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ABSTRACT 
 

Fog Computing (FC) has recently emerged as a promising new paradigm 

that provides resource-intensive Internet of Things (IoT) applications with low-

latency services at the network edge. However, the limited capacity of 

computing resources in Fog colonies poses great challenges for scheduling and 

allocating application tasks. In this dissertation, an Intelligent Scheduling 

Strategy Algorithm in a Fog Computing system based on Multi-Objective Deep 

Reinforcement Learning (MODRL) is proposed. MODRL algorithm select 

nodes (Fog nodes or Cloud nodes) for task processing based on three 

objectives; current node’s Load, node Distance, and task Priority. MODRL is 

a smart method that integrates the ideas of Multi-Objective Optimization and 

Deep Reinforcement Learning to tackle intricate decision-making situations 

involving several conflicting objectives. This technique is especially valuable 

in situations when there is a requirement to maximize numerous criteria 

simultaneously, even if they do not exactly line, and where trade-offs need to 

be taken into account. The proposed model addresses two main problems; task 

allocation and task scheduling. Employ three Deep Reinforcement Learning 

(DRL) agents based on a Deep Q Network (DQN), one for each objective. It is 

a specific form of Artificial Neural Network structure employed in 

Reinforcement Learning. The DQN algorithm utilizes a Deep Neural Network, 

commonly a Convolutional Neural Network (CNN), to estimate the Q-function. 

This enables the model to effectively process intricate input domains. However, 

this is a more challenging scenario because there is a trade-off among these 

objectives, and eventually, each algorithm may select different processing 

nodes according to its own objective, which brings to a Pareto Front problem. 

To solve this problem, propose using Multi-Objective Optimization, a Non-

dominated Sorting Genetic Algorithm (NSGA2), and a Multi-Objective 

Evolutionary Algorithm based on Decomposition (MOEA/D), which are Multi-
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Objective Optimization algorithms that can choose the optimal node by 

considering three objectives. 

 Simulation investigation and experiments using a Python environment 

with TensorFlow, PyTorch, Pymoo, and PQDM libraries in PyCharm, which is 

a powerful Python IDE, to simulate and train the Intelligent Scheduling 

Strategy. As well as, Virtualized data using MatPlotLib in the Jupyter 

Notebook, indicates  that the proposed Intelligent Scheduling Strategy could 

attain better results for the several employed efficiency, adaptability, and 

performance metrics: Task Completion Time, Makespan, Transmission Delay, 

Queueing Delay, Processing Delay, Propagation Delay, Computational Delay, 

Latency, Network Congestion, Throughput, CPU Load, and Storage 

Utilization, with an average value of 2.02ms, 10ms, 25ms, 2ms, 1.0ms, 

9.5ms,3ms, 3.5ms, 0.10ms, %100, %10, and % 99, respectively.
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    CHAPTER ONE 

INTRODUCTION 
 

1.1 Overview 
 

In recent years, due to the growing progress in the use of the Internet of Things 

(IoT), there has been a significant rise in both the number of applications and the 

amount of data being demanded. In addition, the demand for real-time data 

processing and analysis is increasing. However, traditional cloud computing faces 

several threats, such as latency, performance, network breakdown, and security.  

Moreover, the traditional Cloud Computing architecture is not compatible 

with IoT applications because of its inherent limitations, such as limited bandwidth, 

high latency, and high-power consumption (Alizadeh et al., 2020a)-(Roheed 

Khaliqyar et al., 2023)-(Sabireen et al., 2021). With the discovery of Fog Computing 

(FC), these problems have been addressed by computing clouds nearer to IoT. FC 

provides storage and computation such that all services can be transferred over the 

network between the IoT and cloud layers. Furthermore, FC can provide full 

authentication using local computers and share secure information locally or through 

distributed computing (Laghari et al., 2021)-(Rahman et al., 2021). 

Researchers from Cisco Systems proposed FC in 2012. FC acts as a link 

between the IoT layer, storage devices, and cloud computing (CC). FC in a 

distributed environment, in which several heterogeneous Fog nodes (FN) can share 

and connect their computing and storage resources among neighboring nodes for 

further analytics and processing (Sabireen et al., 2021)-(Alizadeh et al., 2020a)-

(Gazori, Rahbari et al., 2020a). Therefore, FC is not a replacement for CC but 

extends the computation, storage, and communication facilities from the cloud to the 
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edge of the networks(Mukherjee et al.2018). The main objectives of  FC are to 

reduce network traffic, latency, power consumption, and operational costs(Ghobaei-

Arani et al., 2020a). FC is a novel approach that aims to bring the Cloud layer closer 

to the IoT user as well as enhance the Quality of Service (QoS)(Rani et al., 2022). 

QoS includes optimizing the response time until real-time applications can rapidly 

make their final decision at the same time as the actions(Abdel-Basset et al., 2021a). 

Compared with CC, FC delivers services with a quick response time and high 

quality. Hence, FC might be the best option to allow IoT to deliver highly and 

efficiently secure services to several IoT clients. It is eventually at places specified 

by Service Level Agreements (SLAs) or permits the administration of resource 

provisioning and services outside Cloud Computing, nearer to nodes, at the network 

edge network layer (Sabireen et al., 2021) 

On the other hand, compared to CC, FC does not have sufficient storage and 

computing resources. Therefore, efficient resource allocation is a significant 

research problem for FC(Mukherjee et al., 2018). Hence, one of the key challenges 

in a FC environment for running IoT applications is resource allocation(Naha et al., 

2018)(Alizadeh et al., 2020a)(Ghobaei-Arani et al., 2020b)(Islam et al., 2021).  

Moreover, executing tasks in the FC layer for IoT applications requires efficient 

resource management and allocation and physical servers in cloud data centers to 

satisfy QoS requirements. However, achieving this objective faces many serious 

challenges due to the limitations and complex heterogeneity of Fog resources, the 

dynamic nature of resource demands, and locality restrictions (Tran-Dang et al., 

2022). To improve the operation of FC and further achieve its objectives, a practical 

and exact scheduling approach is required(Alizadeh et al., 2020a). Additionally, the 

FC manages services and resources in a decentralized manner. Fog devices provide 

services to IoT users in a decentralized manner(Niranjan et al., 2018). In general, 

IoT nodes are connected to a FN in a FC environment. These FNs are responsible 
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for intermediate storage and computation and are located in close proximity to IoT 

users(Naha et al., 2018).  In addition, IoT nodes do not have sufficient resources to 

analyze or store the generated data, and some of the connected nodes have no 

intelligence to process the analyzed data in order to make decisions. Thus, they 

require an external controller to schedule tasks and make decisions(Gazori et al., 

2020a). Typically, task scheduling includes assigning which resources will process 

which tasks. In large-scale systems, including the Cloud layer IoT layer and Fog 

layer, the possible resources for computation execution contain servers in the Cloud-

tier IoT nodes and Fog nodes(Tran-Dang et al., 2022). In addition, scheduling aims 

to reduce response time, enhance resource utilization, increase user satisfaction, and 

improve performance(Alizadeh et al., 2020b). Thus, efficient resource management 

will improve Fog Computing performance, and task scheduling is an essential 

requirement for performance optimization in Fog Computing environments(Gazori 

et al., 2020a).  

Nowadays, Artificial Intelligence (AI) has become a new technology in the 

area of information and knowledge technology for the control of heterogeneous and 

homogeneous nodes connected in FC, as well as the management of data(Hazra et 

al., 2023). Machine Learning (ML), specifically Deep Reinforcement Learning 

(DRL), is considered an effective technique that has appealed to the research 

community (Nassar et al., 2018)to tackle numerous resource management problems. 

DRL has a strong ability to deal with decision-making problems (Gazori et al., 

2020a)so that agents can respond efficiently to the dynamics of the environment. 

This vision suggests great potential for the application of RL in the concept of FC 

concerning resource allocation for task execution and offloading to attain improved 

performance. In addition, RL has been progressively applied and studied to 

successfully solve resource allocation problems in Fog Computing 

environments(Tran-Dang et al., 2022). By exploiting a deep neural network (DNN), 
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DRLs can provide accurate regression and estimate precise value functions for RL 

problems(Nassar et al., 2018). DRL- and deep Q-learning (DQL) based schemes 

were combined to optimize resource allocation(Liu et al., 2019). In the 

Reinforcement Learning-based model, Q-Learning with the epsilon-greedy 

algorithm is applied to derive the best action selection (Tran-Dang et al., 2022)For 

Multi-Objective which results in a Pareto Front problem that is solved by an 

optimization algorithm. 

Optimization plays an important role in daily life. In computing, optimization 

refers to application performance with minimum resources or a maximizing system. 

In optimization, meta-heuristic techniques are more effective in solving realistic 

problems in several fields, such as computing and engineering, and population-based 

techniques transform and manipulate a set of solutions through the optimization 

procedure. These can be categorized into Single-Objective and Multi-Objective 

techniques. A Multi-Objective method was used to optimize two or more competing 

goals by simultaneously considering the constraints at the same time(Sharma et al., 

2022). The performance of three Multi-Objective Evolutionary Algorithms, namely 

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), 

Non-Dominated Sorting Genetic Algorithm 2 (NSGA 2), and Weighted Sum 

Genetic Algorithm (WSGA) to find the best solution for task scheduling in FC to 

minimize network delay, allocate services, and use resources effectively. The test 

results show that both MOEA/D and NSGA-II can effectively optimize the 

objectives compared to WSGA, whereas MOEA/D can minimize the execution time 

the most (Abdel-Basset et al., 2021b)(Guerrero et al., 2019). 

In this study, A scheduling strategy for an FC system utilizing a MODRL 

algorithm has been proposed. The proposed model tackles two primary issues: task 

allocation and task scheduling. The DRL algorithm is necessary to formulate an 

optimal approach for assigning tasks generated by IoT devices to appropriate 
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processing nodes (Fog or Cloud), and subsequently arranging those tasks in the 

designated Fog nodes according to various criteria. The experimental findings 

demonstrate that the proposed (DQN+ Multi-Objective Optimization) algorithm is 

superior and adaptable in comparison to the existing relevant research studies. 

 

1-2 Problem Statements 
 

The investigated problems in this dissertation can be summarized as follows: 
 

1- In Fog Computing  environments, efficient resource management for running 

IoT applications is a critical challenge, often approached through single-

objective scheduling, neglecting concurrent optimization of multiple 

objectives (Load, Distance , and Priority). 

2- Existing research exhibits shortcomings such as inadequate consideration of 

task scheduling and task allocation, insufficient utilization of proper 

Orchestrator in the Fog layer for management, and a lack of Multi-Objective 

agents for accurate provisioning of Quality-of-Service requirements. 

3- Addressing these gaps necessitates exploring Multi-Objective Optimization 

schemes, conducting studies that integrate performance, efficiency, and 

adaptability metrics, and developing approaches that concurrently optimize 

task scheduling, task allocation, and Quality-of-Service provisioning in Fog 

Computing environments. 

 

1-3 Study of the Questions: 
 

This dissertation aims at addressing the problems specified in the statement of 

the problem section. During the study made in this work, some critical research 

questions have been raised. The following are the research questions of this 

dissertation: 
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1- How can task scheduling and task allocation be optimized in Fog Computing 

environments to enable computing resource utilization and efficient storage 

for IoT applications? 

2- What scheme can satisfy the target of handling tasks scheduling as well as 

task allocation and at the same time it can be optimized for Multi-Objectives?  

3- How to fit the proposed adaptive resource management techniques in the Fog 

layer to dynamically alter task scheduling and task allocation based on 

resource availability and changing workloads within the Fog Computing 

management layer? 

4- How can the proposed work achieve a balanced trade-off between response 

time and task number in the Fog Computing system? 

 

1-4 Aim and objectives  
 

1.4.1 Aim: 

 

 Specifically in the context of running IoT applications, the aim of this study 

is to solve the issue of resource management in Fog computing settings. By 

simultaneously taking into account numerous goals, the study aims to enhance task 

scheduling, thereby boosting the Fog Computing system's overall performance, 

efficiency, and adaptability. 
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1.4.2 Objectives: 

 

1- Adaptive Resource Management: Create adaptive system that dynamically 

conduct task scheduling and task allocation in response to resource 

availability and changing workloads. 

2- Multi-Objective Task Scheduling: Implement and design a task scheduling 

algorithm that simultaneously optimizes a variety of objectives. For example, 

maximize resource utilization and minimize response time. 

3- Optimize task Allocation: Develop task allocation strategies that effectively 

compute resources and distribute storage in Fog Computing environments 

while taking into account the unique requirements and constraints of IoT 

applications. 

4- Performance Enhancement: Improve the performance of intelligent 

scheduling in Fog Computing environments, with an emphasis on better 

reliability, increased throughput, and reduced latency. 

 

1-5 Scope of the Study 
 

1- Fog Computing Environment: The study pays particular attention to Fog 

Computing environments, which act as a middle layer between IoT nodes and 

cloud computing. 

2- Resource Management: The main emphasis of the study is on resource 

management, including   computing resources and storage, within the FC 

environment. 

3- Multi-Objective Deep Reinforcement Learning: The study addresses the 

challenge of Multi-Objective optimization for task allocation and task 

scheduling. It explores methods to concurrently optimize multiple objectives, 

including Load, Distance, and Priority. 
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1-6 Contributions and Proposed System of the Study 
 

In this study, an Intelligent Scheduling Strategy for a FC system based on a DRL 

algorithm has been proposed. The proposed model addresses two main problems: 

resource allocation and task scheduling. The DQN algorithm of the DRL is required 

to develop the best strategy to allocate the tasks generated from IoT devices to 

suitable processing nodes (Fog or Cloud), as well as to schedule those tasks in the 

allocated Fog nodes based on multiple criteria. Finally, this research study provides 

the following contributions: 

1- Deployed a Central Smart Fog Orchestrator that manages the Fog system. The 

Fog nodes host IoT applications to process tasks received from the IoT layer. 

2- Proposes the use the MODRL based on a DQN to select the nodes for task 

processing (Fog nodes or Cloud) based on three objectives: Load, Distance, 

and Priority. 

3- Using a Multi-Objective Optimization Algorithm (MOEA/D and NSGA2). It 

is a metaheuristic optimization method employed for solving Multi-Objective 

optimization problems that can choose the optimal node by considering three 

objectives. To validate the performance, efficiency, and adaptability of the 

proposed (DQN+Multi-Objective Optimization) algorithm, the Task 

Completion Time, Makespan, Processing Delay, Propagation Delay, 

queueingDelay, Transmission Delay, Computational Delay, Latency, CPU 

Load, and Storage Utilization metrics have been used. The experiment results 

prove the high performance, effectiveness, and adaptive of the proposed 

algorithm across all three objectives (Load, Distance, and Priority) compared 

with the existing related research studies. 
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1-7 Structure of the Dissertation  

 

This dissertation is divided into five chapters and organized as follows: 

 Chapter 1 includes an overview, problem statements, questions, aims, objectives, 

scope of the study, contributions, and proposed system of the dissertation. 

 Chapter 2 presents the literature review and the theoretical background of 

resource management based on reinforcement learning. Based on the literature, 

resource management can be categorized as task scheduling and task allocation for 

a single objective. 

 Chapter 3 dedicated to task scheduling and task allocation based on Multi-

Objective Deep Reinforcement Learning as well as include the proposed system 

architecture, system model, system environment, and proposed system algorithm. 

     Chapter 4 illustrates the results of the experimental study as well as compares the 

proposed algorithm with the current related research studies.  

      Finally, chapter 5 presents the conclusion of the study. In addition, future work 

is given at the end of the conclusion section. 
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CHAPTER TWO 

 BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 
 

Scheduling in Fog Computing, especially when utilizing Deep Reinforcement 

Learning (DRL) methods, is a complicated and dynamic area of research. Dynamic 

Resource Allocation (DRL) approaches have the capability to enable intelligent 

decision-making in Fog environments that have limited resources. Low delay and 

high resource utilization are crucial measures for evaluating the effectiveness of 

scheduling algorithms in this context. Attaining a minimal delay guarantees prompt 

and responsive execution of tasks, while optimizing resource usage improves the 

capacity and overall efficiency of FN. The investigation of advanced scheduling 

algorithms supported by DRL is crucial for improving the adaptability and 

performance of FC system. Moreover, scheduling in Fog Computing is crucial for 

maximizing resource utilization, distributing workloads evenly, minimizing delays, 

promoting energy efficiency, controlling QoS, responding to changing 

environments, improving fault tolerance, and prioritizing jobs. Efficient scheduling 

enhances the overall efficiency, dependability, and promptness of FC systems. 

 This chapter addresses the background of scheduling in FC based MODRL. 

It also mentions previous and related research works. A summary table of the 

mentioned research, the architecture and methods used, the objective of each one, 

the tool simulated, and the limitations will be shown at the end of this chapter. This 

table will assist in proposing an intelligent scheduling strategy that will fulfill the 

shortages of these modified or proposed networks. 
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2.1.1 Fog /Cloud Computing with IoT 

 

With the Internet of Things, billions of physical things can be connected to 

each other and share data for a wide range of uses. On the other hand, some IoT 

applications may find it problematic when unsupported capabilities like geographic 

distribution, location awareness, and low latency are included in IoT. On the other 

hand, a number of risks, including latency, performance, network outages, and 

security, affect traditional cloud computing. Furthermore, due to its intrinsic 

restrictions, like constrained bandwidth, high latency, and high-power consumption, 

the traditional Cloud Computing architecture is incompatible with Internet of Things 

applications. FC is coupled with IoT to expand networking capabilities, storage, and 

compute to the Edge layer in order to provide these functions (Ni et al., 2018). 

FC brings the cloud closer to IoT nodes, as shown in figure 2.1 (Dizdarevic et 

al., 2018). FC, a concept presented by Cisco, is the extension of Cloud Computing 

capabilities to the network's edge, closer to IoT devices and sensors. It offers several 

benefits, including low latency, bandwidth efficiency, privacy and security, 

scalability, reliability, edge intelligence, and adaptability. By processing data closer 

to the source, Fog Computing reduces latency, optimizes bandwidth usage, and 

minimizes the need for sensitive data to be sent to the Cloud. It also enhances 

reliability by ensuring that local processing at the edge continues even in the event 

of a centralized cloud service downtime. Fog Computing also facilitates edge 

intelligence, enabling devices to make complex decisions locally without relying 

heavily on cloud services. Rather than transferring IoT data to the Cloud layer, the 

FN enable local IoT data processing and storage at IoT nodes. The FN offers higher-

quality services with faster reaction times than the cloud. Therefore, FC may be 

regarded as the greatest option to enable the IoT to offer efficient and safe services 

for a variety of IoT nodes. On the other hand, FN are regularly network nodes 
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equipped with additional storage and computing power. Though it is problematic for 

such nodes to match the resource capacity of Cloud Computing servers, 

Consequently, sensible management of Fog resources is essential for the effective 

operation of the FC system (Atlam et al., 2018). Typically, task scheduling includes 

assigning which resources will process which tasks. In large-scale systems, 

including Cloud-layer IoT layers and Fog layers, the possible resources for 

computation execution contain servers in the cloud-tier IoT nodes and Fog nodes 

(Tan et al., 2017).  

 

        Figure 2. 1: Fog Computing is an extension of cloud but closer to IoT 
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2.1.2 Resource Management in Fog Computing  
  

 As FC is still a developing part of research, there is insufficient research 

focusing on resource management. FC is essential to operate separately to ensure 

uninterrupted services even once there are variable connections with the cloud layer. 

It is also mandatory to fully integrate with the Cloud layer when complete resource 

connectivity is restored. So, there is a requirement for the development of effective 

orchestration mechanisms and resource management to confirm acceptable 

performance of services and applications while taking advantage of Cloud skills 

(Dlamini et al., 2019).  

FC includes the utilization, efficient allocation, and monitoring of computing 

resources in a distributed environment. It involves resource discovery, allocation, 

Load balancing, dynamic scaling, QoS management, energy efficiency, fault 

tolerance, security and privacy, monitoring and analytics, task scheduling, 

adaptability to dynamic environments, and elasticity. Resource discovery involves 

determining available devices or Fog nodes' capabilities, allocation based on task 

requirements, and load balancing to prevent bottlenecks. Dynamic scaling allows the 

Fog Computing infrastructure to scale up or down in response to changing 

workloads. QoS management prioritizes meeting QoS requirements for user 

satisfaction. Security measures protect computing resources and data, and 

monitoring and analytics help identify trends and make informed decisions. Task 

scheduling intelligently optimizes resource use, and adaptability to dynamic 

environments allows for dynamic resource allocation. Thus, the aim of resource 

management in FC is to select FNs that take the form of algorithms and best process 

IoT data and are implemented within specific Fog layer controllers or Fog nodes. As 

well as, resource management relies on additional software and hardware structures, 
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such as the Application Programming Interface (API), or controllers, to be 

implemented within the Fog system for suitable FN selection. Furthermore, resource 

management is the key aspect that determines the performance of FC (Fahimullah et 

al., 2022). 

Currently, a central Reinforcement Learning agent is used in Fog layer 

resource management techniques. Distributed multi-agent Reinforcement Learning 

has been applied to huge systems, where each agent manages a portion of the total 

FNs, hence improving overall system resource management (Martinez et al., 2020). 

 

2.1.2.1 Scheduling in Fog Computing: 

  

 Task allocation and task scheduling are two closely connected ideas in FC, 

but they refer to separate aspects of handling computational tasks within a FC 

system. Scheduling plays a significant role in Fog resource management; task 

scheduling is the facility to plan tasks for the suitable resources in FC. As FC 

contains distributed and heterogeneous resources, task scheduling becomes 

complex, which is the main challenge in Fog computing. Scheduling in Fog 

computing offers numerous advantages, such as optimizing resources, balancing 

workloads, reducing latency, improving energy efficiency, managing QoS, adapting 

to changing environments, ensuring fault tolerance, prioritizing tasks, enabling 

scalability, optimizing costs, and enhancing user experience. The combined benefits 

of these characteristics help to the efficient functioning of Fog Computing systems 

in diverse applications and sectors. The scheduling problems have also been 

categorized into five groups: task allocation, task scheduling, workflow scheduling, 

job scheduling, and resource scheduling (Matrouk et al., 2021) 

In a distributed computing environment, task scheduling refers to the 

procedure of determining when and where to execute an exact task. As well as, the 
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main challenge of task scheduling in FC is to satisfy IoT users’ dynamic 

requirements in real-time with FNs incomplete resource capacities. So, it is not 

conceivable to schedule the complete task on one node; it is distributed among 

multiple Fog colonies and separated into sub-tasks. These FNs are distributed in a 

colony and are typically achieved by a Fog scheduler. It plays an important role in 

processing the Priority tasks locally within a colony to moderate service delays 

(Kaur et al., 2021).  

Scheduling is a crucial aspect of FC, aiming to efficiently allocate and manage 

computing resources for tasks or applications in a distributed and dynamic 

environment as shown in figure 2.2. It involves making decisions about when and 

where to execute tasks, considering factors such as resource availability, task 

priorities, latency requirements, and energy efficiency. Scheduling algorithms 

optimize resource utilization, distribute tasks across available resources, reduce 

latency, optimize energy consumption, and manage QoS requirements. They also 

adapt to dynamic environments, ensuring efficiency in a shifting environment. 

Overall, scheduling is essential for optimizing resource usage, balancing loads, 

reducing latency, improving energy efficiency, managing QoS, adapting to dynamic 

environments, enhancing fault tolerance, prioritizing tasks, and supporting elasticity. 

Therefore, scheduling plays a vital role in FC to professionally manage these 

resources and assign them to each task simultaneously. On the other hand, task 

allocation includes deciding which exact resources should be allocated to execute a 

specific task. Thus, task allocation is one of the key challenges in running IoT 

applications in Fog Computing. FC needs to manage job distribution in highly 

efficient ways to enhance the QoS of these latency-sensitive applications (Alsmirat 

et al., 2020).  
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Figure 2. 2: The taxonomy of task scheduling in  a Fog computing System 
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2.1.3 Deep Reinforcement learning  
 

  In recent years, remarkable advancements have been made in solving 

challenging problems across numerous fields using DRL. DL and RL, two important 

sub fields of ML, have made important strides in both the progress of the study of 

practical applications and theoretical frameworks, allowing high-dimensional, 

interactive learning. Reinforcement Learning is the process of teaching an agent to 

make a series of decisions in an environment by interacting with it and receiving 

feedback in the form of rewards or punishments. DL, particularly deep neural 

networks, is utilized to process input spaces with a large number of dimensions and 

intricate mappings. In addition, Deep Reinforcement Learning has demonstrated 

exceptional efficacy in resolving intricate issues and attaining performance beyond 

human capabilities in several fields. The capability to process input spaces with a 

large number of dimensions and acquire hierarchical representations renders it an 

influential method for numerous practical applications. Nevertheless, it necessitates 

meticulous examination of the obstacles and factors associated with instruction and 

implementation. For example, resource management (scheduling), automatic 

driving, and game strategy design (Henderson et al., 2018)(Wang et al., 2023) 

 

Deep RL = RL Algorithm + Artificial Neural Network (ANN) 

 

A main reason for interest in DRL is that it functions well on current 

computers and appears to have various applications. The aim of DRL is to Find the 

optimal course of action that maximizes reward across all possible states of the 

environment (the Fog layer) is the goal of DRL. The system tries out actions, learns 

from the feedback, and interacts with high-dimensional and complicated settings to 

do this. Deep Neural Networks (DNN) are used by DL to estimate complex and high-
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dimensional environments. issues whose complexity prevents tabular approaches 

from offering precise solutions. The DL has advanced significantly; machines can 

now recognize pedestrians in a series of photos and can understand sentences. 

Moreover, the field of RL involves by trial and error. And it learns from feedback; 

RL doesn't rely on pre-exist datasets for training; it independently selects actions and 

learns by receiving feedback from the environment (Plaat, 2022)(Tan, Yan and 

Guan, 2017b) 

(Mao et al., 2016)believes RL methods are particularly well-suited to resource 

management systems. First, the decisions made by these systems frequently follow 

repetitive patterns, resulting in a wealth of training data that proves advantageous 

for RL algorithms. This is exemplified in scenarios like cluster scheduling decisions 

and the consequent performance outcomes. Second, RL can model complex systems 

and decision-making policies as DNN equivalent to the models used for game-

playing agents. In addition, RM problems are ubiquitous in networks and computer 

systems. Examples include scheduling in compute colonies, virtual machine 

placement in CC, and relay selection in Internet telephony.  

Various profound Reinforcement Learning (DRL) methods have been created 

to tackle distinct aspects of instructing agents to make sequential judgments in 

settings. DRL algorithms fall into two primary categories: Both model-based and 

model-free algorithms, as shown in figure 2.3. These methods are merely a fraction 

of the wide array of techniques in the field of DRL. The selection of an algorithm is 

frequently influenced by the specific attributes of the problem being addressed, such 

as the characteristics of the environment, the type of behaviors involved, and the 

desired trade-off between exploration and exploitation. Task scheduling is defined 

as deciding which tasks are processed by the IoT layer, the Fog layer, or the Cloud 

layer in order to achieve the goal design purposes of minimizing the computation 

cost and long-term service delay for the FC environments under the scheduler in the 
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IoT-Fog or IoT-Cloud systems. So, a DQL-based scheduling algorithm is introduced 

(Tran-Dang et al. 2022). 

 

 

 
 

 

2.1.3.1 Model-free Algorithms 

 

Model-free algorithms nature make up the first main category of DRL 

algorithms, as well as establish the epitome of a straight learning procedure over 

experience. More precisely, an agent in an environment tries to learn the best policy 

for solving a task by straight altering the experience collected as a consequence of 

achieved actions, into a consequential policy. Model-free RL algorithms are a type 

of approaches that work without having explicit knowledge of the dynamics of the 

environment they are operating in. These techniques acquire optimal tactics by 

directly interacting with the environment, depending on trial and error instead of a 

pre-established model (Tran-Dang et al. 2022). 

                             Figure 2. 3: A Taxonomy of RL algorithms 



 

20 

  

 Value-based algorithms, such as Q-Learning methods, use the value function 

to inform decision-making, whereas policy-based techniques, like REINFORCE and 

Proximal Policy Optimization (PPO), explicitly define the agent's strategy through 

parameterize. Actor-Critic approaches, such as Deep Deterministic Policy Gradients 

(DDPG) and Advantage Actor-Critic (A2C), integrate elements from both value and 

policy-based methods. They involve an actor for decision-making and a critic for 

evaluating actions. Model-free Reinforcement Learning is especially advantageous 

in situations when the environment is intricate or its dynamics are uncertain. It 

provides flexibility in a wide range of applications where learning is achieved 

through direct interactions, without the need for explicit models. Some examples of 

these algorithms are Q-Learning, REINFORCE, A2C, and DDPG. Deep QL is one 

of the main categories of model-free family as described in below section (Lazaridis, 

2020).  

 

 

  2.1.3.1.1 Deep Q-Network 

Q-Learning is arguably one of the off-policy strategies and one of the most 

applied representative RL approaches. Currently, due to the overall advancements 

in Reinforcement Learning (RL), there has been a widespread exploration and 

implementation of several adaptations of Q-Learning. One such modification is 

Deep Q-Learning, which integrates traditional Q-Learning with Deep Neural 

Networks (DNN). In addition, one of the most popular algorithms is Deep Q-

Learning, developed in 2016 at Google. Furthermore, Deep Q-Learning adds two 

techniques to the value estimation via an ANN. The target Q technique is one, and 

an experience replay is the other. The Q technique's value approximation via Neural 

Network (NN) is highly imbalanced; this is stabilized by the experience replay. 

Every action, every state, and every reward in the experience replay technique are 
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valued based on past states. Thus, there are relationships among states, incentives, 

and actions. These relationships mean that learning the estimate function in a steady-

state manner is not possible. Furthermore, the experience replay removes 

connections by buffering the experience and extracting the learning data at 

random(Jang et al., 2019).  

Moreover, A Deep Q-Network (DQN) is an approach for Reinforcement 

Learning that integrates the ideas of Q-Learning with DNN. This permits for the 

acquisition of optimum strategies in environments characterized by state spaces with 

a large number of dimensions. DeepMind introduced DQN, which use Deep Neural 

Networks to estimate Q-values, enabling it to effectively deal with intricate, practical 

scenarios. The approach utilizes experience replay to improve the stability of 

training by storing and randomly selecting previous experiences, and target networks 

to produce more consistent estimations of Q-values during updates. DQN rose to 

attention because of its remarkable performance in playing Atari 2600 video games, 

demonstrating its capacity to generalize across diverse settings. The incorporation 

of ε-greedy exploration in DQN has established it as a fundamental algorithm in the 

realm of Deep Reinforcement Learning, exerting significant influence on later 

advancements and practical implementations. DQN is an adaptation of the 

traditional Q-Learning method that offers three key improvements: (1) estimating 

the Q-values of the upcoming state using previous network parameters (2) utilizing 

mini-batches of arbitrary training data as an alternative to updating the most recent 

experience in steps; and (3) a deep CNN architecture for Q-function approximation, 

as shown in the figure 2.4 (Roderick et al., 2017). 
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Figure 2. 4: DQN Process. 

 

 

2.1.4 Multi-Objective Deep Reinforcement Learning 

MODRL has been observed as a significant research topic due to the Multi-

Objective characteristics of adaptive optimal control problems and several 

practical sequential decision-making scenarios in the real-world. In conventional 

Deep Reinforcement Learning (DRL), the objective usually revolves around 

maximizing a solitary cumulative reward signal. In addition, MODRL entails the 
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establishment of several objective functions, each of which represents a separate 

goal or criterion that the agent strives to optimize. The presence of varying sizes 

and units among these objectives poses a challenge to the optimization process. 

On the other hand, MODRL tackles issues that involve many objectives, which 

may potentially be in conflict, and require an agent to find a balance. This is 

especially pertinent in intricate real-life situations when decision-making entails 

balancing various objectives. (Liu, Xu and Hu, 2015). 

 As well as, numerous real-world problems have multiple, probably 

incompatible objectives. For instance, an agent may want to maximize the 

performance of a web application server while minimizing its power 

consumption. So, such problems can be demonstrated as Multi-Objective Markov 

Decision Processes (MOMDPs) as well as solved with MODRL. As it is typically 

not clear how to assess accessible trade-offs between different objectives a priori, 

there is no single best policy. MODRL is an extension of traditional DRL that 

handles situations where there are multiple incompatible objectives to optimize 

concurrently. In addition, MODRL aims to find policies that provide a trade-off 

between these objectives. In MODRL, the main goal is to learn policies that can 

handle a Pareto-optimal trade-off between different purposes as opposed to a 

single best objective. Furthermore, each objective is considered a separate task 

in MODRL, which is a type of multi-task learning. The agent gains the ability to 

weigh the objectives when making decisions as shown in Figure 2.5 (Mossalam 

et al., 2016) (Thi Nguyen et al., 2020). 
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Figure 2. 5 :System architecture of MODRL Framework 

 

2.1.5 Multi-Objective Optimization Using Evolutionary Algorithms 
  

Recently, Evolutionary Multi-Objective Optimization (EMO) has become a 

useful and popular field of application and research. As well as a specific area of 

Artificial Intelligence and optimization that focuses on solving problems with 

multiple objectives. Evolutionary Optimization (EO) algorithms use a population-

based approach in which a new population of solutions evolves with each iteration, 

and more than one solution contributes in an iteration. Multi-Objective optimization 

is the process of optimizing many objectives that are in conflict with each other. The 

objective is to identify a collection of solutions that are situated on the Pareto Front, 

where improving one objective requires sacrificing others. Evolutionary Algorithms 

(EAs), which draw inspiration from natural selection, are frequently employed to 

address intricate challenges, giving rise to Multi-Objective Evolutionary Algorithms 

(MOEAs). MOEAs, such as Genetic Algorithms and Differential Evolution, utilize 

populations of potential solutions, apply genetic operators, and iteratively improve 

solutions over generations to explore the Pareto Front. Evaluations of solutions are 
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conducted using Pareto dominance, while diversity preservation approaches 

guarantee the presence of a well-balanced collection of Non-Dominated solutions. 

MOEAs are utilized in various fields such as engineering design and finance to 

tackle complex decision-making situations that involve numerous conflicting 

objectives. They offer decision-makers a variety of trade-off solutions along the 

Pareto Front to facilitate informed decision-making. Furthermore, Multi-Objective 

Optimization problems by their very nature led to a set of Pareto-optimal solutions 

that need to be further processed in order to arrive at a single optimal solution. Since 

the usage of population in an iteration allows an EO to concurrently locate numerous 

non-dominated keys, achieving the first task node becomes a very natural 

proposition for using an EO. This reflects a trade-off between objectives in a single 

simulation run (Deb and Deb, 2014).  

Furthermore, MOEA are suitable for handling a wide range of difficult Multi-

Objective issues that involve two or three objectives. MOEAs have been developed 

to effectively handle complex Multi-Objective Optimization problems (MOPs) that 

involve two or three objectives. (Von Lücken et al., 2014). In addition, Multi-

Objective Optimization, specifically MOEAs, is essential for addressing intricate 

issues that entail conflicting aims. This method enables a sophisticated 

comprehension of trade-offs by showcasing a varied array of solutions on the Pareto 

Front, providing decision-makers with a broad spectrum of possibilities. The 

practicality of this approach is relevant in practical situations, such as engineering 

design and resource allocation, when decision-makers need to take into account 

numerous objectives at the same time. Multi-Objective Evolutionary Algorithms are 

highly effective in enhancing the variety of solutions, managing uncertainties, and 

adjusting to changing settings. They offer a strong foundation for optimizing many 

interrelated objectives simultaneously. MOEAs, by preventing premature 

convergence, provide flexibility and scalability, making them important tools for 
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solving NP-Hard problems and various complex optimization issues in different 

areas. Several Multi-Objective Optimization Algorithms are to discover a large 

number of Pareto ideal vectors that are consistently distributed along the PF and 

therefore good representatives of the whole PF (Zhang et al., 2007). MOEA/D and 

NSGA are two significant MOEAs that are widely recognized. (Özdemir et al., 

2013). 

 

2.1.5.1 Multi-Objective Evolutionary Algorithm based on Decomposition  

MOEA/D is a widely used optimization algorithm employed for solving 

problems involving Multiple-Objectives. The process involves breaking down a 

Multi-Objective Problem (MOP) into several individual optimization sub-problems 

and then optimizing them collaboratively. MOEA/D is an algorithmic approach that 

breaks down Multi-Objective Optimization problems into Single-Objective sub-

problems, allowing parallelized optimization. It balances convergence and diversity, 

providing a comprehensive set of trade-off solutions. It's adaptable, suitable for 

large-scale optimization challenges, and can be enhanced through hybridization with 

other optimization techniques. As well as, it is designed to find a set of explanations 

that represent a trade-off between conflicting objectives. In MOEA/D, 

decomposition mechanisms are used to push the population to the Pareto Optimal 

Front (POF), whereas a set of consistently distributed weight vectors is implemented 

to preserve the variety of the population. In addition, MOEA/D works by 

decomposing the Multi-Objective problem into multiple Single-Objective sub-

problems and then optimizing them simultaneously. Additionally, the concept of 

sub-problem area—which was initially introduced in MOEA/D—can help advance 

the harmony between the algorithm's exploration and exploitation as it is being 

developed. Furthermore, the value of the combination function determines which 
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solutions are chosen in the MOEA/D, greatly increasing the pressure to pick for the 

genuine POF and providing additional benefits while resolving MOPs. In order to 

implicitly achieve good population diversity, a set of regularly distributed weight 

vectors is utilized simultaneously (Qiao et al., 2019)(Chen et al., 2021). 

Typically, MOEA/D works as (Li, 2021): 

(1) Initialization: Choose a heuristic method or initialize a population of 

potential solutions at random. 

(2) Decomposition: Divide the Multi-Objective problem into several smaller 

scalar problems. While focusing on a single target to be optimized, each sub-problem 

takes the other objectives into account as constraints or reference points. 

(3) Evolution: Apply an evolutionary algorithm to each sub-problem to 

generate a population of solutions over numerous generations (evolutionary 

algorithms are often a version of genetic algorithms). Operations like selection, 

crossover, mutation, and replacement are part of the evolution process. 

Solutions are assessed during evolution based on how well they perform in 

relation to the relevant sub-problem. Scalarization is frequently used to measure 

performance, such as the Tchebycheff approach, weighted sum, or Pareto 

dominance. 

(4) Update External Archive: Keep the finest solutions thus far in a repository 

or archive that is external to the organization. This repository records all Non-

Dominated (Pareto-optimal) solutions found during the optimization process. 

 (5) Neighborhood Selection: MOEA/D often services a neighborhood 

assembly that describes how sub-problems are organized. The optimization process 

can be made better by exchanging information between solutions to nearby sub-

problems. 
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(6) Convergence Criterion: MOEA/D characteristically has a termination 

condition based on the computational budget or the number of generations. When 

this requirement is satisfied, the algorithm ends. 

(7) Result Extraction: The Pareto-optimal answers kept in the external archive 

once the algorithm finishes up represent the trade-off solutions for the Multi-

Objective problem. These solutions offer a variety of possibilities for distinct trade-

offs between objectives to and decision-makers. Figure 2.6 shows the flow chart of 

MOEA/D. 

Thus, MOEA/D is essential for addressing intricate issues that have 

contradictory aims. This method enables a sophisticated comprehension of trade-

offs by showcasing a varied array of solutions on the Pareto Front, providing 

decision-makers with a broad spectrum of possibilities. The practicality of this 

concept can be applied to real-life situations, such as engineering design and 

resource allocation, where decision-makers need to take into account numerous 

objectives at the same time.  
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Figure 2. 6: Flow chart of MOEA/D 

 

2.1.5.2 Non-Dominated Sorting Genetic Algorithm 

 

NSGA II is an Evolutionary Algorithm advanced as a response to the limitations 

of early evolutionary algorithms. It is a popular evolutionary optimization algorithm 
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used in Multi-Objective Optimization problems. NSGA II starts with the 

initialization of random populations. In addition, it is considered to be the discovery 

of a set of solutions that are considered Pareto-optimal or Non-Dominated(Mohamad 

Shirajuddin et al., 2023). As well as, NSGA-II outperforms two contemporary 

MOEAs: strength-Pareto EA (SPEA) and Pareto-archived evolution strategy 

(PAES) in terms of converging near the true Pareto-optimal set and finding a diverse 

set of solutions. Pareto optimality means that no solution in the set can be enhanced 

in one objective without worsening another objective. Constrained Multi-Objective 

Optimization is significant from the point of view of applied problem solving. the 

application of NSGA-II to real-world and more complex Multi-Objective 

Optimization problems (Deb et al., 2002a). The NSGA-II-Algorithm has three 

features (Kaur et al, 2018): 

1- Elitist principle: The most effective responses (Non-Dominated solutions) 

from the current population are kept and passed on directly to the following 

generation without any modification under the elitist method used by NSGA-

II. This makes sure that the most well-known solutions do not disappear 

during the course of evolution. Over generations, elitism helps to retain a set 

of Pareto-optimal solutions and prevents the algorithm from accelerating its 

convergence to less-than-ideal solutions. 

2- Non-Dominated solutions: A set of Non-Dominated (Pareto-optimal) 

solutions will be discovered using NSGA-II. It tries to find solutions that, 

without affecting at least one other target, cannot be used to improve any one 

objective. The algorithm clearly divides the population into various Pareto 

Fronts based on non-dominance, guaranteeing that the best options for 

balancing the competing goals are included in the outcome. 

3-  An explicit diversity-preserving mechanism. It is included in NSGA-II, 

mostly through crowding Distance sorting. Solutions are further arranged 
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according to their crowding distances after being divided into Pareto Fronts. 

Higher crowding distance solutions are selected during the selection process. 

In order to ensure that the final set of solutions takes place over a broad range 

of objective space and captures many trade-offs, this technique promotes 

variation within each Pareto Front. 

The original population is generated as typical. After preparing, the population is 

divided into fronts and sorted by Non-Domination. Only non-dominant individuals 

of the present population reside by the first-front. The entities of the second front are 

dominated by first front entities only. Each member of every front is given a fitness 

value, and these values are determined by the level of the front. Individuals at the 

first level receive one fitness value, those at the second level receive two, and so on, 

as shown in figure 2.7 (Verma, et al, 2021)(Deb et al., 2002b). 

 

 
 

Figure 2. 7: Flow chart NSGAII. 
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2.2 RELATED WORK 
 

FC is a novel approach. Resource management is one of the most significant 

research directions in FC models. Efficient resource management will improve the 

FC system's performance. Task scheduling and Task allocation are necessary 

requirements for performance optimization in the FC, and this study aims to 

investigate the problems in scheduling tasks and allocating tasks. Numerous 

representative works in the literature are discussed and listed below. 

   (Wu et al., 2021)  employed Deep Reinforcement Learning (DRL) to address the 

scheduling issue in Edge Computing (EC) with the aim of enhancing the QoS 

delivered to users of industrial Internet of Things (IoT) applications. The authors 

introduced a novel scheduling algorithm called the Deep Intelligent Scheduling 

Algorithm (DISA), which utilizes a Double Deep Q Learning. That is an EC-based 

network architecture for communication scheduling, and makes sure policies that 

are created dynamically are stable. Simulation results were implemented, indicating 

that the DISA can attain better network performance than the traditional scheduling 

algorithm. 

 (Gazori et al., 2020c) outlined the task scheduling of Fog Computing system 

based IoT applications with the purpose of computing cost under the resource, 

minimizing long-term service delay, and meeting deadline constraints. The authors 

introduced a novel scheduling technique that utilized the target network, employing 

a Double Deep Q-Learning (DQL) approach. The goal of the algorithm was to 

maximize its objective function so that results would be more stable. The results 

demonstrate that the suggested algorithm outperforms several baseline methods in 
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terms of computation cost, energy consumption, task accomplishment, and service 

delay, as well as handling load balancing and single point of failure challenges. 

 (Wei et al., 2018) investigated whether Cloud-based application users Could 

learn to make wise job dispatching choices on their own. This problem is solved 

using a smart QoS-aware job-scheduling framework for application providers. A 

DRL-based job scheduler is a main element of this system. With respect to the 

characteristics of RL, the proposed algorithm could dynamically familiarize itself 

with the fluctuations and uncertainties of workloads. According to the simulation 

results, the proposed job-scheduling strategy can effectively decrease the average 

work response time compared with other baseline algorithms in the IoT edge system. 

 (Sheng et al., 2021) studied the computationally intensive task scheduling 

problem. Both the task assignment and the task execution order had to be optimized 

while taking into account the different tasks and resources that were available. The 

authors formulated optimization problems as a Markov Decision Process model. A 

policy-based reinforcement learning (RL) technique was presented to address the 

task scheduling problem, utilizing a fully connected Neural Network (NN) to extract 

the relevant characteristics. Evaluation results validated that the proposed algorithm 

achieves a better success ratio and cumulative task satisfaction degree than the 

baseline task scheduling algorithms. 

(Sellami et al., 2020) introduced Deep ReinforcemenLearning energy 

efficient task scheduling in a Software-Defined Network, that is based Fog IoT 

network, which reduces traffic overhead and network latency by centralizing 

network control. In addition, the proposed algorithm addresses the resource-

planning problem and performs efficient energy-task allocation in a distributed and 

dynamic IoT environment. The performance evaluation of the simulation findings 

shows the effectiveness of the proposed solution in increasing energy efficiency, 
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ensuring lower-latency communication, and performing both global and local 

optimizations. 

 (Qi, Zhuo et al., 2020b) defined a task scheduling problem for a Cloud-Edge 

computing architecture. To address the problem of long delays in achieving DL tasks 

in the EC layer. proposed a scheduling algorithm dependent on asynchronous 

advantage Actor-Critic based on DRL and modeled it as a Markov Decision Process. 

The results showed that the proposed algorithm can reduce task processing time 

compared to the existing RL-G and DQN algorithms.  

        (Lakhan et al., 2022) examines the issue of resource allocation in Fog networks 

enabled by Software-Defined Networking (SDN). The study presents a novel 

architecture that utilizes containers and incorporates several Fog nodes. In addition, 

develops Deep-Learning-Network-Based Resource Allocation (DQBRA) by 

considering the architecture. This approach has multiple components to address the 

problem. The components consist of a mobility controller, a resource search 

mechanism, and a resource allocation and task migration module. Performance 

evaluation shows suggested runtime and schemes outperform existing schemes and 

frameworks. 

(Mseddi et al., 2019) presents a novel online resource allocation method 

designed for dynamic FC environments. The objective is to maximize the number of 

user requests that are fulfilled within a predetermined latency threshold. The FC 

environment is represented as a Markov discrete method, taking into account the 

dynamic behavior and movement of FN as well as the availability of resources. Next, 

introduce an intelligent Deep-Reinforcement Learning system for resource 

allocation. The suggested technique demonstrates near-optimal performance 

compared to heuristic, state-of-the-art alternatives. 

(Zheng et al., 2022) presented a novel approach for workload scheduling with 

Deep Reinforcement Learning  to achieve workload balance, minimize service time, 
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and decrease the rate of failed tasks. Meanwhile, employ Deep-Q-Network (DQN) 

techniques to address the intricacy and large dimensionality of the workload 

scheduling problem. The simulation findings demonstrate that the proposed 

technique outperforms current approaches in terms of service time, Virtual Machine 

(VM) use, and unsuccessful job rate. The utilization of the DRL method offers an 

effective resolution to the task allocation issue in Edge Computing. 

(Jin et al., 2023) address the job scheduling problem specifically with IoT 

systems within a Cloud Computing environment. The objective is to minimize the 

duration of the task. The task scheduling problem is well recognized as a formidable 

challenge. Present a unique and efficient Reinforcement Learning  algorithm for 

addressing the task scheduling problem in IoT systems. This algorithm integrates 

combinatorial optimization techniques to ensure that it achieves stable lower limits. 

Perform tasks in a group, select tasks using reinforcement learning, and solve them 

using combinatorial optimization techniques. The experimental results demonstrate 

that the suggested algorithm exhibits exceptional performance across many contexts. 

(Wang et al., 2023) introduce a framework called QMTSF, which utilizes Q-

learning for Multi-task Scheduling Framework. The framework comprises two 

stages: Initially, jobs are given to appropriate servers in the cloud environment based 

on server type. Furthermore, a more advanced Q-Learning algorithm known as 

UCB-based Q-Reinforcement Learning (UQRL) is used on each server to allocate 

tasks to a Virtual Machine. The agent employs a sophisticated decision-making 

process by using its prior experiences and interactions with the environment. 

Furthermore, the agent acquires knowledge through the use of rewards and 

punishments in order to develop the most effective approach for allocating tasks and 

scheduling them on various virtual machines. The goal is to minimize the total length 

of task execution, and the average time used for processing jobs while still 

guaranteeing that task deadlines are met. Performed simulation studies to assess the 
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efficacy of the suggested mechanism in comparison to conventional scheduling 

techniques such as Particle Swarm Optimization (PSO), random, and Round-Robin 

(RR). The experimental results indicate that the proposed QMTSF scheduling 

framework surpasses previous scheduling techniques in terms of both the makespan 

and average task processing time. 

(Goudarzi et al., 2023)introduce a novel technique, namely Deep 

Reinforcement Learning Intelligent Strategy (DRLIS), which utilizes Deep 

Reinforcement Learning to effectively enhance the response time of diverse IoT 

systems and evenly distribute the workload among Fog and Edge servers. utilized 

DRLIS as an operational scheduler within the Fog function-as-a-service system 

architecture to establish an integrated Fog-Edge-Cloud server-less Computing 

environment. The results show that, in comparison to metaheuristic algorithms and 

other Reinforcement Learning techniques, DRLIS efficiently reduces the operating 

costs of Internet of Things applications in load balancing, reaction time, and 

weighted cost, respectively. 

After reviewing most of the articles published recently to tackle task 

scheduling. They distributed this problem as a single objective. However, this 

problem must be solved by concurrently optimizing more than one objective. In 

addition, Resource Utilization and Latency are crucial factors in Fog Computing 

schedulers. However, it is significant to note that numerous previous works tend to 

prioritize different metrics, resulting in outcomes that may not accurately reflect the 

critical aspects of Resource Utilization and Delay management. Thorough analysis 

of the performance aspects 
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Table 2. 1: Comparative among the Reviewed works 

Ref. Architecture Algorithm Objectives MODRL Simulation 

Tools 

Shortcomings 

Wei et 

al. 

Centralized DRL based 

on a (DQN) 

Response time, 

and 

resourceutilization 

rate 

× Python, 

TensorFlow 

High response 

time 

Mseddi 

et al. 

Cluster DRL Success ratio 

,Cumulative 

reward 

× Not mentioned Lack of resource 

utilization, and 

Latency 

Sellami 

et al. 

Centralized 

SDN 

Scheduler 

DRL based 

SDN 

Available Energy 

and Latency 

× Not mentioned High latency and 

not taken resource 

utilization 

Qi, Zhuo 

et al. 

Centralized DRL 

according to 

the (MDP) 

Task Failure and 

delay 

× Tensorflow the training model 

needs expensive 

GPU resources. 

Gazori et 

al. 

Hierarchical RL based on 

a (DDQN) 

Latency, 

Response time, 

makespan time, 

and waiting time 

× Python,Keras  

SimPy 

High Latency, 

Response, 

makespan , and 

waiting time   

Wu et al. Centralized DRL based 

on a 

(DDQN) 

Latency, 

bandwidth, 

delivery time 

× Python, 

Tensorflow 

Not involved 

resource 

utilization. 

Sheng et 

al. 

Only Edge 

Layer 

DRL 

according to 

the (MDP) 

Cumulative task 

satisfaction degree 

vs Task arriving 

rate 

× Python, Pytorch Not involved 

resource 

utilization, and 

task completion 

time 
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2.3 Summary of the Chapter 

In this chapter, two main topics are explained. Firstly, a background on these tools 

that have been used in this work, such as scheduling in Fog Computing, their 

implementation, and some methods (DQN, NSGA2, and MOEA2). Secondly, a 

literature review about scheduling in Fog Computing based on Reinforcement 

Learning. In addition, a comprehensive table is provided, outlining important aspects 

of significant contributions to scheduling in Fog Computing, along with their 

corresponding limitations. 

 

Lakhan 

et al. 

Centralized 

SDN 

Scheduler 

DRL based 

on a (DQN) 

Total cost × Python-Ruby-

Perl 

delay-sensitive 

and delay-tolerant 

of IoT workloads 

Zheng et 

al. 

Centralized DRL based 

on a (DQN) 

Failed Tasks × CloudSim Not involved 

resource 

utilization, and 

task completion 

time 

Jin et al. Not mentioned RL based 

QL. 

task runtime × Not mentioned exclusive analysis 

of theperformance 

aspects 

Wang et 

al. 

Not mentioned QRL Makespan and 

complete time 

× CloudSim High Makespan 

and complete time 

Goudarzi  

et al. 

Hierarchical DRL 

according to 

the (MDP) 

load balancing, 

response time, 

and weighted cost 

× FogBus2 the limited 

resources 
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CHAPTER THREE 

 Research Methodology 

 

3.1 INTRODUCTION 

 

 Multi-Objective Deep Reinforcement Learning, which supports scheduling in 

Fog Computing, addresses the challenging problems of task scheduling and task 

allocation in Edge environments. By integrating MODRL, the scheduler gains the 

ability to optimize many objectives simultaneously, including reducing latency, 

maximizing resource use, and improving the QoS. This sophisticated method utilizes 

Deep Reinforcement Learning to adjust and develop scheduling policies according 

to the dynamic and diverse characteristics of Fog Computing systems. The objective 

of MODRL-based scheduling is to achieve a balance between opposing goals by 

considering many objectives. This leads to FC systems that are more adaptive, 

capable of efficiently handling varying tasks and meeting the strict requirements of 

various applications.  

 

3.2 Proposed System Architecture 
 

The system model consists of a three-layer architecture: 

 

• The IoT layer generates high-rate tasks . The IoT layer consists of multiple 

IoT devices and gateways that communicate with the upper layers. IoT 

devices have the following characteristics: 

o Provided with computation capability (CPU, RAM, storage, etc.). 

o Have very strict constraints in terms of CPU, and memory. 

o Provided sensors that generate the tasks.  

o Supported wireless communication (4G, 5G, and WIFI)  
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• The FC layer consists of multiple Fog colonies, and each Fog colony has 

multiple Fog nodes endowed with computing capabilities.  Deployed a 

Central Smart Fog Orchestrator that manages the Fog system. The FN hosts 

IoT applications to process tasks received from the IoT layer. The Fog nodes 

can be:  

o Provided with computing capability (CPU, RAM, storage, etc.).  

o Passive Fog node (battery-powered). 

o Fog devices are provided with wireless and wired capabilities. 

o The Smart Fog Orchestrator is endowed with the intelligence to 

allocate tasks and instruct each Fog node on how to schedule the tasks. 

• The Cloud Computing layer comprises one or multiple powerful Cloud 

servers that run IoT applications to process tasks. The Cloud Computing layer 

is: 

o Deployed after the Fog layer (far from the IoT layer).  

o Provided with high computation capability (CPU, RAM, storage, etc.). 

o Support wireless or wired communication.  

o Have limited communication capability: Communication between 

Cloud servers and mobile devices is slow, usually through the Internet. 

The proposed system architecture is summarized in Figure 3.1: 
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Figure 3. 2: Proposed System Architecture 
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 3.3 Proposed System Model 

In this section, the communication, processing, and task models have been defined. 

3.3.1 Communication Model  

 

Because communication between the IoT and the upper layers is entirely 

wireless, impact factors in wireless communication are considered, such as 

o Distance/Signal area. 

o Bandwidth. 

o Transmission rate, data rate, and speed. 

o Transmission power and signal strength. 

o Channel gain. 

o Path Loss. 

o Fading. 

o Interference. 

o Noise power. 

o Uplink and downlink. 

Consequently, these parameters have an impact on the transmission time 

(communication delay). However, the connection between the Cloud and Fog layer 

uses wired technologies; thus, it is not subjected to the same factors. 

Formally, the communication model is designed based on two transmission 

supports and the Shannon formula (Verdú, 1998). 

● The wireless transmission support that IoT devices use transmits tasks to the 

upper layer (Fog, Cloud). 

● The wired transmission support is used to transmit the intra- and inter-Fog 

colonies to the Cloud.   

● The communication delay is the total transmission time 𝑇𝑟𝑖  of task 𝑖 from the 

source IoT device to the destination Fog node.  
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                 𝑇𝑟𝑖 =  𝐷𝑝𝑖 +  𝐷𝑐𝑖                                (3.1) 

Where 𝐷𝑝𝑖 is the wireless communication delay required to transmit the task from 

the IoT device to the wireless gateway and 𝐷𝑐𝑖   is the wired communication delay.  

The wireless communication delay 𝐷𝑝𝑖 required to transmit the task from the IoT 

device to the wireless gateway is submitted to wireless communication constraints. 

Moreover, a scheduling delay is considered (the scheduling delay is discussed 

below). Wireless communication delay is expressed as follows: 

                        𝐷𝑝𝑖 = 𝐷𝑠𝑖 +  
𝜃𝑖

𝑅𝑖 
                              (3.2) 

Where R is the data rate. R is expressed as follows: 

 

              𝑅𝑖 =  𝑊𝑙𝑜𝑔2 (1 +  
𝑃𝑖 𝐻𝑖 

𝑁0 
)                       (3.3) 

where W represents the channel bandwidth, 𝑃𝑖  is the transmission power, 𝐻𝑖 is the 

channel gain, and 𝑁0  is Noise power. 

The wired communication delay 𝐷𝑐𝑖  is generated whereas transmitting task 𝑖 from 

one node to another until the task reaches its destination. This type of delay depends 

on the number of hops crossed by the task and the bandwidth 𝐵𝑘 of the transmission 

support link 𝑘 used to transmit the task. Similar to communication delay, scheduling 

delay was also considered. 

   

                      𝐷𝑐𝑖 =  𝐷𝑠𝑖 + ∑
𝜃𝑖

𝐵𝑘

𝑘
0                      (3.4) 

The scheduling delay 𝐷𝑠𝑖  represents the waiting time 𝜑𝑛 of task 𝑖 in the queue of 

the network device before transmission. The scheduling delay depends not only on 

the task position 𝑛 in the queue but also on the task Priority 𝑃𝑖 , the tasks with higher 

priorities are immediately scheduled first to be delivered, whereas tasks with fewer 
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priorities are more delay-tolerant; hence, they can have more waiting time in the 

queue. The scheduling delay is expressed as follows: 

 

                      𝐷𝑠𝑖 =   ∑ 𝜑𝑛
𝑛
0                               (3.5) 

where 𝑛 is the waiting time equal to the throughput of the network device. 

The communication delay model is summarized in the next Figure 3.2: 

 

 

Figure 3. 3: Communication Delay 

 

3.3.2 Processing Model 

 

Supposing that all processing entities (Fog node and Cloud) are provided with 

the same parameters but with different power characteristics.  

● CPU Frequency/computing rate  

● CPU Load  

The computing time or processing delay is affected by CPU Frequency, task CPU 

requirement, and waiting time.  

Formally, similar to the communication model, the tasks are processed based on their 

Priority; high-Priority is processed first, and low-Priority tasks are delayed.  

The total computing delay 𝑇𝑐𝑖  is described in the next equation:  
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                  𝑇𝑐𝑖 = 𝐶𝑠𝑖 +  𝐶𝑝𝑖                              (3.6) 

Where 𝐶𝑠𝑖  is the scheduling delay for the task to be processed and 𝐶𝑝𝑖 is the time 

required for the task to be processed by the computing node. 

 

Scheduling delay  𝐶𝑠𝑖  represents the waiting time of task 𝑖  in the queue of the 

computing node. As in the communication model, the scheduling delay for 

computing depends on both task position m in the CPU queue and task Priority 𝜌𝑖. 

In this case, the scheduling delay is related to 𝐶𝑝𝑖 of the leading task m, which by 

itself relies on the CPU speed and CPU requirements of the tasks. The scheduling 

time is expressed as follows: 

                                         𝐶𝑠𝑖 =  ∑ 𝐶𝑝𝑚
𝑚
0                                    (3.7) 

The computing time 𝐶𝑝𝑖  of task 𝑖 is the time required by the computing node to 

process tasks. The computing time is calculated based on the CPU speed 𝜔𝑧 

allocated by the computing node (VM, container, etc.) to process task 𝑖, and the task 

CPU requirement 𝛿𝑖. The computing time is described by the following equation:  

                                           𝐶𝑝𝑖 =  
𝛿𝑖

𝜔𝑧
                                          (3.8) 

3.3.3 Task Model 

 

The generated tasks from the IoT can be modeled with the following parameters: 

● Task size  

● Task CPU requirement 

● Task generation rate  

● Task Priority based on application type  
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Formally, IoT devices generate multiple tasks 𝑖, the task generation rate follows 

the Poisson process, and the Poisson distribution is expressed as follows 

(Sherbrooke, 1968): 

                           𝑃𝑟(𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
                           (3.9) 

where 𝜆 is the rate parameter, which is a measure of frequency (the average rate of 

events, in our case, traffic rate) per unit time (for example 10kbps). 

The generated task is defined with the following tuple < 𝜃𝑖, 𝛿𝑖, 𝜌𝑖 >: 

● 𝜃𝑖 is the size of the task in bytes. It impacts communication delays.   

● 𝛿𝑖 is the CPU requirement, which represents the number of CPU instructions 

required to process a task. It can influence the load in the computing layers 

(Fog and Cloud). Heavy processing tasks can result in node overload. 

● 𝜌𝑖 is the task Priority, which is classified into three categories: high, medium, 

and low. Priority depends on the type of IoT application; for instance, critical-

latency applications are classified as high-Priority.   

 

3.4 System Framework 
 

The core mechanism of the system framework revolves around seamless 

Orchestration and efficient allocation of computing resources to tackle tasks in 

dynamic environments. The mechanism of the system framework works as follow: 

● To keep track of the environment, the system state is periodically sent as “state 

information messages” to the Smart Fog Orchestrator. 

● Based on the state information of the environment, the Fog Orchestrator runs 

the Intelligent DRL algorithm to select the most suitable Fog colony or 

Cloud to process tasks. 

● After that, the tasks will be sent for processing 
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● Although the results of the processing sent to the users are neglected, the Fog 

Orchestrator receives SLA feedback for each allocated and scheduled task. 

 

3.4.1 The Reinforcement Learning Environment 

 

In this section, a custom-Reinforcement-Learning environment is introduced, 

designed specifically for task assignment in such systems. The environment provides 

an interface for the agent to interact with the system, observe its state, take action, 

and receive rewards based on different performance criteria. 

 

A.  Environment Design 
 

The Reinforcement Learning environment is implemented as a subclass of the 

‘gym.Env’ class, OpenAI Gym Environment is a fundamental component of the 

OpenAI Gym toolkit, which is a Python library widely used for developing and 

comparing Reinforcement Learning algorithms. It provides a standardized interface 

for defining and interacting with Reinforcement Learning environments. In addition, 

ensures compatibility with various Reinforcement Learning algorithms and 

frameworks. The environment takes several parameters during initialization, 

including the number of nodes in the system, reward mode, and maximum number 

of time steps. 

 

1. State Space 
 

The state space of the environment represents the state of the system and the task 

to be assigned. It is defined as a continuous box space with the following 

components: 
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● Load of each node: The Load of each node in the system is represented as a 

floating-point value between zero and the maximum load value. 

● Task size: The size of the task waiting to be assigned, represented as a 

floating-point value between zero and the maximum task size. 

● Task CPU requirement: The CPU requirement of the task waiting to be 

assigned is represented as a floating-point value between 0 and the maximum 

CPU requirement. 

● Task Priority: The Priority of the task waiting to be assigned is encoded as a 

one-hot vector with three values (low, medium, and high). 

 

2. Action Space 
 

The action space of the environment represents the actions that the agent can 

take to assign a task to a specific node. It is defined as a discrete space in which the 

number of nodes is the number of possible actions. 

 

3. System Representation 

The environment maintains an internal representation of the system consisting 

of multiple nodes. The system class encapsulates the behavior of nodes and provides 

methods for task assignment, load processing, and task generation. 

 

B.  Environment Dynamics 
 

The environmental dynamics simulate the interaction between the agent and 

the system. For each time step, the agent takes action by assigning a waiting task to 

a node. The system processes assigned tasks, updates node loads, and generates new 

tasks. The reward is calculated based on different criteria, including the load 

distribution, communication cost, and task priorities. 
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1. Task allocation and Task Scheduling 
 

When an agent assigns a task to a node, the environment updates the system 

accordingly. The node processes the assigned task, and its load is updated based on 

the CPU requirements of the task. The task assignment action is represented as an 

index of a node in the action space. The agent systematically sends the task to the 

cloud instance (a node with high resources that imposes a large communication cost, 

as it is supposed to be far in the network) when no resources are left unused in the 

Fog colonies. At the node level, tasks are first scheduled based on their Priority and 

then based on their order of arrival. If the CPU capacity is insufficient to handle the 

next task in the queue, it will systematically try to allocate the task until no task that 

can fit within the node’s resources is left. The Orchestrator receives the system state 

about task Fog nodes and Fog colonies and commands the IoT device to send a task 

to write to the Fog node and command the Fog node to schedule those tasks based 

on the Orchestrator's decision. 

 

2. Reward Calculation 
 

The reward function's design is essential in influencing the learning process 

of the MODRL algorithm. The reward function determines the numerical feedback 

that the agent receives as a result of its actions and decisions in the environment as 

shown in figure 3.3. When considering Fog Computing scheduling with objectives 

like Load, Distance, and Priority, the reward function should accurately represent 

the desired balance and priorities. The reward function in deep reinforcement 

learning for scheduling directs the agent's decision-making process, aiming to 

optimize resource use and minimize task execution delays. It is based on three 

factors: Load, Distance, and Priority. Pareto's goals guide the agent's behavior, 
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enabling adaptability to changing Fog environment conditions. The scheduling 

agent's efficiency and intelligence are enhanced through reward calculation, 

improving the efficacy and productivity of Fog Computing systems. 

 

 

 

Figure 3. 4: Reward Function Process. 
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3.5  PROPOSED ALGORITHM: DQN + MULTI-OBJECTIVE 

OPTIMISATION 
 

Proposing the employment of MODRL to select nodes for task processing (Fog 

nodes or Cloud) based on three objectives: 

● Node current Load: The processing time is improved by selecting the least-

loaded node.  

● Node Distance: Improves the communication time, which depends on the 

Distance between the selected node and the amount of traffic on the link.   

● Task Priority: Improve the scheduling time by selecting the node that has 

fewer Priority tasks in their queue (i.e., selecting nodes with less load is not 

enough, because even unloaded nodes may have Priority tasks). 

  Deep Reinforcement Learning contains training DNN to make serial results in 

an environment to maximize a reward function. DRL is probably employed to create 

dynamic and adaptive scheduling decisions in task processing. Hence, employ three 

DRL agents, one for each objective. However, this is a more challenging scenario 

because there is a trade-off among these objectives, and eventually, each agent may 

select a different processing node according to its own objective, which brings us to 

a Pareto Front problem. 

DQN algorithm with the epsilon-greedy algorithm was employed to solve the 

provided environment. The DQN is a popular Reinforcement-learning algorithm that 

combines Deep Neural Networks with the Q-Learning algorithm to handle high-

dimensional state and action spaces. In this setting, trained three separate DQN 

agents, each with a different reward mode: Load, Distance, and Priority. 

The epsilon-greedy strategy was used to balance exploration and exploitation 

during training. At each step, the agent chooses either to exploit the current 

knowledge by selecting the action with the highest estimated Q-value or to explore 
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the environment by selecting a random action. Initially, the exploration rate is high, 

allowing the agent to explore various actions and states; however, over time, it 

gradually decays to favor the exploitation of learned knowledge, as shown in Figure 

3.4. 

 

Figure 3. 4: Illustration of Deep Reinforcement Learning Environment. It depicts the 

fundamental constituents of the environment, comprising the state, agent, and action. The 

exploration and exploitation phases are illustrated as a means of achieving a balance between 

discovering new methods and utilizing existing ones, with the agent and action serving as key 

components. After the action is taken, the subsequent reward is stored in memory. The iterative 

process of storing experiences in memory and subsequent training enhances the learning and 

decision-making abilities of the reinforcement learning algorithm. 
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Figure 3. 5: Proposed ALGORITHM/ DQN Flowchart 
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To train the DQN agents, utilize the step function provided by the 

environment. At each step, the agent selects an action based on its current state, and 

the environment returns the next state, reward, and additional information. The 

reward function was customized based on the reward mode, with Load, Distance, 

and Priority as the three different modes for our agents. DQN agents learn to 

optimize their actions by updating the Q-values using a combination of discounted 

future rewards and the Q-Learning update rule. 

The proposed ALGORITHM/ DQN Flowchart outlines the main steps of the 

DQN algorithm. It initializes the replay memory, Q-Network, and target network. It 

then iterates over episodes, and within each episode, it iterates over time steps. At 

each time step, the algorithm selects an action based on an epsilon-greedy strategy, 

executes the action, and stores the transition in replay memory. Then, it samples a 

mini-batch from the replay memory and performs a Q-Learning update to train the 

Q-Network. The target network was periodically updated to stabilize learning. The 

algorithm continues until a specified number of episodes is reached. 

After running the algorithm, each DRL measures the quality Q of each 

possible action that corresponds to the processing; thus, the vector of the nodes is 

sorted from high-quality action to low; in other words, the best nodes of each DRL 

are those with the highest Q.  

Because each DRL may have a different sorting of the nodes, it is necessary 

to choose the optimal node that can provide the best possible results for all three 

objectives. Multi-Objective Optimization of the FN service placement problem, 

considering a replication level, scalable service, and using pure Multi-Objective 

genetic algorithms. For example, MOEA/D or NSGA-II. Tested NGSA-II and 
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MOEAD, which are Multi-Objective Evolutionary Algorithms that aim to find the 

optimal node for task processing based on objectives. As shown in figure 3. 6. 

 

 

 

 

Figure 3. 6: Proposed (DQN + MULTI-OBJECTIVE OPTIMISATION) System 

Environment. 
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FIGURE 3. 7: Proposed Multi-Objective Optimization using (DQN + MOEA/D) and 

(DQN + NSGA2) Flowchart. 

The main loop iterates over a fixed number of iterations; within each iteration, 

an episode loop runs for a fixed number of episodes. At the start of each episode, the 

environment was reset, and the episode-specific variables were initialized. 
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Inside the episode loop, the algorithm selects the best action based on the three Q-

Networks using a Multi-Objective Optimization approach. The action values for 

each objective were obtained by passing the current state through each respective Q-

Network. These values are normalized, and an instance of the Multi-Objective 

Optimization problem class is created. The MOEAD and NSGA2 algorithms were 

then used to find the best solution (action) for the given objectives. The selected 

action was chosen randomly from the solutions obtained by the MOEAD and 

NSGA2 algorithms. The combination of DQN agents with the MOEAD and NSGA2 

algorithm allows the exploration of different trade-off solutions on the Pareto Front 

of the Multi-Objective Optimization problem, ensuring that the Intelligent 

Scheduling Algorithm finds solutions that align with the preferences and constraints 

of decision-makers as well as balance the conflicting objectives efficiently. DQN 

agents offer perceptions into the trade-offs between conflicting objectives (Load, 

Distance, and Priority), enabling more informed selection and exploration of results 

on the Pareto Front. Thus, the proposed Intelligent Scheduling Algorithm (DQN+ 

Multi-Objective Optimization) handles trade-offs between objectives by utilizing 

the RL capabilities of DQN agents to learn real scheduling policies and integrating 

them with Multi-Objective Evolutionary Algorithms.  
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3.6 SIMULATION EXPERIMENT  
 

All simulation experiments are implemented in a Python environment with 

TensorFlow, PyTorch, Pymoo, and PQDM libraries in PyCharm, which is a 

powerful Python IDE. To simulate and train the Intelligent Scheduling Strategy, 

OpenAI Gym is utilized. A computer with a 5.0 GHz Intel Core i7 GPU and 16 GB 

of ARM has been used. Virtualized data using MatPlotLib in the Jupyter Notebook. 

The simulation environment contains 250 nodes and 1000 steps per episode for 400 

tasks. Random seeds were fixed for each experiment to ensure reproducibility. The 

Neural Network architecture consisted of three fully connected layers with ReLU 

activation. The Q-Network takes the state as an input and outputs Q-values for each 

action. The replay buffer was used to store and sample transitions to train the Q-

Network. It has a capacity of 500,000 and stores tuples of (state, next state, action, 

reward, and done). The buffer allows efficient sampling of mini batches for training. 

Simulation hyperparameters that are used in the simulation environment are listed 

in table 3.1, DQN hyperparameters in Table 3.2, MOEAD hyperparameters in table 

3.3, and NSGA2 hyperparameters in table 3.4. Thus, the dataset is created with the 

environment hyperparameters that define the state, action, and reward spaces of the 

MODRL environment.  The dataset serves as the foundation for training and 

evaluating the MODRL algorithm. 
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1. ENVIRONMENT HYPERPARAMETERS 

Table 3. 1: Environment Hyperparameter 

Parameter value 

Task 

- task size (min, max) 

- task cpu req (min, max) 

IoT Layer 

- iot layer average rate (λ) 

Computing Node 

- node cpu freq (min, max) (cloud) 

- node max load (min, max) 

(cloud) 

Communication Model 

- comm channel bandwidth (W) 

- comm transmission power (Pi) 

- comm channel gain (Hi) 

- comm bandwidth (Bk) 

- comm N0 

Orchestrator 

- Orchestrator number of 

timesteps 

 

1-10 

25-500 

 

3 

 

10-50(250) 

10-

100(5000) 

 

1 

1 

1 

1 

1 
 

100-1000 

 

 

2. DQN HYPERPARAMETERS 

Table 3. 2 :DQN Hyperparameters 

Hyperparameter Value 

Discount factor (γ) 

Evaluation frequency 

Batch size 

Replay buffer capacity 

Target network update frequency 

Initial epsilon 

Epsilon decrease parameter 

Minimum epsilon 

Epsilon decrease start step 

0.99 

Every 2 episodes 

256 

500,000 

Every 100 episodes 

1 

10,000 

0.2 

150,000 
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Stop exploring episode 

Number of training episodes 

Number of iterations 

Learning rate 

Number of nodes 

Maximum timesteps per episode 

5,000 

7,500 

1 

0.001 

250 

1,000 

 

 

3. MOEAD HYPERPARAMETERS 
 

 

TABLE 3. 3: MOEA/D HYPERPARAMETERS 

Parameter Value 

Population Size            20 

Integer Random Sampling 

SBX (Simulated Binary Crossover) 

Polynomial Mutation 

20 

0.7 

 

Sampling 

Crossover 

Mutation 

Number of Neighbors 

Prob. Neighbor Mating                

 

   

 

 

4. NSGA2 HYPERPARAMETERS 

 

TABLE 3. 4: NSGA2 HYPERPARAMETRS 

Parameter Value 

Population Size 20 

IntegerRandomSampling 

SBX (Prob=1.0, Eta=3.0, Vtype=float, 

Repair=RoundingRepair()) 

PM (Prob=1.0, Eta=3.0, Vtype=float, 

Repair=RoundingRepair()) 

True 

Sampling 

Crossover 

 

Mutation 

 

Eliminate Duplicates 
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3.7 Summary 

In this chapter, the system architecture, system model, system framework, and 

DQN + Multi-Objective Optimization algorithm has been proposed. An Intelligent 

Scheduling Strategy is proposed in a Fog Computing system based on a Multi-

Objective Deep Reinforcement Learning Algorithm. The proposed model will tackle 

two main problems: task allocation and task scheduling. The MODRL algorithm is 

required to develop an optimal strategy to allocate the tasks generated from IoT 

devices to the suitable processing nodes (Fog or Cloud), as well as schedule those 

tasks in the allocated Fog nodes based on multiple criteria (Load, Priority, and 

Distance). 
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CHAPTER FOUR 

 Experimental results  

4-1 Introduction 

 

 This chapter provides a comprehensive analysis and evaluation to the 

proposed approach for addressing the problem at hand. Describing the specific 

hyperparameters and configurations used in the experiments to ensure 

reproducibility and consistency. Furthermore, reporting and discussing the results 

obtained, highlighting the performance of the DQN agents and the Multi-Objective 

Optimization algorithm employed in terms of the defined objectives and analyzing 

any interesting trends or observations. Through these experiments, aiming to gain 

insights into the effectiveness and trade-offs of different reward functions and the 

impact of Multi-Objective Optimization in addressing the complexities of the 

problem. 

In the context of evaluating and validating the proposed Intelligent Scheduling 

Strategies, performance, efficiency, and adaptability metrics such as Task 

Completion Time, QueueingDelay, Makespan, CPU Load, Storage Capacity, 

Latency, Computational Delay, Propagation Delay, Processing Delay, and 

Transmission Delay, Throughput and Network Congestion were used as 

benchmarks. These metrics are crucial for assessing its efficiency, effectiveness, and 

adaptability, as well as serving as key indicators of how well the scheduling strategy 

performs in Fog Computing based on MODRL 
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4.2 Training Process/ Training Environment 

 

The deployment of MODRL for Fog Computing scheduling entails training a 

DQN to navigate the complex decision space. The scheduling is based on three 

objectives: Load, Distance, and Priority. The DQN's purpose is to train a policy that 

efficiently assigns jobs to Fog nodes, taking into account the trade-offs associated 

with the three objectives. Throughout the training process, the agent engages with 

the environment, utilizing its existing policy to make judgments and earning 

incentives as feedback. The rewards are obtained based on the performance in terms 

of load, Distance, and Priority, which encompasses the Multi-Objective 

characteristic of the scheduling problem. While the agent explores the decision 

space, the parameters of the DQN are continuously updated by methods like 

experience replay and target network updates.  

The objective of the learning process is to identify a strategy that effectively 

manages the computational burden on Fog nodes, minimizes the distance between 

tasks and Fog nodes, and meets priority restrictions. The three plots function as 

visual representations, demonstrating the agent's policy development over time in 

order to negotiate the intricate terrain of scheduling choices. They offer valuable 

insights into the compromises and collaborations between the conflicting aims 

during the training process. The repeated improvement of the DQN's policy 

demonstrates the model's capacity to acquire a sophisticated and efficient scheduling 

approach that simultaneously optimizes Load, Distance, and Priority in Fog 

Computing environments, as shown in the figure 4.1: 
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Figure 4. 1: Episode/Return Load, Distance, and Priority 

 

4.3 Reward Structure 
 

Reward calculation in the environment is based on three components: Load, 

Distance, and Priority. The load component penalizes high load values and favors a 

balanced load distribution among the nodes (the Load of a single node is computed 

based on the processing model introduced in section 3.3). The Distance component 

represents the communication cost (described by the equations in section 3.3) of 

sending an assigned task to the chosen node. The Priority component penalizes the 

average Priority of the tasks in each node queue. These objectives can include 

optimizing resource utilization and minimizing task execution delays, as shown in 
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figure 4.2. Thus, the role of the reward function in the context of Deep 

Reinforcement Learning for scheduling is to guide the agent's decision-making 

process. Pareto defines the objectives of the scheduling problem, which allow 

shaping the agent's behavior to achieve trade-offs and specific scheduling goals, 

influence the agent’s learning process, and enable adaptability to changing Fog 

environment conditions. Through reward calculation, the scheduling agent evolves 

and learns to make optimized, intelligent scheduling decisions. Therefore, it 

enhances the effectiveness and efficiency of Fog Computing systems. 

 

 

 

 

Figure 4. 2: Reward/Return Load, Distance, and Priority 

 

4.4 Exploration/Explotation 
 

MODRL for Fog Computing uses a dynamic strategy to transition between 

exploration and exploitation. The strategy involves setting a parameter, epsilon (ε), 
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to 1 during the exploration phase, allowing the agent to explore various scheduling 

decisions. As ε decreases, the agent shifts towards exploitation, prioritizing actions 

with high rewards based on learned Q-values. This adaptive strategy ensures the 

MODRL-based scheduler remains flexible and responsive to changes in the 

environment, combining the benefits of exploration with the efficiency of 

exploitation. 

 

 

Figure 4. 3: Exploration/Explotation 

 

The consistency in plot outcomes can be attributed to the scheduling algorithm 

converging around a specific solution that ideally fulfills all three objectives. This 

convergence indicates that the algorithm has discovered a scheduling policy that 

efficiently distributes the workload, minimizes the distance between tasks and Fog 

nodes, and simultaneously meets Priority requirements. 
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4-5 Validating the DQN algorithm based on Load, Distance, and Priority. 
 

Figure 4.4 shows the evaluation of DQN agents (in terms of the three learning 

objectives) during the training steps. The plots show three tendencies that correspond 

to full exploration (first 1500 steps), exploration-exploitation balancing (until 5000 

steps), and finally a full exploitation phase. It can be observed from the plots that for 

each objective, the DQN agent that was trained specifically to optimize the objective 

achieved the best result, as expected. Thus, the algorithm dynamically adapts its 

approach to successfully manage the trade-off between exploring new potentials and 

exploiting identified, high-performing policies. 
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Figure 4. 4: The average training episodic return of the three DQN algorithms (trained on three 

different reward functions: Load, Distance, and Priority) in terms of the three objectives: load, 

Distance, and Priority. (Number of nodes = 5, Number of timesteps per episode = 100) 
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Figure 4. 5: The average episodic return of the three DQN algorithms (trained on three different 

reward functions: Load, Distance, and Priority) in terms of the three objectives: Load, Distance, 

and Priority. The total objective is the sum of the three scores normalized between 0 and 1. 

(Number of nodes = 250, Number of timesteps per episode = 1000) 



 

70 

  

Figure 4.5 shows the DQN evaluation for 250 nodes and 100 steps per 

episode. The DQN algorithm trained on the Load reward function achieved moderate 

performance in load balancing, whereas its performance in minimizing task distance 

and prioritizing was relatively lower. The algorithm trained on the Distance reward 

function excelled at minimizing the task distance but struggled with load balancing 

and prioritization. Finally, the DQN algorithm trained on the Priority reward 

function showed moderate performance in load balancing and task distance 

minimization but had challenges in prioritizing tasks. 

The unexpected finding that the DQN trained on the Load reward function 

scored higher in the Priority objective compared to the DQN trained specifically for 

the Priority reward function raises interesting insights. One possible explanation 

could be that the Load reward function indirectly encourages prioritization by 

incentivizing the agent to allocate resources efficiently and balance the workload 

across nodes. As a result, the DQN trained on the Load reward function may have 

learned to implicitly consider task priorities when optimizing load balancing. 

However, the DQN trained explicitly on the Priority reward function might 

have focused primarily on maximizing the Priority objective without sufficiently 

accounting for load balancing and task distance. This specialization on Priority 

might have led to sub-optimal load-balancing decisions, resulting in lower overall 

performance in the Priority objective compared to the DQN trained on the Load 

reward function. 

These results highlight the trade-offs and varying performance of the three 

DQN algorithms. The findings emphasize the importance of carefully selecting and 

balancing the reward functions when training DQN algorithms for Multi-Objective 

Optimization tasks, as different reward functions can lead to distinct trade-offs in 

performance across the Load, Distance, and Priority objectives. 
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4-6 The multi-objective Evolutionary algorithm (MOEAD and NSGA2) 

Figure 4.6 shows the average episodic return of the Multi-Objective Evolutionary 

Algorithms (MOEAD and NSGA2) in comparison with naive approaches (selecting 

random nodes and systematically selecting the closest free node).  

 

 

Figure 4. 6: The average episodic return of the Multi-Objective Evolutionary Algorithm (MOEAD 

and NSGA2) in comparison with Naive approaches (Selecting random nodes, and systematically 

selecting the closest free node). The total objective is the sum of the three scores normalized 

between 0 and 1. (Number of nodes = 250, Number of timesteps per episode = 1000) 
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4.6 VALIDATION METRICS 
 

In this section, the evaluation of the performance, effectiveness, and 

adaptability of the proposed intelligent scheduling strategy with other existing 

scheduling strategies has been conducted. That is based on the most important 

performance, efficiency, and adaptability metrics for evaluating such a schedule. To 

evaluate the performance, emphasis will be placed on five different metrics, which 

are Resource Utilization (CPU Load, Storage Capacity), Latency, Throughput, and 

Network Congestion. To evaluate the efficiency, emphasis will be placed on three 

different metrics, which are Task Completion Time, Makespan Time, and Queueing 

Delay. To evaluate adaptability, emphasize four different metrics, which are 

Communication Delay, Transmission Delay, Processing Delay, and Computational 

Delay. These metrics provide insights into how well the strategy performs in terms 

of different objectives and trade-offs. In addition, these metrics provide insights into 

the efficiency, performance, and adaptability of the MODRL system in handling 

tasks within the Fog Computing environment. Monitoring these metrics helps assess 

the system's efficiency in task scheduling, data processing, and network 

management. 

In order to prove the performance, effectiveness, adaptability, and QoS of the 

planned intelligent scheduling strategy, a thorough validation will be conducted 

using all of the above metrics based on DQN+NSGA2, and DQN +MOEA/D. 
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 A. PROPOSED ALGORITHM: DQN + NSGA2 

 

1-Resource Utilization: 

Assess how effectively Fog resources are utilized. High resource utilization 

implies efficient use of available storage, computing, and network resources. High 

Resource Utilization without delays or congestion is ideal. The two main 

components are: 

A. CPU Load: It is calculated by getting the current Load of the CPU as a 

percentage of the assigned Load from the results of processing the CPU 

instructions. Maintaining the CPU Load below 50% whereas having low 

storage usage for a large number of tasks shows the MODRL is efficient and 

the performance of the nodes is effective as tasks are processed faster, as 

shown in Figure 4.7. 

 

 

Figure 4. 7: CPU Load 
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B. Storage Capacity: It refers to the amount of storage space available on Fog 

nodes or Cloud nodes for the management and storage of data. Storage 

Measures the remaining storage after queueingtasks. Appropriate 

management of storage capacity is critical for performance and optimizing the 

responsiveness of an Intelligent Scheduling Strategy, as shown in Figure 4.8. 

 

 

Figure 4. 8: Storage Capacity 

2-Latency:  

 

In Fog Computing, latency will measure the time it takes for some of the data to 

get to its destination over the network. Latency can be considered a measurement 

used for measuring delays, which is usually represented as a round-trip delay as 

shown in Figure 4.9. as well as Latency is often a key component of QoS 
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requirements. Low latency is essential in Fog Computing because an Intelligent 

Scheduling Strategy requires rapid data processing and decision-making. The 

Latency was proved mathematically as follows: 

 𝐿 =
𝑇𝑆

𝑅
∗ 𝐷                         (4.1) 

Where 𝐿    represents the latency, 𝑇𝑆 is the task size,  𝑅 is the rate, and 𝐷 is the 

Distance. 

 

                                         Figure 4. 9: Latency 
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3-Task Completion Time:  

 

Measures the time taken for tasks to be completed from their submission to the 

Fog system. Task Completion Times store scheduled times, with task numbers 

processed in Fog nodes. Figure 4.10 represents the average time for each task. Lower 

completion times indicate efficient scheduling. The Task Completion Time is 

illustrated mathematically as follows: 

            𝑇𝐶𝑇 = 𝐸𝑇 − 𝑅𝑇                                                     (4.2) 

Where 𝑇𝐶𝑇 represents the Task Completion Time, 𝐸𝑇 is the end time, and 𝑅𝑇 is the 

received time. 

 

Figure 4. 10: Task Completion Time 
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4-Makespan Time: 

 

Measures the total time taken to complete all scheduled tasks. Lower Makespan 

values are required. Makespan stores the total time that each node takes to compute 

assigned tasks. Figure 4.11 displays the average Makespan time taken by each node 

to process tasks during the simulation. Lower Makespan indicates efficient task 

completion. The Makespan time is expressed as follows: 

      𝑀𝑇 = 𝐸𝑇 − 𝑆𝑇    (4.3) 

Where 𝑀𝑇 denotes the Makespan time, 𝐸𝑇 is the end time (empty ques), and 𝑆𝑇 is 

the (start of processing the ques). 

 

Figure 4. 11: Makespan Time 
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5-Queueing Delay:  

 

Represents delays when data or tasks are queued before processing. The 

Orchestrator stores the total Queueing time for different Fog nodes. The scheduled 

time showcases Queueing times for different nodes over scheduled periods. Figure 

4.12 shows Queueing times for different nodes over scheduled periods. Lower 

Queueing delays indicate more efficient task allocation. It can be measured as 

follows: 

 

            𝑄𝐷 = ∑ 𝑊𝑇𝑇
𝑚
0                (4.4) 

Where 𝑄𝐷 represents the Queueing delay, 𝑊𝑇𝑇  is the summation of waiting times 

for each task queued. 

 

Figure 4. 12: Queueing Delay 
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6- Communication Delay: 

 

Communication delays in FC refer to the delays experienced when information 

or data is transmitted between nodes or sensors within a Fog Computing system. 

Lower delays indicate faster data processing and allocation. Communication Delay 

includes: 

A. Propagation Delay (data travel time): It is defined as the total time a task takes 

from start to completion, which includes the total lifetime of the task existing 

in the Orchestrator, as shown in Figure 4.13. 

 

Figure 4. 13: Propagation Delay 
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B. Transmission Delay (time to send data over a link): refers to the time it takes 

for data to be transmitted from a source to a destination within a Fog 

Computing system. This delay is a serious element of end-to-end data 

transmission. Figure 4.14 shows the average delay for each node. The 

transmission delay was calculated as follows: 

𝑇𝐷 = 𝑇𝑆/𝐷𝑅               (4.5) 

 

Where 𝑇𝐷 signifies the Transmission Delay, 𝑇𝑆 is the task size, and 𝐷𝑅 is the 

data rate. 

 

 

Figure 4. 14: Transmission delay 
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C. Processing Delay (time taken to process data at Fog nodes): It is the time 

taken to process a task in computing time, as shown in Figure 4.15. Lower 

delays indicate faster data processing and allocation. It can be measured as 

follows: 

𝑃𝐷 = 𝐶𝑅/𝐶𝐹                        (4.6) 

Where 𝑃𝐷 is the Processing Delay, 𝐶𝑅 is the CPU requirements, and 𝐶𝐹 is 

the CPU frequency. 

 

Figure 4. 15: Processing Delay 
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7-Computational Delay: 

 

Measures the time taken to process data or perform tasks at Fog nodes. In 

Computation Delay, data is derived from total processing and scheduling time for 

tasks. Figure 4.16 displays the Computation Delay against the data size. A lower 

Computation Delay indicates faster task computation. Mathematically express it as 

follows: 

𝐶𝐷 = 𝐷𝑇 + 𝑆𝐷               (4.7) 

 

Where 𝐶𝐷  is the Computation Delay, 𝐷𝑇  is the computing time, and 𝑆𝐷  is the 

scheduling delay 

 

 

Figure 4. 16: Computational Delay 
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8- Throughput:  

 

Measures the rate at which tasks are processed by the Fog system. Higher 

throughput indicates better scheduling. Throughput records the processing rate for 

each Fog node after handling tasks. Higher throughput indicates better scheduling 

and high processing power at the nodes, which improves the QoSs, as shown in the 

figure 4.17 (the Throughput plot shows the average rate for each node after several 

iterations). It expresses itself as follows: 

𝑇𝐻 =
𝑃𝑇

∑ 𝑇𝑛
𝑚
0

                                            (4.8) 

Where 𝑇𝐻  is the Throughput's rate, 𝑃𝑇 is the number of processed tasks, and ∑ 𝑇𝑛
𝑚
0  

is the total number of tasks received by the node 

  

 

Figure 4. 17: Throughput 
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9- Network Congestion: 

 

Indicates high network traffic leading to increased delays. In Network 

Congestion, data extracted from each node's task processing iterations is used 

to plot network congestion, as shown in figure 4.18. Illustrates the 

effectiveness of MODRL in preventing network congestion. Preventing 

network congestion improves overall system performance. Formulate it 

mathematically in the following manner: 

𝑁𝐶 = ∑ 𝑇𝑞
𝑚
0                                               (4.9) 

Where 𝑁𝐶  is the Network Congestion, and ∑ 𝑇𝑞
𝑚
0  is the total number of tasks 

being queued in the Fog nodes. 

 

 

Figure 4. 18: NetworkCongestion. 
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B. PROPOSED ALGORITHM: DQN + MOEA/D 
 

 

When determining the metrics for MOEA/D, it is important to notice that the 

underlying ideas and equations are consistent with those already developed for 

NSGA-II. MOEA/D, similar to NSGA-II, follows the Multi-Objective Optimization 

approach, with the goal of optimizing a group of conflicting objectives concurrently. 

The metrics include key indications such as Latency, Throughput, Task Completion 

Time, Makespan Time, Queueing Delay, Communication Delay, Transmission 

Delay, Processing Delay, and Computational Delay. In addition, the evaluation also 

takes into account indirect measures such as CPU Load, Storage Capacity, and 

Network Congestion. Due to the similar characteristics of the optimization issue and 

the common objective of optimizing multiple conflicting goals, the definitions and 

equations for these metrics remain consistent in both NSGA-II and MOEA/D. The 

consistency in metric definitions enables a smooth and fair comparison of the two 

methods, guaranteeing a thorough assessment of their individual performances in 

the context of Intelligent Scheduling for Fog Computing. 
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1- Resource Utilization 

 

A. CPU  
 

 
Figure 4. 19: CPU Load 

 

B. Storage Capacity 

       

 
Figure 4. 20: Storage Capacity 
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2-Latency 

                          

 
Figure 4. 21: Latency 

 

3-Task Completion Time 

 

 
Figure 4. 22: Task Completion Time 
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4-Makespan Time 

 
Figure 4. 23: Makespan Time 

 

 5-Queueing delay 

 
Figure 4. 24: Queueing Delay 
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6-Communication delay 

A. Propagation Delay  

 
Figure 4. 25: Propagation Delay 

B. Transmission Delay  

 
Figure 4. 26: Transmission Delay 
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C.Processing Delay  

 
Figure 4. 27: Processing Delay 

7-Computational Delay 

 
Figure 4. 28: Computational Delay 
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8-Throughput 

 
Figure 4. 29: Throughput 

 

9-Network Congestion 

 

Figure 4. 30: Network Congestion 
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The divergence in results between NSGA-II and MOEA/D can be attributed 

to differences in their optimization mechanisms, strategies, and the specific 

characteristics of the optimization problem. These differences include the search 

mechanism, population initialization, problem characteristics, parameter settings, 

problem complexity, stochastic nature, and algorithm sensitivity. NSGA-II uses a 

Non-Dominated Sorting method, while MOEA/D Decomposes the Multi-Objective 

problem into sub-problems. The initialization of the population and diversity 

maintenance mechanisms also contribute to the exploration of different areas of the 

key space. The performance of evolutionary algorithms is sensitive to parameter 

settings, as well the difficulty of the optimization problem can favor one algorithm 

over the other. To understand the specific reasons for these differences, a thorough 

analysis of the Pareto Fronts and convergence behavior can provide valuable 

insights. 

 

C- RESULTS COMPARISON 

 

In this study, a comparative analysis was conducted between the proposed 

Intelligent Scheduling Strategy, based on MODRL algorithm, and the most relevant 

scheduling strategy presented in table 2.1. With a focus on key performance 

indicators. The validation includes three critical aspects: efficiency, performance, 

and adaptability. In terms of efficiency, which involves Task Completion Time, 

Makespan, and Queueing delay, the proposed MODRL-based strategy displayed 

more effectiveness by yielding the lowest values in these metrics, compared to the 

approach in table 2.1. Regarding performance, which considers Computation Delay, 

Storage Capacity, CPU Load, Throughput, and Network Congestion. The scheduling 

strategy excelled with a lower Computation Delay, a CPU Load maintained below 

50%, a higher amount of storage space available, higher Throughput, and achieving 
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low Network Congestion, whereas the approach outlined in table 2.1 lacked a 

simulation. Thus, the proposed Intelligent Scheduling Strategy showed it had higher 

performance. Lastly, in terms of adaptability, which comprises Communication 

Delay (Transmission Delay, Propagation Delay and Processing Delay), the proposed 

MODRL algorithm demonstrated advantages by achieving lower Communication 

Delay and effectively justifying Network Congestion, an aspect not addressed in 

existing algorithm in table 2.1. Thus, this enhanced adaptability. Table 4.1 details 

the comparison of the proposed Intelligent Scheduling and existing scheduling 

algorithms. From this comparison, it can be concluded that the proposed 

(DQN+MULTI-OBJECTIVE OPTIMIZATION) algorithm achieves better 

performance and is more effective and adaptive compared to the most relevant 

existing methods in table 4.1. 

 When considering scheduling in Fog Computing using DRL, multiple metrics 

are used to evaluate the QoS offered by the system. QoS-related metrics encompass 

Latency, Throughput, Task Completion Time, Makespan Time, and several delay 

components such as Queueing Delay, Communication Delay, Transmission Delay, 

Processing Delay, and Computational Delay. Latency is a crucial statistic for 

measuring QoS, since it represents the time, it takes for data to travel over the 

network and finish processing. Throughput, which refers to the speed at which tasks 

are successfully completed, is an additional crucial aspect that affects the QoS. The 

Task Completion Time and Makespan time offer valuable insights into the efficiency 

of the scheduling system, with lower values suggesting quicker and more efficient 

job execution. Queueing Delay is the amount of time that jobs wait in a queue before 

being processed, and it directly affects how quickly the system responds. Delays, 

such as those in Communication, Transmission, Processing, and Computing, have 

an impact on the overall QoS by affecting the speed and reliability of data transfer 
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and task execution. An efficiently optimized scheduling method, led by DRL, aims 

to collectively minimize these metrics. This ensures a Fog Computing environment 

that is responsive, efficient, and dependable while also meeting the QoS 

requirements of various applications and users. Resource Utilization does not 

directly measure QoS, but it does have an indirect impact on QoS by affecting the 

efficiency and performance of the system. Optimal allocation of tasks enhances the 

dependability and agility of the Fog Computing ecosystem. 

 The reason behind the proposed Intelligent Scheduling Strategy's success is 

the prominent role of the MODRL algorithm, which is dedicated to the minimization 

of task execution times and the effective optimization of objectives within the Fog 

Orchestrator. As well as reduced waiting times for tasks. 
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Table 4. 1: Comparison of proposed algorithm and most relevant existing works. 

 

Ref. Described 

Algorithm 

Core 

Contributio

n 

MO-

DRL 

PERFORMANCE(Average) EFFICIENCY 

(Average ms) 

ADAPTABILITY (Average ms) 

CPU 

Load

% 

Stora

ge 

% 

L.(ms

) 

TH % NC 

(rate) 

TCT

. 

MT. QD. Propagati

on delay  

TD. PD. CD. 

Gazori 

et al. 

DRL Task 

scheduling 

× -- -- 7500 -- -- 1900

0 

250 2500 -- -- -- 7500 

Wang et 

al. 

RL Task 

scheduling 

× -- -- -- -- -- 2000

0 

2000 -- -- -- -- -- 

Wu et 

al. 

DRL Task 

scheduling 

× -- -- -- -- -- -- -- -- -- -- -- -- 

Qi, 

Zhuo et 
al. 

DRL Task 

scheduling 

× -- -- -- -- -- -- -- -- -- -- -- -- 

Sheng 

et al. 
DRL Task 

scheduling 

× -- -- -- -- -- -- -- -- -- -- -- -- 

Jin et 
al. 

DRL Task 
scheduling 

× -- -- -- -- -- -- -- -- -- -- -- -- 

Propose
d 

(DQN+

NSGA2

) 

DRL+Mult
i objective 

optimizatio

n 

Intelligent 
scheduling 

strategy 

(task 

scheduling 
and task 

allocation 

√ 10 99.9 3.5 100 0.10 2.02 10 2 9.5 25 1 3 

Proposed 

(DQN+M

OEA/D) 

DRL+Mult

i objective 

optimizatio

n 

Intelligent 

scheduling 

strategy 

(task 
scheduling 

and task 

allocation 

√ 10 99.9 4.0 100 0.07 2.02 10 2 10.5 25 1 2.5 
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4.8 SUMMARY 

The proposed Intelligent Scheduling technique aims to optimize task 

scheduling and task allocation in the quickest time possible, with a focus on 

maximizing resource use. The integration of Multi-Objective Deep Reinforcement 

Learning is achieved by combining Deep Q-Network with Multi-Objective 

Optimization approaches. The suggested technique outperforms conventional 

methods by prioritizing crucial validation parameters, including Task Completion 

Time, Queueing Delay, Makespan, CPU Load, Storage Capacity, Latency, 

Computational Delay, Propagation Delay, Processing Delay, and Transmission 

Delay, Throughput and Network Congestion. By utilizing the learning capabilities 

of DQN and the efficiency improvements from Multi-Objective Optimization, the 

system adjusts dynamically to various and changing Fog Computing environments. 

The distinct combination of these elements establishes the suggested algorithm as a 

superior performer, showcasing improved effectiveness in reducing delay, 

optimizing CPU usage, and maximizing data processing capacity. The combination 

of Deep Reinforcement Learning and Multi-Objective Optimization paradigms in 

this technique represents notable progress in Intelligent Scheduling algorithms for 

Fog Computing environments.  
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CHAPTER FIVE - CONCLUSIONS AND FUTURE WORKS 

 

With the development of Cloud Computing technology, FC has 

gradually become a significant middle layer in Cloud Computing, which has 

less time delay, enhanced interactivity, and stronger processing capacity 

terminal equipment. In addition, Fog Computing offers an edge-centric and 

distributed approach to enhance and complement overall computing 

capabilities.  

 

5.1 Conclusion 

This study aims to resolve the resource management problem in Fog 

Computing environments. The study intends to improve scheduling by 

concurrently considering many goals, which will increase the overall 

performance, efficiency, and adaptability of the Fog Computing system. The 

task allocation and task scheduling problem in FC is an important problem in 

Fog Computing, and its calculation method directly affects the results and 

efficiency of task execution in a Fog environment. This study proposes a 

MODRL-based Deep Q Network and Multi-Objective Optimization (NSGA2 

+ MOEA/D) to tackle task allocation and task scheduling problems in FC, 

which is implemented in a Fog Orchestrator that can choose the optimal node 

by considering three objectives (Load, Priority, and Distance).  

The experimental results prove that the key findings of the proposed 

DQN+ Multi-Objective Optimization algorithm are effective based on eight 

validation metrics: Task Completion Time, Makespan Time, Queueing Delay, 

Latency,Network Congestion, Throughput, CPU Load, and Storage Capacity 

with an average value of 2.02ms, 10ms, 2ms, , 3.5ms, 0.10ms, %100, 

%10,%99, respectively. As well as adaptive in terms of four performance 

metrics: Propagation Delay, Transmission Delay, Processing Delay, and 

Computational Delay with an average value of 9.5ms, 25ms, 1ms, 3ms, 
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respectively, in solving the MODRL of FC for task scheduling and task 

allocation. Therefore, the intelligent scheduling strategy in FG is essential for 

the following: 

1- Minimizing Latency, by intelligently allocating tasks and processing 

locations, bringing computation closer to the edge for real-time 

applications. 

2- Reducing Makespan, contributing to faster completion times for the 

entire workload. 

3- Reduces Communication Delay, by making informed determinations 

regarding the optimal location for job processing, whether it is locally 

or in the Cloud. This aids in minimizing the necessity for lengthy data 

transfers, hence improving the overall responsiveness of the system. 

4- Maximize Throughput, confirming that the system can handle a 

higher workload effectively. 

5-  Maximazing the Resource Utilization, ensuring reliable and efficient 

operation in a dynamic environment, and optimizing the use of 

resources. 

 

5.2 Future Works 
 

For the future, the algorithm will be adjusted to enhance the mechanisms 

for re-scheduling tasks facing long queueing times in the Orchestrator, which 

may involve the following: 

1- Feedback-based re-scheduling, A re-scheduling mechanism 

continuously learns from past decisions, analyzing factors like task 

completion times and resource utilization.  

2- Predictive re-scheduling, is a method that uses forecasting and 

predictive analytics to anticipate future changes in the Fog 

Computing environment.



 

R1 

  

 

REFERENCES 
 

Abdel-Basset, M. et al. (2021a) ‘Multi-Objective Task Scheduling Approach   

for Fog Computing’, IEEE Access, 9, pp. 126988–127009. Available at: 

https://doi.org/10.1109/ACCESS.2021.3111130. 

 

Abdel-Basset, M. et al. (2021b) ‘Multi-Objective Task Scheduling Approach 

for Fog Computing’, IEEE Access, 9, pp. 126988–127009. Available at: 

https://doi.org/10.1109/ACCESS.2021.3111130. 

 

Alizadeh, M.R. et al. (2020a) ‘Task scheduling approaches in fog computing: 

A systematic review’, International Journal of Communication Systems, 

33(16), pp. 1–36. Available at: https://doi.org/10.1002/dac.4583. 

 

Alizadeh, M.R. et al. (2020b) ‘Task scheduling approaches in fog computing: 

A systematic review’, International Journal of Communication Systems, 

33(16). Available at: https://doi.org/10.1002/dac.4583. 

 

Alsmirat, M., Institute of Electrical and Electronics Engineers. French Section 

and Institute of Electrical and Electronics Engineers  2020 Fifth International 

Conference on Fog and Mobile Edge Computing (FMEC) : Paris, France. 

April 20-23, 2020. 

 

Atlam, H.F., Walters, R.J. and Wills, G.B. (2018) ‘Fog computing and the 

internet of things: A review’, Big Data and Cognitive Computing. MDPI, pp. 

1–18. Available at: https://doi.org/10.3390/bdcc2020010. 

 

Chen, W. et al. (2021) ‘A novel multiobjective evolutionary algorithm based 

on decomposition and multi-reference points strategy’. Available at: 

http://arxiv.org/abs/2110.14124. 

 

Deb, K. et al. (2002a) A Fast and Elitist Multiobjective Genetic Algorithm: 

NSGA-II, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. 

Deb, K. et al. (2002b) A Fast and Elitist Multiobjective Genetic Algorithm: 

NSGA-II, IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION. 

 

Deb, Kalyan and Deb, Kalyanmoy (2014) Multiobjective Optimization Using 

Evolutionary Algorithms Multi-Objective Optimization Using Evolutionary 

Algorithms: An Introduction. Available at: 

http://www.iitk.ac.in/kangal/deb.htm. 

 

https://doi.org/10.1109/ACCESS.2021.3111130
https://doi.org/10.1109/ACCESS.2021.3111130
https://doi.org/10.1002/dac.4583
https://doi.org/10.1002/dac.4583
https://doi.org/10.3390/bdcc2020010
http://arxiv.org/abs/2110.14124
http://www.iitk.ac.in/kangal/deb.htm


 

R2 

  

Dizdarevic, J. et al. (2018) ‘Survey of Communication Protocols for Internet-

of-Things and Related Challenges of Fog and Cloud Computing Integration’. 

Available at: https://doi.org/10.1145/3292674. 

 

Dlamini, S. and Ventura, N. (2019) ‘Resource management in fog computing: 

Review’, in icABCD 2019 - 2nd International Conference on Advances in Big 

Data, Computing and Data Communication Systems. Institute of Electrical and 

Electronics Engineers Inc. Available at: 

https://doi.org/10.1109/ICABCD.2019.8851016. 

 

Fahimullah, M., Ahvar, S. and Trocan, M. (2022) A Review of Resource 

Management in Fog Computing: Machine Learning Perspective. 

 

Gazori, P., Rahbari, D. and Nickray, M. (2020a) ‘Saving time and cost on the 

scheduling of fog-based IoT applications using deep reinforcement learning 

approach’, Future Generation Computer Systems, 110, pp. 1098–1115. 

Available at: https://doi.org/10.1016/j.future.2019.09.060. 

 

Gazori, P., Rahbari, D. and Nickray, M. (2020b) ‘Saving time and cost on the 

scheduling of fog-based IoT applications using deep reinforcement learning 

approach’, Future Generation Computer Systems, 110, pp. 1098–1115. 

Available at: https://doi.org/10.1016/j.future.2019.09.060. 

 

Ghobaei-Arani, M., Souri, A. and Rahmanian, A.A. (2020a) ‘Resource 

Management Approaches in Fog Computing: a Comprehensive Review’, 

Journal of Grid Computing. Springer. Available at: 

https://doi.org/10.1007/s10723-019-09491-1. 

 

Ghobaei-Arani, M., Souri, A. and Rahmanian, A.A. (2020b) ‘Resource 

Management Approaches in Fog Computing: a Comprehensive Review’, 

Journal of Grid Computing. Springer. Available at: 

https://doi.org/10.1007/s10723-019-09491-1. 

 

Guerrero, C., Lera, I. and Juiz, C. (2019) ‘Evaluation and efficiency 

comparison of evolutionary algorithms for service placement optimization in 

fog architectures’, Future Generation Computer Systems, 97, pp. 131–144. 

Available at: https://doi.org/10.1016/j.future.2019.02.056. 

 

Hazra, A. et al. (2023) ‘Fog computing for next-generation Internet of Things: 

Fundamental, state-of-the-art and research challenges’, Computer Science 

Review. Elsevier Ireland Ltd. Available at: 

https://doi.org/10.1016/j.cosrev.2023.100549. 

 

https://doi.org/10.1145/3292674
https://doi.org/10.1109/ICABCD.2019.8851016
https://doi.org/10.1016/j.future.2019.09.060
https://doi.org/10.1016/j.future.2019.09.060
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1016/j.future.2019.02.056
https://doi.org/10.1016/j.cosrev.2023.100549


 

R3 

  

Henderson, P. et al. (2018) Deep Reinforcement Learning that Matters. 

Available at: www.aaai.org. 

 

Islam, M.S.U., Kumar, A. and Hu, Y.C. (2021) ‘Context-aware scheduling in 

Fog computing: A survey, taxonomy, challenges and future directions’, 

Journal of Network and Computer Applications. Academic Press. Available at: 

https://doi.org/10.1016/j.jnca.2021.103008. 

 

Jang, B. et al. (2019) ‘Q-Learning Algorithms: A Comprehensive 

Classification and Applications’, IEEE Access, 7, pp. 133653–133667. 

Available at: https://doi.org/10.1109/ACCESS.2019.2941229. 

 

Jin, C. et al. (2023) ‘Reinforcement Learning-Based Intelligent Task 

Scheduling for Large-Scale IoT Systems’, Wireless Communications and 

Mobile Computing, 2023. Available at: https://doi.org/10.1155/2023/3660882. 

 

Kaur, M. and Kumar, V. (2018) ‘Parallel non-dominated sorting genetic 

algorithm-II-based image encryption technique’, Imaging Science Journal, 

66(8), pp. 453–462. Available at: 

https://doi.org/10.1080/13682199.2018.1505327. 

 

Kaur, N., Kumar, A. and Kumar, R. (2021) ‘A systematic review on task 

scheduling in Fog computing: Taxonomy, tools, challenges, and future 

directions’, Concurrency and Computation: Practice and Experience, 33(21). 

Available at: https://doi.org/10.1002/cpe.6432. 

 

Laghari, A.A., Jumani, A.K. and Laghari, R.A. (2021) ‘Review and State of 

Art of Fog Computing’, Archives of Computational Methods in Engineering, 

28(5), pp. 3631–3643. Available at: https://doi.org/10.1007/s11831-020-

09517-y. 

 

Lakhan, A. et al. (2022) ‘Efficient deep-reinforcement learning aware resource 

allocation in SDN-enabled fog paradigm’, Automated Software Engineering, 

29(1). Available at: https://doi.org/10.1007/s10515-021-00318-6. 

 

Lazaridis, A. (2020) Deep Reinforcement Learning: A State-of-the-Art 

Walkthrough, Journal of Artificial Intelligence Research. 

 

Li, K., 2021. Decomposition multi-objective evolutionary optimization: From 

state-of-the-art to future opportunities. arXiv preprint arXiv:2108.09588. 

 

Liu, C., Xu, X. and Hu, D. (2015) ‘Multiobjective reinforcement learning: A 

comprehensive overview’, IEEE Transactions on Systems, Man, and 

http://www.aaai.org/
https://doi.org/10.1016/j.jnca.2021.103008
https://doi.org/10.1109/ACCESS.2019.2941229
https://doi.org/10.1155/2023/3660882
https://doi.org/10.1080/13682199.2018.1505327
https://doi.org/10.1002/cpe.6432
https://doi.org/10.1007/s11831-020-09517-y
https://doi.org/10.1007/s11831-020-09517-y
https://doi.org/10.1007/s10515-021-00318-6


 

R4 

  

Cybernetics: Systems, 45(3), pp. 385–398. Available at: 

https://doi.org/10.1109/TSMC.2014.2358639. 

 

Liu, Y. et al. (2019) ‘Deep Reinforcement Learning for Offloading and 

Resource Allocation in Vehicle Edge Computing and Networks’, IEEE 

Transactions on Vehicular Technology, 68(11), pp. 11158–11168. Available 

at: https://doi.org/10.1109/TVT.2019.2935450. 

 

Von Lücken, C., Barán, B. and Brizuela, C. (2014) ‘A survey on multi-

objective evolutionary algorithms for many-objective problems’, 

Computational Optimization and Applications, 58(3), pp. 707–756. Available 

at: https://doi.org/10.1007/s10589-014-9644-1. 

 

Mao, H. et al. (2016) ‘Resource management with deep reinforcement 

learning’, in HotNets 2016 - Proceedings of the 15th ACM Workshop on Hot 

Topics in Networks. Association for Computing Machinery, Inc, pp. 50–56. 

Available at: https://doi.org/10.1145/3005745.3005750. 

 

Martinez, I., Hafid, A.S. and Jarray, A., 2020. Design, resource management, 

and evaluation of fog computing systems: a survey. IEEE Internet of Things 

Journal, 8(4), pp.2494-2516. 

 

Matrouk, K. and Alatoun, K. (2021) ‘Scheduling Algorithms in Fog 

Computing: A Survey’, International Journal of Networked and Distributed 

Computing, 9(1), pp. 59–74. Available at: 

https://doi.org/10.2991/IJNDC.K.210111.001. 

 

Mohamad Shirajuddin, T., Muhammad, N.S. and Abdullah, J. (2023) 

‘Optimization problems in water distribution systems using Non-dominated 

Sorting Genetic Algorithm II: An overview’, Ain Shams Engineering Journal, 

14(4). Available at: https://doi.org/10.1016/j.asej.2022.101932. 

 

Mossalam, H. et al. (2016) ‘Multi-Objective Deep Reinforcement Learning’. 

Available at: http://arxiv.org/abs/1610.02707. 

 

Mseddi, A. et al. (2019) ‘Intelligent Resource Allocation in Dynamic Fog 

Computing Environments’, in Proceeding of the 2019 IEEE 8th International 

Conference on Cloud Networking, CloudNet 2019. Institute of Electrical and 

Electronics Engineers Inc. Available at: 

https://doi.org/10.1109/CloudNet47604.2019.9064110. 

 

Mukherjee, M., Shu, L. and Wang, D. (2018) ‘Survey of fog computing: 

Fundamental, network applications, and research challenges’, IEEE 

https://doi.org/10.1109/TSMC.2014.2358639
https://doi.org/10.1109/TVT.2019.2935450
https://doi.org/10.1007/s10589-014-9644-1
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.2991/IJNDC.K.210111.001
http://arxiv.org/abs/1610.02707
https://doi.org/10.1109/CloudNet47604.2019.9064110


 

R5 

  

Communications Surveys and Tutorials, 20(3), pp. 1826–1857. Available at: 

https://doi.org/10.1109/COMST.2018.2814571. 

 

Naha, R.K. et al. (2018) ‘Fog computing: Survey of trends, architectures, 

requirements, and research directions’, IEEE Access, 6, pp. 47980–48009. 

Available at: https://doi.org/10.1109/ACCESS.2018.2866491. 

 

Nassar, A.T. and Yilmaz, Y. (2018) ‘Reinforcement Learning-based Resource 

Allocation in Fog RAN for IoT with Heterogeneous Latency Requirements’. 

Available at: http://arxiv.org/abs/1806.04582. 

 

Ni, J. et al. (2018) ‘Securing Fog Computing for Internet of Things 

Applications: Challenges and Solutions’, IEEE Communications Surveys and 

Tutorials, 20(1), pp. 601–628. Available at: 

https://doi.org/10.1109/COMST.2017.2762345. 

 

Niranjan, S.K. et al. Institute of Electrical and Electronics Engineers, Institute 

of Electrical and Electronics Engineers. Bangalore Section, and IEEE 

Computational Intelligence Society. Bangalore Chapter, ‘‘A survey: 

Integration of IoT and fog computing,’’ in Proc. 2nd Int. Conf. Green Comput. 

Internet Things (ICGCIoT), Karnataka, India, Aug. 2018, pp. 235–239. 

 

Özdemir, S., Attea, B.A. and Khalil, Ö.A. (2013) ‘Multi-objective evolutionary 

algorithm based on decomposition for energy efficient coverage in wireless 

sensor networks’, Wireless Personal Communications, 71(1), pp. 195–215. 

Available at: https://doi.org/10.1007/s11277-012-0811-3. 

 

Plaat, A. (2022) ‘Deep Reinforcement Learning, a textbook’. Available at: 

https://doi.org/10.1007/978-981-19-0638-1. 

 

Qi, F.A.N., Zhuo, L. and Xin, C. (2020) ‘Deep Reinforcement Learning Based 

Task Scheduling in Edge Computing Networks’, in 2020 IEEE/CIC 

International Conference on Communications in China, ICCC 2020. Institute 

of Electrical and Electronics Engineers Inc., pp. 835–840. Available at: 

https://doi.org/10.1109/ICCC49849.2020.9238937. 

 

Qiao, J. et al. (2019) ‘A decomposition-based multiobjective evolutionary 

algorithm with angle-based adaptive penalty’, Applied Soft Computing Journal, 

74, pp. 190–205. Available at: https://doi.org/10.1016/j.asoc.2018.10.028. 

 

Rahman, G.M.S., Dang, T. and Ahmed, M. (2021) ‘Deep reinforcement 

learning based computation offloading and resource allocation for low-latency 

https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/ACCESS.2018.2866491
http://arxiv.org/abs/1806.04582
https://doi.org/10.1109/COMST.2017.2762345
https://doi.org/10.1007/s11277-012-0811-3
https://doi.org/10.1007/978-981-19-0638-1
https://doi.org/10.1109/ICCC49849.2020.9238937
https://doi.org/10.1016/j.asoc.2018.10.028


 

R6 

  

fog radio access networks’, Intelligent and Converged Networks, 1(3), pp. 243–

257. Available at: https://doi.org/10.23919/icn.2020.0020. 

 

Rani, A., Prakash, V. and Darbari, M. (2022) ‘Fog Computing Paradigm with 

Internet of Things to Solve Challenges of Cloud with IoT’, in Communications 

in Computer and Information Science. Springer Science and Business Media 

Deutschland GmbH, pp. 72–84. Available at: https://doi.org/10.1007/978-3-

031-23724-9_7. 

 

Roderick, M., MacGlashan, J. and Tellex, S. (2017) ‘Implementing the Deep 

Q-Network’. Available at: http://arxiv.org/abs/1711.07478. 

 

Roheed Khaliqyar, A.Professor., Amir Kror Shahidzay, A.Prof. and Aslamza, 

Assistant.P.S. (2023) ‘An Approach from Internet of Things to Cloud of Things 

using Fog Computing’, International Journal of Multidisciplinary Research 

and Analysis, 06(04). Available at: https://doi.org/10.47191/ijmra/v6-i4-53. 

 

Sabireen, H. and Neelanarayanan, V. (2021) ‘A Review on Fog Computing: 

Architecture, Fog with IoT, Algorithms and Research Challenges’, ICT 

Express, 7(2), pp. 162–176. Available at: 

https://doi.org/10.1016/j.icte.2021.05.004. 

 

Sellami, B. et al. (2020) ‘Deep Reinforcement Learning for Energy-Efficient 

Task Scheduling in SDN-based IoT Network’, in 2020 IEEE 19th International 

Symposium on Network Computing and Applications, NCA 2020. Institute of 

Electrical and Electronics Engineers Inc. Available at: 

https://doi.org/10.1109/NCA51143.2020.9306739. 

 

Sharma, S. and Kumar, V. (2022) ‘A Comprehensive Review on Multi-

objective Optimization Techniques: Past, Present and Future’, Archives of 

Computational Methods in Engineering. Springer Science and Business Media 

B.V., pp. 5605–5633. Available at: https://doi.org/10.1007/s11831-022-09778-

9. 

 

Sheng, S. et al. (2021) ‘Deep reinforcement learning-based task scheduling in 

iot edge computing’, Sensors, 21(5), pp. 1–19. Available at: 

https://doi.org/10.3390/s21051666. 

 

Sherbrooke, C.C. Discrete compound Poisson processes and tables of the 

geometric Poisson distribution,’’ Nav. Res. Logistics Quart., vol. 15, no. 2, 

pp. 189–203, Jun. 1968, doi: 10.1002/nav.3800150206. 

 

https://doi.org/10.23919/icn.2020.0020
https://doi.org/10.1007/978-3-031-23724-9_7
https://doi.org/10.1007/978-3-031-23724-9_7
http://arxiv.org/abs/1711.07478
https://doi.org/10.47191/ijmra/v6-i4-53
https://doi.org/10.1016/j.icte.2021.05.004
https://doi.org/10.1109/NCA51143.2020.9306739
https://doi.org/10.1007/s11831-022-09778-9
https://doi.org/10.1007/s11831-022-09778-9
https://doi.org/10.3390/s21051666


 

R7 

  

Tan, F., Yan, P. and Guan, X. (2017a) ‘Deep Reinforcement Learning: From 

Q-Learning to Deep Q-Learning’, in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics). Springer Verlag, pp. 475–483. Available at: 

https://doi.org/10.1007/978-3-319-70093-9_50. 

 

Tan, F., Yan, P. and Guan, X. (2017b) ‘Deep Reinforcement Learning: From 

Q-Learning to Deep Q-Learning’, in Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics). Springer Verlag, pp. 475–483. Available at: 

https://doi.org/10.1007/978-3-319-70093-9_50. 

 

Thi Nguyen, T. et al. 2020. A multi-objective deep reinforcement learning 

framework. Engineering Applications of Artificial Intelligence, 96, p.103915. 

 

Tran-Dang, H. et al. (2022) ‘Reinforcement learning based resource 

management for fog computing environment: Literature review, challenges, 

and open issues’, Journal of Communications and Networks, 24(1), pp. 83–98. 

Available at: https://doi.org/10.23919/jcn.2021.000041. 

 

Verdú, S. (1998) Fifty Years of Shannon Theory, IEEE Trans. Inf. Theory, 

vol. 44, no. 6, pp. 2057–2078, Oct. 1998, doi: 10.1109/18.720531 

 

Verma, S., Pant, M. and Snasel, V. (2021) ‘A Comprehensive Review on 

NSGA-II for Multi-Objective Combinatorial Optimization Problems’, IEEE 

Access, 9, pp. 57757–57791. Available at: 

https://doi.org/10.1109/ACCESS.2021.3070634. 

 

Wang, N. et al. (2023) ‘A Review of Deep Reinforcement Learning Methods 

and Military Application Research’, Mathematical Problems in Engineering, 

2023, pp. 1–16. Available at: https://doi.org/10.1155/2023/7678382. 

 

Wang, Y., Dong, S. and Fan, W. (2023) ‘Task Scheduling Mechanism Based 

on Reinforcement Learning in Cloud Computing’, Mathematics, 11(15). 

Available at: https://doi.org/10.3390/math11153364. 

 

Goudarzi, M. et al. (2023) ‘Deep Reinforcement Learning-based scheduling 

for optimizing system load and response time in edge and fog computing 

environments’, Future Generation Computer Systems, 152, pp. 55–69. 

Available at: https://doi.org/10.1016/j.future.2023.10.012. 

 

https://doi.org/10.1007/978-3-319-70093-9_50
https://doi.org/10.1007/978-3-319-70093-9_50
https://doi.org/10.23919/jcn.2021.000041
https://doi.org/10.1109/ACCESS.2021.3070634
https://doi.org/10.1155/2023/7678382
https://doi.org/10.3390/math11153364
https://doi.org/10.1016/j.future.2023.10.012


 

R8 

  

Wei, Y. et al. (2018) ‘DRL-Scheduling: An intelligent QoS-Aware job 

scheduling framework for applications in clouds’, IEEE Access, 6, pp. 55112–

55125. Available at: https://doi.org/10.1109/ACCESS.2018.2872674. 

 

Wu, J. et al. (2021) ‘Deep Reinforcement Learning for Scheduling in an Edge 

Computing-Based Industrial Internet of Things’, Wireless Communications 

and Mobile Computing, 2021. Available at: 

https://doi.org/10.1155/2021/8017334. 

 

Zhang, Q. and Li, H. (2007) ‘MOEA/D: A multiobjective evolutionary 

algorithm based on decomposition’, IEEE Transactions on Evolutionary 

Computation, 11(6), pp. 712–731. Available at: 

https://doi.org/10.1109/TEVC.2007.892759. 

 

Zheng, T. et al. (2022) ‘Deep Reinforcement Learning-Based Workload 

Scheduling for Edge Computing’, Journal of Cloud Computing, 11(1). 

Available at: https://doi.org/10.1186/s13677-021-00276-0. 

 

  

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/ACCESS.2018.2872674
https://doi.org/10.1155/2021/8017334
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1186/s13677-021-00276-0


 

R1 

 



 

 

 

 پوختە 

دواییانە   نوێ  وەک  (،  (Fog computingبەم  کە   ،ڵداوهریهەسەپارادایمیكێکی 

م بۆ تۆڕەکان ( بە وچانێكی كەIoTئینتەرنێتی )  میردهسەكان لەیشنەپلیكەەخزمەتگوزارییەکانی بۆ ئ

كانی  كۆلۆنیە  لە  ( computing) ومپیوتینگ ڵام توانای سنورداری سەرچاوەکانی كدەکات، بە  ئاماده 

ئەرکەکانی بەکارهێنان   رخانكردنی وتە کێشەی گەورە بۆ خشتەى كارەكان  (Fog colonies)  فۆگ

( لەسەر  (FC. لەم کارەدا ئالگۆریتمێکی ستراتیژی خشتەکردنی زیرەک لە سیستەمی  كاتهدروستد

فرە قووڵی  بەهێزکردنی  فێربوونی  )-بنەمای  ب MODRLئامانج  دیاریکردنی  بۆ   كانستەكبەیەە( 

nodes) .بۆ پرۆسەکردنی ئەرک پێشنیار دەکرێت ) 

(Fog nodes or Cloud nodesب )كانستەك بەیەەلەسەر سێ ئامانج: دۆخی ئێستای ب   نده ە  ،

 (. Load, Priority, Distance) ئەولەویەتی ئەرک پێشنیاركردنی وكان  ستەك بەیەەدووری ب

 MODRL  فرە باشترکردنی  بیرۆکەکانی  کە  پێشکەوتووە،  فێربوونی  -میتۆدۆلۆژیایەکی  و  ئامانج 

لەبەهێزکردنی قووڵ بۆ   ئاڵۆزو  ئەچارەسەرکردنی    بڕیاردان  کە چەندین ئامانجی    ی، انەبارودۆخە 

بە   پێویستیان  کە  بارودۆخانەدا،  لەو  بەتایبەتی  نرخە  بە  تەکنیکە  ئەم  دەکات.  تێکەڵ  تێدایە  ناکۆکی 

زیادکردنی ژمارەیەکی زۆر لە پێوەرەکان هەیە. لەهەمان کاتدا تەنانەت ئەگەر بە تەواوی هێڵیش نەبن  

ڕەچاو بکرێن. ئەم مۆدێلەی پێشنیارکراوە دوو کێشەی سەرەکی چارەسەر دەکات:   كانڵەەمام  پیویستەو

ئەرک   بەهێزکردنی    وخشتەی'تەرخانکردنی  فێربوونی  بەکارهێنانی  سێ  )ئەرک.  ( DRLقووڵ 

، یەک بۆ هەر ئامانجێک ئەمە  Q-Network (DQN)لەسەر بنەمای تۆڕێکی قووڵی    كانبریكاره

( تۆڕی  پێکهاتەی  لە  تایبەتە  )ANNجۆرێکی  فێربوون  بەهێزکردنی  بۆ  کە   ،)RL .بەکاردێت  )

(، بۆ خەمڵاندنی CNNبەکاردێنێت، کە بە گشتی تۆڕێکی ئاڵۆزە )  (NN)تۆڕی    DQNئەلگۆریتمی  

ئاڵۆزەکان پرۆسە    .Qکرداری   دەدات، کە بەشێوەیەکی کاریگەر بوارە  ئەمەش ڕێگە بە مۆدێلەکە 

بکات. لەگەڵ ئەوەشدا ئەمە سیناریۆیەکی سەختترە، چونکە ئاڵوگۆڕێک لەنێوان ئەم ئامانجانەدا هەیە،  

بە لەوانەیە  ئەلگۆریتمێک  هەر  کۆتاییدا  ئامانجەکەی كبەیەلە  بەپێی  جیاواز  پرۆسەکردنی  ستنی 

دەمانبات. بۆ چارەسەرکردنی ئەم کێشەیە پێشنیار بکە    (Pareto)شەی پێشەوەی  هەڵبژێرێت، کە بۆ کێ

ئامانجی پەرەسەندو لەسەر بنەمای لابردنى  -ئامانج، ئەلگۆریتمی فرە-بە بەکارهێنانی باشکردنی فرە

( ئامانج  نەبۆماوەیی    وئەلگۆریتمی(  MOEA/Dفرە  ئەلگۆریتمی  NSGA2)  كراوەپۆلێن  کە   ،)

فرە )-باشکردنی  ئامانج  ڕەچاوکردنی سێ  بە  دەتوانن  کە  (  Load, Priority, Distanceئامانجن، 

 ست هەڵبژێرن. ك بەیەباشترین بە



 

 

 ,TensorFlowلەگەڵ    evironment Pythonبە بەکارهێنانی  وتاقیکردنەوەكان  وهلیكۆڵینە

Pytorch,  Pymoo, PQDM,    لەPyChram،  پایتۆنێکی بەهێزى    كەIDEوڕاهێنانی وە  وشی ، بۆ ها  

هەروەها   زیرەک.  خشتەکردنی  بەکارهێنانی  كرێت  هد  Virtualized dataستراتیژییەتی  بە 

MatPlotLib    لەJupyter notebok   ئاماژە بەوە بکات، کە ستراتیژیی خشتەکردنی دەستکردی

زیرەک دەتوانێت بۆ ئەنجامدانی جۆرەها ئەدای بەکارهێنراو ئەنجامی باشتر بەدەست بهێنێت، کارایی  

، دواکەوتنی ڕیزبەند،  MAKESPANو پێوانەکانی توانای خۆگونجاندن: کاتی تەواوکردنی ئەرک  

دواکەوتنی    یدواکەوتن دواکەوتنی  وهگواستنەبڵاوبوونەوە،  پرۆسیسكردن،  كرداری  دواکەوتنی   ،

 Storageڵگرتن )(، بەکارهێنانی هەCPU Load)  سی پی یو كۆمپیوتینگ، دواکەوتن، باركردنى  

Capacity2.02 (، تێکڕای بەهایms, 10ms, 2ms, 9.9ms, 25ms, 1.0ms, 3.5ms, %10, 

 بەراورد بە توێژینەوە پەیوەندیدارەکانی ئێستا.  ,99 %

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


