fog

Computing environments. The study intends to improve scheduling by

concurrently considering many goals, which will increase the overall

performance, efficiency, and adaptability of the Fog Computing system. The

task allocation and task scheduling problem in FC is an important problem in

Fog Computing, and its calculation method directly affects the results and

efficiency of task execution in a Fog environment. This study proposes a

MODRL-based Deep Q Network and Multi-Objective Optimization (NSGA2

+ MOEA/D) to tackle task allocation and task scheduling problems in FC,

which is implemented in a Fog Orchestrator that can choose the optimal node

by considering three objectives (Load, Priority, and Distance).

The experimental results prove that the key findings of the proposed

DQN+ Multi-Objective Optimization algorithm are effective based on eight

validation metrics: Task Completion Time, Makespan Time, Queueing Delay,

Latency,Network Congestion, Throughput, CPU Load, and Storage Capacity

with an average value of 2.02ms, 10ms, 2ms, , 3.5ms, 0.10ms, %100,

%10,%99, respectively. As well as adaptive in terms of four performance

metrics: Propagation Delay, Transmission Delay, Processing Delay, and

Computational Delay with an average value of 9.5ms, 25ms, 1ms, 3ms,

98

respectively, in solving the MODRL of FC for task scheduling and task

allocation. Therefore, the intelligent scheduling strategy in FG is essential for

the following:

1- Minimizing Latency, by intelligently allocating tasks and processing

locations, bringing computation closer to the edge for real-time

applications.

2- Reducing Makespan, contributing to faster completion times for the

entire workload.

3- Reduces Communication Delay, by making informed determinations

regarding the optimal location for job processing, whether it is locally

or in the Cloud. This aids in minimizing the necessity for lengthy data

transfers, hence improving the overall responsiveness of the system.

4- Maximize Throughput, confirming that the system can handle a

higher workload effectively.

5- Maximazing the Resource Utilization, ensuring reliable and efficient

operation in a dynamic environment, and optimizing the use of

resources.

5.2 Future Works

For the future, the algorithm will be adjusted to enhance the mechanisms

for re-scheduling tasks facing long queueing times in the Orchestrator, which

may involve the following:

1- Feedback-based re-scheduling, A re-scheduling mechanism

continuously learns from past decisions, analyzing factors like task

completion times and resource utilization.

2- Predictive re-scheduling, is a method that uses forecasting and

predictive analytics to anticipate future changes in the Fog

Computing environment.

R1

REFERENCES

Abdel-Basset, M. et al. (2021a) ‘Multi-Objective Task Scheduling Approach

for Fog Computing’, IEEE Access, 9, pp. 126988–127009. Available at:

https://doi.org/10.1109/ACCESS.2021.3111130.

Abdel-Basset, M. et al. (2021b) ‘Multi-Objective Task Scheduling Approach

for Fog Computing’, IEEE Access, 9, pp. 126988–127009. Available at:

https://doi.org/10.1109/ACCESS.2021.3111130.

Alizadeh, M.R. et al. (2020a) ‘Task scheduling approaches in fog computing:

A systematic review’, International Journal of Communication Systems,

33(16), pp. 1–36. Available at: https://doi.org/10.1002/dac.4583.

Alizadeh, M.R. et al. (2020b) ‘Task scheduling approaches in fog computing:

A systematic review’, International Journal of Communication Systems,

33(16). Available at: https://doi.org/10.1002/dac.4583.

Alsmirat, M., Institute of Electrical and Electronics Engineers. French Section

and Institute of Electrical and Electronics Engineers 2020 Fifth International

Conference on Fog and Mobile Edge Computing (FMEC) : Paris, France.

April 20-23, 2020.

Atlam, H.F., Walters, R.J. and Wills, G.B. (2018) ‘Fog computing and the

internet of things: A review’, Big Data and Cognitive Computing. MDPI, pp.

1–18. Available at: https://doi.org/10.3390/bdcc2020010.

Chen, W. et al. (2021) ‘A novel multiobjective evolutionary algorithm based

on decomposition and multi-reference points strategy’. Available at:

http://arxiv.org/abs/2110.14124.

Deb, K. et al. (2002a) A Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION.

Deb, K. et al. (2002b) A Fast and Elitist Multiobjective Genetic Algorithm:

NSGA-II, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION.

Deb, Kalyan and Deb, Kalyanmoy (2014) Multiobjective Optimization Using

Evolutionary Algorithms Multi-Objective Optimization Using Evolutionary

Algorithms: An Introduction. Available at:

http://www.iitk.ac.in/kangal/deb.htm.

https://doi.org/10.1109/ACCESS.2021.3111130
https://doi.org/10.1109/ACCESS.2021.3111130
https://doi.org/10.1002/dac.4583
https://doi.org/10.1002/dac.4583
https://doi.org/10.3390/bdcc2020010
http://arxiv.org/abs/2110.14124
http://www.iitk.ac.in/kangal/deb.htm

R2

Dizdarevic, J. et al. (2018) ‘Survey of Communication Protocols for Internet-

of-Things and Related Challenges of Fog and Cloud Computing Integration’.

Available at: https://doi.org/10.1145/3292674.

Dlamini, S. and Ventura, N. (2019) ‘Resource management in fog computing:

Review’, in icABCD 2019 - 2nd International Conference on Advances in Big

Data, Computing and Data Communication Systems. Institute of Electrical and

Electronics Engineers Inc. Available at:

https://doi.org/10.1109/ICABCD.2019.8851016.

Fahimullah, M., Ahvar, S. and Trocan, M. (2022) A Review of Resource

Management in Fog Computing: Machine Learning Perspective.

Gazori, P., Rahbari, D. and Nickray, M. (2020a) ‘Saving time and cost on the

scheduling of fog-based IoT applications using deep reinforcement learning

approach’, Future Generation Computer Systems, 110, pp. 1098–1115.

Available at: https://doi.org/10.1016/j.future.2019.09.060.

Gazori, P., Rahbari, D. and Nickray, M. (2020b) ‘Saving time and cost on the

scheduling of fog-based IoT applications using deep reinforcement learning

approach’, Future Generation Computer Systems, 110, pp. 1098–1115.

Available at: https://doi.org/10.1016/j.future.2019.09.060.

Ghobaei-Arani, M., Souri, A. and Rahmanian, A.A. (2020a) ‘Resource

Management Approaches in Fog Computing: a Comprehensive Review’,

Journal of Grid Computing. Springer. Available at:

https://doi.org/10.1007/s10723-019-09491-1.

Ghobaei-Arani, M., Souri, A. and Rahmanian, A.A. (2020b) ‘Resource

Management Approaches in Fog Computing: a Comprehensive Review’,

Journal of Grid Computing. Springer. Available at:

https://doi.org/10.1007/s10723-019-09491-1.

Guerrero, C., Lera, I. and Juiz, C. (2019) ‘Evaluation and efficiency

comparison of evolutionary algorithms for service placement optimization in

fog architectures’, Future Generation Computer Systems, 97, pp. 131–144.

Available at: https://doi.org/10.1016/j.future.2019.02.056.

Hazra, A. et al. (2023) ‘Fog computing for next-generation Internet of Things:

Fundamental, state-of-the-art and research challenges’, Computer Science

Review. Elsevier Ireland Ltd. Available at:

https://doi.org/10.1016/j.cosrev.2023.100549.

https://doi.org/10.1145/3292674
https://doi.org/10.1109/ICABCD.2019.8851016
https://doi.org/10.1016/j.future.2019.09.060
https://doi.org/10.1016/j.future.2019.09.060
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1016/j.future.2019.02.056
https://doi.org/10.1016/j.cosrev.2023.100549

R3

Henderson, P. et al. (2018) Deep Reinforcement Learning that Matters.

Available at: www.aaai.org.

Islam, M.S.U., Kumar, A. and Hu, Y.C. (2021) ‘Context-aware scheduling in

Fog computing: A survey, taxonomy, challenges and future directions’,

Journal of Network and Computer Applications. Academic Press. Available at:

https://doi.org/10.1016/j.jnca.2021.103008.

Jang, B. et al. (2019) ‘Q-Learning Algorithms: A Comprehensive

Classification and Applications’, IEEE Access, 7, pp. 133653–133667.

Available at: https://doi.org/10.1109/ACCESS.2019.2941229.

Jin, C. et al. (2023) ‘Reinforcement Learning-Based Intelligent Task

Scheduling for Large-Scale IoT Systems’, Wireless Communications and

Mobile Computing, 2023. Available at: https://doi.org/10.1155/2023/3660882.

Kaur, M. and Kumar, V. (2018) ‘Parallel non-dominated sorting genetic

algorithm-II-based image encryption technique’, Imaging Science Journal,

66(8), pp. 453–462. Available at:

https://doi.org/10.1080/13682199.2018.1505327.

Kaur, N., Kumar, A. and Kumar, R. (2021) ‘A systematic review on task

scheduling in Fog computing: Taxonomy, tools, challenges, and future

directions’, Concurrency and Computation: Practice and Experience, 33(21).

Available at: https://doi.org/10.1002/cpe.6432.

Laghari, A.A., Jumani, A.K. and Laghari, R.A. (2021) ‘Review and State of

Art of Fog Computing’, Archives of Computational Methods in Engineering,

28(5), pp. 3631–3643. Available at: https://doi.org/10.1007/s11831-020-

09517-y.

Lakhan, A. et al. (2022) ‘Efficient deep-reinforcement learning aware resource

allocation in SDN-enabled fog paradigm’, Automated Software Engineering,

29(1). Available at: https://doi.org/10.1007/s10515-021-00318-6.

Lazaridis, A. (2020) Deep Reinforcement Learning: A State-of-the-Art

Walkthrough, Journal of Artificial Intelligence Research.

Li, K., 2021. Decomposition multi-objective evolutionary optimization: From

state-of-the-art to future opportunities. arXiv preprint arXiv:2108.09588.

Liu, C., Xu, X. and Hu, D. (2015) ‘Multiobjective reinforcement learning: A

comprehensive overview’, IEEE Transactions on Systems, Man, and

http://www.aaai.org/
https://doi.org/10.1016/j.jnca.2021.103008
https://doi.org/10.1109/ACCESS.2019.2941229
https://doi.org/10.1155/2023/3660882
https://doi.org/10.1080/13682199.2018.1505327
https://doi.org/10.1002/cpe.6432
https://doi.org/10.1007/s11831-020-09517-y
https://doi.org/10.1007/s11831-020-09517-y
https://doi.org/10.1007/s10515-021-00318-6

R4

Cybernetics: Systems, 45(3), pp. 385–398. Available at:

https://doi.org/10.1109/TSMC.2014.2358639.

Liu, Y. et al. (2019) ‘Deep Reinforcement Learning for Offloading and

Resource Allocation in Vehicle Edge Computing and Networks’, IEEE

Transactions on Vehicular Technology, 68(11), pp. 11158–11168. Available

at: https://doi.org/10.1109/TVT.2019.2935450.

Von Lücken, C., Barán, B. and Brizuela, C. (2014) ‘A survey on multi-

objective evolutionary algorithms for many-objective problems’,

Computational Optimization and Applications, 58(3), pp. 707–756. Available

at: https://doi.org/10.1007/s10589-014-9644-1.

Mao, H. et al. (2016) ‘Resource management with deep reinforcement

learning’, in HotNets 2016 - Proceedings of the 15th ACM Workshop on Hot

Topics in Networks. Association for Computing Machinery, Inc, pp. 50–56.

Available at: https://doi.org/10.1145/3005745.3005750.

Martinez, I., Hafid, A.S. and Jarray, A., 2020. Design, resource management,

and evaluation of fog computing systems: a survey. IEEE Internet of Things

Journal, 8(4), pp.2494-2516.

Matrouk, K. and Alatoun, K. (2021) ‘Scheduling Algorithms in Fog

Computing: A Survey’, International Journal of Networked and Distributed

Computing, 9(1), pp. 59–74. Available at:

https://doi.org/10.2991/IJNDC.K.210111.001.

Mohamad Shirajuddin, T., Muhammad, N.S. and Abdullah, J. (2023)

‘Optimization problems in water distribution systems using Non-dominated

Sorting Genetic Algorithm II: An overview’, Ain Shams Engineering Journal,

14(4). Available at: https://doi.org/10.1016/j.asej.2022.101932.

Mossalam, H. et al. (2016) ‘Multi-Objective Deep Reinforcement Learning’.

Available at: http://arxiv.org/abs/1610.02707.

Mseddi, A. et al. (2019) ‘Intelligent Resource Allocation in Dynamic Fog

Computing Environments’, in Proceeding of the 2019 IEEE 8th International

Conference on Cloud Networking, CloudNet 2019. Institute of Electrical and

Electronics Engineers Inc. Available at:

https://doi.org/10.1109/CloudNet47604.2019.9064110.

Mukherjee, M., Shu, L. and Wang, D. (2018) ‘Survey of fog computing:

Fundamental, network applications, and research challenges’, IEEE

https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1109/TVT.2019.2935450
https://doi.org/10.1007/s10589-014-9644-1
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.2991/IJNDC.K.210111.001
http://arxiv.org/abs/1610.02707
https://doi.org/10.1109/CloudNet47604.2019.9064110

R5

Communications Surveys and Tutorials, 20(3), pp. 1826–1857. Available at:

https://doi.org/10.1109/COMST.2018.2814571.

Naha, R.K. et al. (2018) ‘Fog computing: Survey of trends, architectures,

requirements, and research directions’, IEEE Access, 6, pp. 47980–48009.

Available at: https://doi.org/10.1109/ACCESS.2018.2866491.

Nassar, A.T. and Yilmaz, Y. (2018) ‘Reinforcement Learning-based Resource

Allocation in Fog RAN for IoT with Heterogeneous Latency Requirements’.

Available at: http://arxiv.org/abs/1806.04582.

Ni, J. et al. (2018) ‘Securing Fog Computing for Internet of Things

Applications: Challenges and Solutions’, IEEE Communications Surveys and

Tutorials, 20(1), pp. 601–628. Available at:

https://doi.org/10.1109/COMST.2017.2762345.

Niranjan, S.K. et al. Institute of Electrical and Electronics Engineers, Institute

of Electrical and Electronics Engineers. Bangalore Section, and IEEE

Computational Intelligence Society. Bangalore Chapter, ‘‘A survey:

Integration of IoT and fog computing,’’ in Proc. 2nd Int. Conf. Green Comput.

Internet Things (ICGCIoT), Karnataka, India, Aug. 2018, pp. 235–239.

Özdemir, S., Attea, B.A. and Khalil, Ö.A. (2013) ‘Multi-objective evolutionary

algorithm based on decomposition for energy efficient coverage in wireless

sensor networks’, Wireless Personal Communications, 71(1), pp. 195–215.

Available at: https://doi.org/10.1007/s11277-012-0811-3.

Plaat, A. (2022) ‘Deep Reinforcement Learning, a textbook’. Available at:

https://doi.org/10.1007/978-981-19-0638-1.

Qi, F.A.N., Zhuo, L. and Xin, C. (2020) ‘Deep Reinforcement Learning Based

Task Scheduling in Edge Computing Networks’, in 2020 IEEE/CIC

International Conference on Communications in China, ICCC 2020. Institute

of Electrical and Electronics Engineers Inc., pp. 835–840. Available at:

https://doi.org/10.1109/ICCC49849.2020.9238937.

Qiao, J. et al. (2019) ‘A decomposition-based multiobjective evolutionary

algorithm with angle-based adaptive penalty’, Applied Soft Computing Journal,

74, pp. 190–205. Available at: https://doi.org/10.1016/j.asoc.2018.10.028.

Rahman, G.M.S., Dang, T. and Ahmed, M. (2021) ‘Deep reinforcement

learning based computation offloading and resource allocation for low-latency

https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/ACCESS.2018.2866491
http://arxiv.org/abs/1806.04582
https://doi.org/10.1109/COMST.2017.2762345
https://doi.org/10.1007/s11277-012-0811-3
https://doi.org/10.1007/978-981-19-0638-1
https://doi.org/10.1109/ICCC49849.2020.9238937
https://doi.org/10.1016/j.asoc.2018.10.028

R6

fog radio access networks’, Intelligent and Converged Networks, 1(3), pp. 243–

257. Available at: https://doi.org/10.23919/icn.2020.0020.

Rani, A., Prakash, V. and Darbari, M. (2022) ‘Fog Computing Paradigm with

Internet of Things to Solve Challenges of Cloud with IoT’, in Communications

in Computer and Information Science. Springer Science and Business Media

Deutschland GmbH, pp. 72–84. Available at: https://doi.org/10.1007/978-3-

031-23724-9_7.

Roderick, M., MacGlashan, J. and Tellex, S. (2017) ‘Implementing the Deep

Q-Network’. Available at: http://arxiv.org/abs/1711.07478.

Roheed Khaliqyar, A.Professor., Amir Kror Shahidzay, A.Prof. and Aslamza,

Assistant.P.S. (2023) ‘An Approach from Internet of Things to Cloud of Things

using Fog Computing’, International Journal of Multidisciplinary Research

and Analysis, 06(04). Available at: https://doi.org/10.47191/ijmra/v6-i4-53.

Sabireen, H. and Neelanarayanan, V. (2021) ‘A Review on Fog Computing:

Architecture, Fog with IoT, Algorithms and Research Challenges’, ICT

Express, 7(2), pp. 162–176. Available at:

https://doi.org/10.1016/j.icte.2021.05.004.

Sellami, B. et al. (2020) ‘Deep Reinforcement Learning for Energy-Efficient

Task Scheduling in SDN-based IoT Network’, in 2020 IEEE 19th International

Symposium on Network Computing and Applications, NCA 2020. Institute of

Electrical and Electronics Engineers Inc. Available at:

https://doi.org/10.1109/NCA51143.2020.9306739.

Sharma, S. and Kumar, V. (2022) ‘A Comprehensive Review on Multi-

objective Optimization Techniques: Past, Present and Future’, Archives of

Computational Methods in Engineering. Springer Science and Business Media

B.V., pp. 5605–5633. Available at: https://doi.org/10.1007/s11831-022-09778-

9.

Sheng, S. et al. (2021) ‘Deep reinforcement learning-based task scheduling in

iot edge computing’, Sensors, 21(5), pp. 1–19. Available at:

https://doi.org/10.3390/s21051666.

Sherbrooke, C.C. Discrete compound Poisson processes and tables of the

geometric Poisson distribution,’’ Nav. Res. Logistics Quart., vol. 15, no. 2,

pp. 189–203, Jun. 1968, doi: 10.1002/nav.3800150206.

https://doi.org/10.23919/icn.2020.0020
https://doi.org/10.1007/978-3-031-23724-9_7
https://doi.org/10.1007/978-3-031-23724-9_7
http://arxiv.org/abs/1711.07478
https://doi.org/10.47191/ijmra/v6-i4-53
https://doi.org/10.1016/j.icte.2021.05.004
https://doi.org/10.1109/NCA51143.2020.9306739
https://doi.org/10.1007/s11831-022-09778-9
https://doi.org/10.1007/s11831-022-09778-9
https://doi.org/10.3390/s21051666

R7

Tan, F., Yan, P. and Guan, X. (2017a) ‘Deep Reinforcement Learning: From

Q-Learning to Deep Q-Learning’, in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics). Springer Verlag, pp. 475–483. Available at:

https://doi.org/10.1007/978-3-319-70093-9_50.

Tan, F., Yan, P. and Guan, X. (2017b) ‘Deep Reinforcement Learning: From

Q-Learning to Deep Q-Learning’, in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics). Springer Verlag, pp. 475–483. Available at:

https://doi.org/10.1007/978-3-319-70093-9_50.

Thi Nguyen, T. et al. 2020. A multi-objective deep reinforcement learning

framework. Engineering Applications of Artificial Intelligence, 96, p.103915.

Tran-Dang, H. et al. (2022) ‘Reinforcement learning based resource

management for fog computing environment: Literature review, challenges,

and open issues’, Journal of Communications and Networks, 24(1), pp. 83–98.

Available at: https://doi.org/10.23919/jcn.2021.000041.

Verdú, S. (1998) Fifty Years of Shannon Theory, IEEE Trans. Inf. Theory,

vol. 44, no. 6, pp. 2057–2078, Oct. 1998, doi: 10.1109/18.720531

Verma, S., Pant, M. and Snasel, V. (2021) ‘A Comprehensive Review on

NSGA-II for Multi-Objective Combinatorial Optimization Problems’, IEEE

Access, 9, pp. 57757–57791. Available at:

https://doi.org/10.1109/ACCESS.2021.3070634.

Wang, N. et al. (2023) ‘A Review of Deep Reinforcement Learning Methods

and Military Application Research’, Mathematical Problems in Engineering,

2023, pp. 1–16. Available at: https://doi.org/10.1155/2023/7678382.

Wang, Y., Dong, S. and Fan, W. (2023) ‘Task Scheduling Mechanism Based

on Reinforcement Learning in Cloud Computing’, Mathematics, 11(15).

Available at: https://doi.org/10.3390/math11153364.

Goudarzi, M. et al. (2023) ‘Deep Reinforcement Learning-based scheduling

for optimizing system load and response time in edge and fog computing

environments’, Future Generation Computer Systems, 152, pp. 55–69.

Available at: https://doi.org/10.1016/j.future.2023.10.012.

https://doi.org/10.1007/978-3-319-70093-9_50
https://doi.org/10.1007/978-3-319-70093-9_50
https://doi.org/10.23919/jcn.2021.000041
https://doi.org/10.1109/ACCESS.2021.3070634
https://doi.org/10.1155/2023/7678382
https://doi.org/10.3390/math11153364
https://doi.org/10.1016/j.future.2023.10.012

R8

Wei, Y. et al. (2018) ‘DRL-Scheduling: An intelligent QoS-Aware job

scheduling framework for applications in clouds’, IEEE Access, 6, pp. 55112–

55125. Available at: https://doi.org/10.1109/ACCESS.2018.2872674.

Wu, J. et al. (2021) ‘Deep Reinforcement Learning for Scheduling in an Edge

Computing-Based Industrial Internet of Things’, Wireless Communications

and Mobile Computing, 2021. Available at:

https://doi.org/10.1155/2021/8017334.

Zhang, Q. and Li, H. (2007) ‘MOEA/D: A multiobjective evolutionary

algorithm based on decomposition’, IEEE Transactions on Evolutionary

Computation, 11(6), pp. 712–731. Available at:

https://doi.org/10.1109/TEVC.2007.892759.

Zheng, T. et al. (2022) ‘Deep Reinforcement Learning-Based Workload

Scheduling for Edge Computing’, Journal of Cloud Computing, 11(1).

Available at: https://doi.org/10.1186/s13677-021-00276-0.

https://doi.org/10.1109/ACCESS.2018.2872674
https://doi.org/10.1155/2021/8017334
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1186/s13677-021-00276-0

R1

 پوختە

دواییانە نوێ وەک (، (Fog computingبەم کە ،ڵداوهریهەسەپارادایمیكێکی

م بۆ تۆڕەکان (بە وچانێكی كەIoTئینتەرنێتی) میردهسەكان لەیشنەپلیكەەخزمەتگوزارییەکانی بۆ ئ

كانی كۆلۆنیە لە (computing) ومپیوتینگ ڵام توانای سنورداری سەرچاوەکانی كدەکات، بە ئاماده

ئەرکەکانی بەکارهێنان رخانكردنی وتە کێشەی گەورە بۆ خشتەى كارەكان (Fog colonies) فۆگ

(لەسەر (FC. لەم کارەدا ئالگۆریتمێکی ستراتیژی خشتەکردنی زیرەک لە سیستەمی كاتهدروستد

فرە قووڵی بەهێزکردنی فێربوونی)-بنەمای ب MODRLئامانج دیاریکردنی بۆ كانستەكبەیەە(

nodes) .بۆ پرۆسەکردنی ئەرک پێشنیار دەکرێت)

(Fog nodes or Cloud nodesب)كانستەك بەیەەلەسەر سێ ئامانج: دۆخی ئێستای ب نده ە ،

 (. Load, Priority, Distance) ئەولەویەتی ئەرک پێشنیاركردنی وكان ستەك بەیەەدووری ب

 MODRL فرە باشترکردنی بیرۆکەکانی کە پێشکەوتووە، فێربوونی -میتۆدۆلۆژیایەکی و ئامانج

لەبەهێزکردنی قووڵ بۆ ئاڵۆزو ئەچارەسەرکردنی بڕیاردان کە چەندین ئامانجی ی، انەبارودۆخە

بە پێویستیان کە بارودۆخانەدا، لەو بەتایبەتی نرخە بە تەکنیکە ئەم دەکات. تێکەڵ تێدایە ناکۆکی

زیادکردنی ژمارەیەکی زۆر لە پێوەرەکان هەیە. لەهەمان کاتدا تەنانەت ئەگەر بە تەواوی هێڵیش نەبن

ڕەچاو بکرێن. ئەم مۆدێلەی پێشنیارکراوە دوو کێشەی سەرەکی چارەسەر دەکات: كانڵەەمام پیویستەو

ئەرک بەهێزکردنی وخشتەی'تەرخانکردنی فێربوونی بەکارهێنانی سێ)ئەرک. (DRLقووڵ

، یەک بۆ هەر ئامانجێک ئەمە Q-Network (DQN)لەسەر بنەمای تۆڕێکی قووڵی كانبریكاره

(تۆڕی پێکهاتەی لە تایبەتە)ANNجۆرێکی فێربوون بەهێزکردنی بۆ کە ،)RL .بەکاردێت)

(، بۆ خەمڵاندنی CNNبەکاردێنێت، کە بە گشتی تۆڕێکی ئاڵۆزە) (NN)تۆڕی DQNئەلگۆریتمی

ئاڵۆزەکان پرۆسە .Qکرداری دەدات، کە بەشێوەیەکی کاریگەر بوارە ئەمەش ڕێگە بە مۆدێلەکە

بکات. لەگەڵ ئەوەشدا ئەمە سیناریۆیەکی سەختترە، چونکە ئاڵوگۆڕێک لەنێوان ئەم ئامانجانەدا هەیە،

بە لەوانەیە ئەلگۆریتمێک هەر کۆتاییدا ئامانجەکەی كبەیەلە بەپێی جیاواز پرۆسەکردنی ستنی

دەمانبات. بۆ چارەسەرکردنی ئەم کێشەیە پێشنیار بکە (Pareto)شەی پێشەوەی هەڵبژێرێت، کە بۆ کێ

ئامانجی پەرەسەندو لەسەر بنەمای لابردنى -ئامانج، ئەلگۆریتمی فرە-بە بەکارهێنانی باشکردنی فرە

(ئامانج نەبۆماوەیی وئەلگۆریتمی(MOEA/Dفرە ئەلگۆریتمی NSGA2) كراوەپۆلێن کە ،)

فرە)-باشکردنی ئامانج ڕەچاوکردنی سێ بە دەتوانن کە (Load, Priority, Distanceئامانجن،

 ست هەڵبژێرن. ك بەیەباشترین بە

 ,TensorFlowلەگەڵ evironment Pythonبە بەکارهێنانی وتاقیکردنەوەكان وهلیكۆڵینە

Pytorch, Pymoo, PQDM, لەPyChram، پایتۆنێکی بەهێزى كەIDEوڕاهێنانی وە وشی ، بۆ ها

هەروەها زیرەک. خشتەکردنی بەکارهێنانی كرێت هد Virtualized dataستراتیژییەتی بە

MatPlotLib لەJupyter notebok ئاماژە بەوە بکات، کە ستراتیژیی خشتەکردنی دەستکردی

زیرەک دەتوانێت بۆ ئەنجامدانی جۆرەها ئەدای بەکارهێنراو ئەنجامی باشتر بەدەست بهێنێت، کارایی

، دواکەوتنی ڕیزبەند، MAKESPANو پێوانەکانی توانای خۆگونجاندن: کاتی تەواوکردنی ئەرک

دواکەوتنی یدواکەوتن دواکەوتنی وهگواستنەبڵاوبوونەوە، پرۆسیسكردن، كرداری دواکەوتنی ،

 Storageڵگرتن)(، بەکارهێنانی هەCPU Load) سی پی یو كۆمپیوتینگ، دواکەوتن، باركردنى

Capacity2.02 (، تێکڕای بەهایms, 10ms, 2ms, 9.9ms, 25ms, 1.0ms, 3.5ms, %10,

 بەراورد بە توێژینەوە پەیوەندیدارەکانی ئێستا. ,99 %

