

Lagrange Elementary Optimization Algorithm Based

on New Crossover Operator

A Dissertation

Submitted to the Council of the College of Erbil Technical

Engineering at Erbil Polytechnic University in Partial

Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Information Systems Engineering

By

Aso Mohammed Aladdin

B.Sc. in Statistics and Computer, University of Sulaimani, Iraq (2010)

M.Sc. in Software Systems and Internet Technology, University of

Sheffield, UK (2012)

Supervised by

Dr. Tarik Ahmed Rashid

Professor

Erbil, Kurdistan

December 2023

i

DECLARATION

I hereby affirm that the Higher PhD Dissertation titled "Lagrange Elementary

Optimization Algorithm Based on New Crossover Operator" is entirely my

own original work. I certify that all the contents of this dissertation, unless

otherwise stated, stem from my independent research efforts and have not

been previously submitted for any other degree at any academic institution.

Any external sources or references utilized in this dissertation have been duly

acknowledged within the text .

 Signature:

 Student Name: Aso Mohammed Aladdin

 Date: / 12 / 2023

ii

SUPERVISOR CERTIFICATE

This dissertation, under my guidance, has been authored and is now being

presented for the conferment of the Doctor of Philosophy in Information

Systems Engineering, with my full endorsement as the supervisor.

 Tarik Ahmad Rashid

Signature Name

 / 12 / 2023

Date

I confirm that all requirements have been fulfilled.

Signature:

Name: Bayad Abdulqadir Ahmad

Head of the Department of Information Systems Engineering

Date: / / 2023

I confirm that all requirements have been fulfilled.

Postgraduate Office

Signature:

Name:

Date: / 12 / 2023

iii

Examining Committee Certification

We certify that we have read this Dissertation: Lagrange Elementary

Optimization Algorithm Based on New Crossover Operator and as an

examining committee examined the student (Aso Mohammed Aladdin) in its

content and what related to it. We approve that it meets the standards of a

dissertation for the degree of Doctor of Philosophy in Information Systems

Engineering.

Signature: Signature:

Name: Prof. Dr.Subhi Rafiq M. Zeebaree Name: Asst. Prof. Dr. Adel Sabry Eesa
Member Member

Date : Date:

Signature: Signature

Name: Asst. Prof. Dr. Shahab W. Kareem Name: Asst. Prof. Dr. Ismael Abdulrahman

Member Member

Date: Date:

Signature: Signature

Name: Prof. Dr. Tarik Ahmad Rashid Name: Prof. Dr. Ayad Ghany Ismaeel Barznchy

Member & Supervisor Chairman
Date: Date:

Approved by the Dean of the College of Erbil Technical Engineering College

Signature

Name: Prof. Dr. Ayad Zaki Saber Agha

Dean of the College of Erbil Technical Engineering College

Date:

iv

Certificate of Proofreading

This is to certify that this thesis entitled “Lagrange Elementary Optimization

Algorithm Based on New Crossover Operator” written by the postgraduate

student (Aso Mohammed Aladdin) has been proofread and checked for

grammatical, punctuation and spelling mistakes. Therefore, after making all

the required corrections by the student for further improvement, I confirm that

this last copy of the thesis is ready for submission.

Signature: Name: Dr. Chalak Ali Mohammed Ameen

Qualification: Applied Linguistics

Date: / 12 / 2023

v

ACKNOWLEDGMENTS

Above all, I wish to convey my heartfelt appreciation to ALLAH for

bestowing a smooth and manageable journey upon me. I am also deeply

grateful to Prof. Dr. Tarik A. Rashid for his exceptional guidance and

unwavering support throughout this endeavor. Furthermore, I extend my

thanks to both Erbil Polytechnic University and Charmo University for

granting me the opportunity and offering their invaluable assistance along the

way.

Finally, I owe a great debt of gratitude to my wife and family for their

unwavering support and encouragement during my educational journey. Their

steadfast belief in me has played a crucial role in attaining this level of

scientific education.

vi

Abstract

The evolutionary sophistication method solves optimization problems;

however, its effectiveness and scalability can be challenged as problem

complexity increases. Population-based evolutionary metaheuristic algorithms

heavily rely on operators that determine their overall performance. These

operators enhance exploration and exploitation, crucial for effective search

and optimization. The research introduces the crossover operator, Lagrangian

Problem Crossover (LPX), to boost evolutionary algorithms' performance in

tackling new optimization problems. Additionally, it presents Lagrange

Elementary Optimization (LEO), a single-objective algorithm where LPX

plays a significant role.

The crossover operator in population-based algorithms is crucial for selecting

suitable solutions in optimization processes. Its efficiency saves time,

minimizes errors, and reduces costs in engineering applications. The initial

phase of the study presents an overview of the current crossover methods

utilized in engineering operations and problem representation. Furthermore,

presenting LPX, it is a fresh and inventive hybrid technique that draws

inspiration from the principles of the Lagrangian Dual Function (LDF).

Experimental evaluations compare LPX with other standards such as

Simulated Binary Crossover (SBX), Blended Crossover (BX), and Qubit-

Crossover (Qubit-X) in real-coded crossovers. The results indicate that LPX

generally outperforms other methods and shows comparable performance in

remaining cases. Specifically, in TF7, LPX demonstrates superior

performance and shorter computation time across all three random values

compared to Mean (α=0.2) at 0.0048, Standard Deviation (α=0.2) at 0.0031,

and time computation (α=0.2) at 143.005 units. Statistical analysis validates

the significance and reliability of LPX compared to other crossover standards.

vii

In the second phase of the research, a novel evolutionary method named Leo

is introduced. Leo is inspired by the accurate vaccination process that utilizes

the human blood albumin quotient. Leo utilizes a self-adaptive approach,

evolving intelligent agents through gene crossover based on fitness function

values. The algorithm's accuracy and precision are extensively validated

through rigorous testing on diverse benchmark functions, including both

traditional and CECC06 2019 benchmarks. Leo's performance is

benchmarked against well-known algorithms like Dragonfly, Genetic

Algorithm, Practical Swarm Optimization, and others across multiple

functions. A comprehensive comparison evaluates Leo's effectiveness and

efficiency in solving optimization problems against these established

algorithms. In optimizing multimodal test functions (TF8-TF13), particularly

TF11, the proposed approach outperformed other algorithms, with an average

TF11 value of (2.7393E-08). Notably, across the composite test functions

(TF14-TF19), the proposed method exhibited consistently high performance

compared to the base algorithms. The statistical analysis supports the research

conclusions, and real-world applications of Leo are also showcased. The

stability of Leo is confirmed using standard metrics for exploration and

exploitation.

viii

TABLE OF CONTENTS
Abstract ... vi

TABLE OF CONTENTS ... viii

List of Figures .. x

List of Tables .. xi

List of Abbreviations ... xii

List of Symbols ... xiii

CHAPTER ONE .. 1

1. Introduction .. 1

1.1. An Overview of Optimization Algorithms and their Categorizations 1

1.2. Optimization Techniques Synopsis .. 3

1.2. Problem Statement .. 7

1.3. Work Contributions .. 8

1.4. Work Motivations and Objectives .. 10

1.5. Dissertation Map .. 12

CHAPTER TWO ... 13

2. Background and Literature Review .. 13

2.1. Population-Based Algorithm .. 13

2.2. Crossover Overview ... 17

2.3. Optimization Problem Algorithms ... 21

2.4. Vaccination-Induced Immune System ... 26

CHAPTER THREE ... 29

3. Research Methodology and Design .. 29

3.1. Inspiration and Exploration of Genetic Recombination ... 29

3.2 Crossover Operator Technique .. 31

3.2.1. Mathematical Distribution Crossover ... 31

3.2.2. Lagrangian Problem Crossover Operator ... 37

3.3. Lagrange Elementary for Optimization .. 42

3.4. Algorithm Deterministic Process ... 44

3.4.1. Leo Comprehensive Definition .. 44

3.4.2. Leo Crossover Process ... 50

3.4.3. Leo Mutation Process ... 51

CHAPTER FOUR ... 53

4. Results and Discussion ... 53

4.1. Results and Discussion of Lagrangian Problem Crossover 54

4.1.1. Heuristic Evaluation Results .. 54

4.1.2. Exploitation and Convergence Evaluation Results .. 59

ix

4.1.3. Statistical Evaluation Results ... 61

4.2. Results and Discussion of Single-Objective Lagrange Elementary for Optimization

 ……………………………………………………………………………………...63

4.2.1. Classical Benchmark Test Functions .. 63

4.2.2. CEC-C06 2019 Benchmark Test Functions ... 69

4.2.3. Statistical Tests and Scalability Analysis ... 72

4.2.4. Quantitative Measurement Metrics .. 74

4.2.5. Real-World Application ... 78

4.2.5.1.The Pathological IgG Fraction in the Nervous System

 .. 78

4.2.5.2.Integrated Cyber-Physical-Attack for Manufacturing System

 80

CHAPTER FIVE ... 85

5. Conclusions, Future Works and Limitations .. 85

5.1. Conclusions .. 85

5.2. Recommendations for Future Works .. 91

5.3. Limitations .. 92

References ... 94

6. APPENDIX .. 102

7. Publications .. 108

ە پوخت .. 110

ختصرالم ... 113

x

List of Figures
Fig. 2-1 Response cells of the innate and adaptive immune systems. (Macrophages, B-

lymphocytes and T-lymphocytes) (Eli Benjamini et al., 2000) ... 27

Fig. 2-2 example of spike protein (mRNA) vaccine cycle life. (Fang et al., 2022) 28

Fig. 3-1 Significant probability in the real-coded crossover ... 30

Fig. 3-2 Pseudocode and example to explain TPX deliberation .. 33

Fig. 3- 3 BX for second Genes by the range calculation .. 34

Fig. 3- 4 SBX for the second Genes .. 36

Fig. 3-5 CX operator progressive .. 37

Fig. 3-6 The Lagrange multiplier shows the contour lines of the tangent function when

gradient vectors are parallel .. 39

Fig. 3-7 Create two new offspring depending on ... LPX

Fig. 3-8 Given that the solution can’t ascend significantly higher than the point where the

restriction g=c crosses the top, the objective is to climb as high on the top as possible using

the Lagrange theorem ... 43

Fig. 3-9 the proposed pseudocode for Leo Algorithm ... 48

Fig. 3-10 Leo algorithm flowchart process .. 49

Fig. 3-11 Leo Crossover Process Pseudocode ... 51

Fig. 4-1 Parents’ Generation for TF1(α=0.2) .. 57

Fig. 4- 2 Parents’ Generation for TF1 (α=0.5) ... 57

Fig. 4-3 Parents’ Generation for TF1 (α=0.7) ... 58

Fig. 4-4 Parents’ Generation for TF3 (α=0.2) ... 58

Fig. 4-5 Parents’ Generation for TF3 (α=0.5) ... 58

Fig. 4- 6 Parents’ Generation for TF3 (α=0.7) ... 58

Fig. 4- 7 Parents’ Generation for TF7 (α=0.2) ... 58

Fig. 4-8 Parents’ Generation for TF7 (α=0.5) ... 58

Fig. 4- 9 Parents’ Generation for TF7 (α=0.7) ... 58

Fig. 4-10 Search history of the Leo algorithms on unimodal, multimodal, and composite

test functions .. 76

Fig. 4-11 The trajectory of Leo’s search agents on unimodal, multimodal, and composite

test functions .. 76

Fig. 4-12 The average fitness of Leo’s search agents on unimodal, multimodal, and

composite test function .. 77

Fig. 4-13 Convergence curve of Leo algorithms on unimodal, multi-modal, and composite

test function ... 77

Fig. 4-14 Global best with average fitness results from for150 Iteration with 12 search

agents in (IgGp) fraction in the nervous system .. 80

Fig. 4-15 The network station is represented by a stochastic Petri net 81

Fig. 4-16 Fitness results in Leo process for 300 Iteration with 10 search agents depend on

the Jacobian matrix for cyber-physical-attack in the manufacturing system 84

xi

List of Tables

Table 2-1 Standard Crossovers Generation Overview .. 20
Table 4-1 The performance result test for selected crossover standards with LPX 56

Table 4- 2 The crossover operator’s comparison results of classical test functions............ 60
Table 4-3 The Wilcoxon rank-sum test (p-value) between crossovers operator for random

generations ... 62
Table 4-4 The Wilcoxon rank-sum test (p-value) between standards by the LPB algorithm

 ... 62
Table 4-5 Unimodal benchmark functions (Hussain et al., n.d.) ... 64
Table 4-6 Multimodal benchmark functions (10 dimensional) (Hussain et al., n.d.) 65

Table 4-7 Composite benchmark functions (Hussain et al., n.d.) 66
Table 4-8 Comparing the results of Leo with DA, PSO, and GA algorithms on classical test

functions .. 68

Table 4-9 Comparing the results of Leo with FDO and LPB algorithms on classical test

functions .. 69
Table 4-10 CEC-2019 benchmarks “the 100-digit challenge” (Brest et al., 2019) 70
Table 4-11 Comparing the results of Leo with DA, WOA, and SSA algorithms on CEC-

2019 test functions ... 71
Table 4-12 Comparing the results of Leo with FDO, LPB, and FOX algorithms on CEC-

2019 test functions ... 71
Table 4-13 P-value by the Wilcoxon rank-sum test overall runs for classical benchmark

test functions. ... 73

Table 4-14 P-value by the Wilcoxon rank-sum test overall runs for CEC-2019 test

functions .. 74

Table 6-1 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF1

to TF5 .. 102

Table 6-2 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF6

to TF10 .. 103
Table 6-3 Thirty turns result of the Leo Algorithm for solving the classical benchmark

TF11 to TF15 ... 104
Table 6-4 Thirty turns result of the Leo Algorithm for solving the classical benchmark

TF16 to TF19 ... 105
Table 6-5 Thirty turns result of the Leo Algorithm for CECC06 2019 benchmark from

CEC01 to CEC05 .. 106
Table 6-6 Thirty turns result of the Leo Algorithm for CECC06 2019 benchmark from

CEC06 to CEC10 .. 107

xii

List of Abbreviations

Abbreviations Explanation

ABC Artificial Bee Colony
ACO Ant Colony Optimization

AGV Automated Guided Vehicle
Alb-CSF Albumin Cerebrospinal Fluid

Alb-Serum Albumin Serum
BX Blended Crossover

CA Cultural Algorithm

CPAMS Cyber-Physical Attacks on Manufacturing Systems
DA Dragonfly Algorithm

DE Differential Evolution
EA Evolutionary Algorithm

FDO Fitness Dependent Optimizer

GA Genetic Algorithm
IgG Immunoglobulin G

LDF Lagrangian Dual Function
LPB Learner Performance-based Behavior

LPX Lagrangian Problem Crossover
MOO Multi-Objective Optimization

PN Petri Net

PSO Particle Swarm Optimization
Q-Alb Quotient Albumin

Qubit-X Qubit Crossover
SBX Simulated Binary Crossover

SOO Single-Objective Optimization
SSA Salp Swarm Algorithm

STD Standard Division

TF Test Function
TSP Traveling Salesman Problem

WOA Whale Optimization Algorithm

xiii

List of Symbols

Symbols Remarks or Descriptions

𝑄 Quotient

𝑂 Offspring

𝐶 Chromosome

𝐺 Gene

γ Gamma

α Alpha (random number)

𝜂 Eta

µ Mu

𝑆 Station (position)

𝜆 Lambda (Lagrange multiplier)

ℒ Lagrange

𝑔 gradients

ɦɠ Half Group

𝑓ɠ First Group

ʂɠ Second Group

𝜎 Sigma (random number)

1

CHAPTER ONE

1. Introduction

This chapter of the dissertation centers on the categorization and overview of

optimization techniques for complex problems, while also delves into the

concept of self-adaptation for such complexities. Additionally, it serves to

provide clarity regarding the dissertation’s problem statement, objectives, and

the motivation that drove the investigation of the issues encountered

throughout the project development. Ultimately, the chapter outlines the

dissertation organizational structure, designed to assist readers in navigating

the inquiries effectively.

1.1. An Overview of Optimization Algorithms and their Categorizations

Searching for the unknown and seeking the most effective solution have been

priorities since computers were invented. In 1945, Alan Turing utilized a

specific search method to decrypt German Enigma ciphers during World War

II (Copeland, 2000). Following that, in (Gill et al., 2008) technique for

solving linear programming problems (Gill et al., 2008). Since then, a myriad

of algorithms has been developed for diverse applications, including

optimization and problem-solving. These optimization algorithms play a

crucial role in finding suitable solutions to various problems. While multiple

approaches might exist for a given situation, the optimal approach is the one

that takes a global perspective into account. Typically, optimization problems

exhibit non-linearity and possess intricate characteristics.

Moreover, based on the predictability and repeatability of their behavior,

algorithms can be categorized into two main groups: deterministic algorithms

and non-deterministic algorithms. It is extremely important to understand that

non-deterministic algorithms do not mean they are completely arbitrary or

random. To explore and discover better answers, they adhere to

2

predetermined norms or heuristics. However, given the inherent randomness,

their output can still fluctuate. Providing consistency and predictability is

essential or when an optimal solution can be found without exploration or

randomization, deterministic algorithms are often used. Non-deterministic

algorithms, on the other hand, come in handy when the issue is complicated

and finding approximations or close to ideal solutions can be accomplished by

considering many options (Gopalakrishna et al., 2019)(Beloglazov and

Buyya, 2012).

These are illustrations of categorization using optimization algorithms. It is

crucial to remember that each category contains a wide range of additional

specialized algorithms and modifications. The selection of the algorithm

depends on the nature of the present problem and the specific requirements of

the optimization task. Depending on how they are used throughout searches,

optimization algorithms can be divided into numerous groups depending on

various criteria (Iqbal et al., 2014). Here are some commonly recognized

classifications.

▪ Discrete Optimization Algorithms: These algorithms solve optimization

problems with discrete variables and discrete basic problems. They consist

of problems in which variables can only assume specific discrete values.

▪ Continuous Optimization Algorithms: These algorithms are designed for

solving optimization problems with continuous variables and basic

counting problems. They have to demonstrate the optimal values of

variables within continuous domains and spaces.

▪ Linear Programming Algorithms: Linear programming approaches have

been developed for solving linear optimization problems. In these issues, a

linear objective function is maximized or minimized under linear

constraints.

3

▪ Non-linear Optimization Algorithms: They solve optimization problems

with non-linear or complex objective functions or constraints. These

algorithms handle more complex optimization scenarios where variables

are non-linearly related.

▪ Heuristic Algorithms: They are problem-solving techniques that may not

guarantee an optimal solution but aim to find satisfactory solutions within

a reasonable timeframe. They are categorized as traditional algorithms.

▪ Metaheuristic Algorithms: These are high-level strategies that guide search

across a problem space and domain. They are frequently employed to

solve complex optimization problems or non-linear optimization problems,

where traditional algorithms encounter difficulties or limitations. They are

categorized as traditional algorithms. Examples include GAs, ACO, and

ABC.

▪ Stochastic Optimization Algorithms: They incorporate randomness or

probabilistic elements into their search process. These algorithms are

suitable for uncertain or noisy data problems.

▪ Gradient-based Optimization Algorithms: They utilize information from

the gradients (derivatives) or lagrangians of the objective function to

iteratively improve the solution. These algorithms are primarily used for

smooth and differentiable optimization problems (Chaparro et al., 2008).

1.2. Optimization Techniques Synopsis

Normally, exploring algorithms and optimization techniques are fascinating

voyages into problem-solving and efficiency improvement. To take on

difficult computational issues and make wise decisions, humans explore the

huge landscape of algorithms and optimization techniques. Algorithms are

logical, sequential processes created to solve particular problems or complete

particular activities. They offer a methodical methodology for segmenting a

problem into more manageable, smaller parts, enabling effective problem-

4

solving. Thus, one develops a deeper grasp of the fundamental concepts,

advantages, and disadvantages of many algorithms by researching a wide

variety of them.

Additionally, evolutionary sophistication is the advanced complexity and

efficiency achieved in evolutionary algorithms' problem-solving strategies

and mechanisms and widely used to resolve global optimization challenges.

However, as the initial issue grows more intricate, so does its effectiveness

and expandability. Furthermore, evolutionary nature-inspired metaheuristic

algorithms are a category of optimization algorithms influenced by natural

phenomena and animal intelligence. These algorithms draw inspiration from

the principles of evolution and mimic the behaviors observed in nature to

solve complex optimization problems. Stochastic parabolic curve

optimization is emphasized in a wide range of scientific and technical fields.

Global optimization finds applications in engineering, financial services, and

management systems by optimizing linear and non-linear objective functions

to address structural problems in these fields. Due to this and as a result, two

categories of large-scale algorithms are established: the first is traditional

algorithms, including gradient-based optimization algorithms or quadratic

programming. Secondly, evolutionary algorithms (EAs) are among several

artificial intelligence techniques, including heuristic and meta-heuristic

algorithms. Traditional algorithms demonstrate efficiency and deterministic

behavior throughout their execution. They primarily rely on local searches;

which means that achieving global optimality in the majority of optimization

problems is not guaranteed. Consequently, these algorithms have restricted

solution diversity and are ineffective when confronted with highly non-linear

and multimodal problems (Henderson et al., 2003). Although traditional

algorithms are efficient, several key aspects can be discussed about their

characteristics.

5

The majority of their algorithms are deterministic, meaning that a given input

will consistently produce the same output, except for the Hill-climbing

Algorithm that is restarted randomly, which is found in the algorithms that are

derived from Lagrange stationary points. Additionally, their reliance on local

searches presents uncertainty regarding global optimality in most

optimization problems. Therefore, the range of solutions that can be obtained

is limited (Cook and Mitchell, 1997). Furthermore, traditional algorithms

operate on problem-specific information, tailoring them to precise problem

domains. Moreover, their inability to effectively address non-linear problems

restricts their effectiveness at cracking multimodal problems.

Evolutionary algorithms, as stochastic methods, overcome limitations by

exploring solution spaces more broadly than conventional algorithms,

utilizing heuristics and meta-heuristics for experimental and empirical

searches. These algorithms integrate specific randomization mechanisms and

employ various methods of local search to navigate the problem landscape

(Dey et al., 2017)(Dey et al., 2014). In addition, with further research and

development, heuristic algorithms have evolved into meta-heuristic

algorithms. The "meta" prefix implies a higher level of performance

compared to traditional heuristics. However, it is important to highlight that

the terms "heuristic" and "meta-heuristic" are often used interchangeably, as

their definitions have minimal distinction. Lastly, meta-heuristic algorithms,

including EAs, offer advantages over heuristic algorithms in terms of

productivity and performance. These algorithms leverage stochastic

procedures and auto-adaptive plans to more effectively explore the solution

space, theoretically overcoming the limitations encountered by traditional

algorithms (Fister Jr et al., 2013)(Hoos and Stützle, 2004).

Nature-inspired or bio-inspired algorithms draw from biological behaviors.

Effective categorization involves defining genetic operators based on these

6

behaviors. Thus, optimization problems can be classified into three main

types based on complexity: Single-Objective Optimization (SOO) focuses on

optimizing one objective, finding the best solution. Multi-Objective

Optimization (MOO) involves optimizing multiple conflicting objectives

simultaneously. Many-Objective Optimization (MAOO) extends MOO to

scenarios with an unusually large number of conflicting objectives, requiring

advanced techniques for effective solution exploration and trade-off analysis.

The effectiveness of the majority of evolutionary metaheuristic algorithms or

bio-inspired algorithms is contingent upon the utilization of different

operators. An individual within the genetic material of populations

(chromosomes, people or animals) during the evolutionary process is called a

genetic operator in the context of adaptive algorithms. These operators

replicate biological evolution concepts of genetic diversity and natural

selection. The common genetic operators used in GAs are classified into

selection, crossover (recombination), mutation, and elitism (Haldurai et al.,

2016). However, these genetic operators work together to simulate natural

selection and genetic variation processes. They play a crucial role in

enhancing the fitness of the population across multiple generations, aiming to

find optimal or near-optimal solutions for a given problem. Among these

operators, the crossover or recombination operator holds particular

significance. It is categorized into two types: application-dependent and

application-independent crossover operators. As part of the find-best solution

procedure, the crossover standard allows the best-fitted point to be chosen

during the process of finding the best solution.

SOO, also known as single-objective problems, refers to a type of

optimization problem where the objective is to find the optimal solution that

meets a specific goal or constraint. The goal is to identify the input variables

or parameters that result in the ideal value for the objective.

7

This may involve maximizing or minimizing a given function. In SOO, the

objective function establishes a mathematical relationship between the

variables within the solution space, known as choice variables. The main goal

is to explore the solution space and find the set of variables that optimally

maximize the objective function.

Finally, the EA typically discovers SOOs that are simple and have only one

objective. SOO’s goal is finding the most efficient solution for a particular

principle or metric, such as execution time or performance. This can involve

incorporating additional metrics like energy consumption and power

dissipation. By defining the single-objective cost function as a weighted sum

of normalized costs associated with each metric, multiple criteria can be

combined into a single-objective optimization problem.

1.2. Problem Statement

Real-world problems are intricate and challenging to solve comprehensively

due to limitations in time, space, and cost. As a result, there is a demand for

cost-effective, efficient, and intelligent mechanisms. Mimicking biological

behaviors provides effective solutions for tackling intricate problems in

various domains. Firstly, unlike evolutionary optimization techniques that

discard information after each generation, bio-based techniques retain

information about the search agent throughout each iteration. Secondly,

biological behavior algorithms have fewer constraints on parameters and a

reduced number of operators compared to EAs, making them highly adaptable

to diverse problem domains. Therefore, researchers have investigated the

effectiveness of viruses and anti-viruses in animals and humans, alongside

analyzing animals’ behaviors and natural phenomena. The object is to

comprehend how these organisms tackle problems and find potential solutions

by drawing inspiration from their strategies and behaviors. This study

investigates the manner in which vaccines influence the immune system of

8

the body and the process of immunity development. It draws parallels

between this study and previous research on the navigation, predator evasion,

group selection, and prey hunting behaviors of ants, animals, fish, birds, and

prey. The dissertation primarily focuses on the following core problem issues:

• Identifying the optimal operator, specifically the crossover standard, for

gene rejoining, is crucial in achieving a balance between heuristic

evaluation and exploration.

• How does research play a significant role in efficiently addressing

complex problems?

• What is the importance of identifying the optimal operator, especially

the crossover standard, for gene recombination?

• How critical is the operator's role in striking a balance between

heuristic evaluation and exploration?

• Can the combination of operators for generating a new generation

yield satisfactory levels of accuracy and performance?

• How does research play a significant role in efficiently addressing

complex problems?

• What is the importance of identifying the optimal operator, especially

the crossover standard, for gene recombination?

• How critical is the operator's role in striking a balance between

heuristic evaluation and exploration?

• Can the combination of operators for generating a new generation

yield satisfactory levels of accuracy and performance?

1.3. Work Contributions

Optimization algorithms are among the most effective metaheuristics for

dealing with multi-case problems. As a result, population-based approaches

have emerged as highly efficient methods for creating and combining new

algorithms to optimize combinatorial functions. In accordance with this

9

specification and the dissertation, the subsequent section delineates the key

contributions of this research.

1. Listing the evolution from previous standards to binary, real-coded, and

ordered-coded forms, with specific emphasis on each and a brief overview

of implemented crossover mathematical forms.

2. This dissertation proposes a novel crossover method based on LDF which

provides original metaheuristic optimization to build a more efficient

optimum solution. Hence, the anticipated LPX is evaluated through a

comparison with other previously existed tuning methods. In this

assessment, an updated LPB algorithm is employed to compare the LPX

standard with other particular real-coded standard form operators. The

LPX results are then experimentally evaluated alongside these alternatives.

3. An innovative bio-inspired intelligence algorithm is proposed called Leo.

This algorithm resolves SOOs and practical problems. It explores previous

standards that contributed to advancements in modulated immunity

systems and periodic antenna array designs. To find the most appropriate

solution, several factors are taken into account based on the immunity

system during vaccination. An illustrative example of this is the utilization

of a fitness function to assign appropriate weights; thereby assisting the

algorithm in both the exploration and exploitation phases. Consequently,

the algorithm achieves rapid convergence towards global optimal

population coverage.

4. Because this proposed algorithm use a similar mechanism for updating

agent positions, Leo can be considered a GA-based algorithm as a

population-based algorithm; however, this newly introduced algorithm

employs a distinct fitness function and identifies stationary points based on

the principles of LDF, and it is experimental evaluation proven in this

10

work by comparing this proposed algorithm with PSO, DA, GA, WOA,

SSA, FDO, LPB, and FOX which has comparative results on others.

5. Finally, this dissertation introduces two new real-world applications that

address significant optimization problems and achieves a balanced

approach between different cases or phases.

1.4. Work Motivations and Objectives

A plethora of studies have been conducted in the realm of bio- or nature-

inspired metaheuristic algorithms, with a substantial number of effective

algorithms identified in the literature. Researchers are motivated by the

aspiration to enhance the exploration and exploitation capabilities of bio-

inspired algorithms, such as genetic algorithms. As a result, they actively

develop and propose novel genetic crossover operators. These operators are

crucial components of genetic algorithms and play a significant role in

generating new solutions by combining genetic information from different

individuals in the population. Thus, several motivations drive the effort to

generate new genetic crossover operators. For instance, one motivation is to

enhance the algorithm’s capacity to explore the search space more efficiently.

Additionally, addressing problem-specific characteristics enables the

algorithm to exploit the unique features of the problem at hand. Furthermore,

improving the algorithm’s performance can be achieved by incorporating

domain knowledge and maintaining diversity within the population.

Designing adaptive crossover operators becomes crucial to adapt to different

problem scenarios effectively. The continuous pursuit of integrating ideas

from algorithms like simulated annealing, PSO, or local search into new

crossover operators fuels the ongoing improvement of bio-inspired

algorithms, addressing diverse optimization challenges effectively.

11

Whenever evolving algorithms demonstrate comparable or superior

performance, they are always welcomed as viable alternatives. The

"Fundamental Theorem of Optimization" is a theory about optimization, as

stated by Ewen and Lessard in 2015, establishing the prerequisites for a point

to be a local minimum (or maximum) of a restricted optimization difficulty,

and improving existing optimization problems and creating new ones (Ewens

and Lessard, 2015).

As a result, no single global algorithm offers the most accurate or better

answer to every optimization problem and all real applications. For instance,

there is a reasonable possibility that optimization problem Y will work better

with an improved algorithm than on an old algorithm. This is if the new

algorithm performs better than the old algorithm with optimization problem X

and vice versa. Hence, this dissertation's objective is to propose novel

algorithms, named Leo, designed to facilitate real-world applications in the

pursuit of global solutions. It is inspired by the behavior of vaccines when it

comes to finding new immune systems.

As discussed, optimizing the diverse range of optimization problems

effectively remains challenging for a single algorithm. Encouraging results

from existing techniques have motivated researchers to propose novel

approaches with superior performance and problem-solving capabilities

compared to previous algorithms. Therefore, the primary objectives of this

achievement are preserved as follow:

• Introduce an innovative crossover operator utilizing the rejoining of

parent genes to generate unique genetic variations. This process aims to

be implemented in a new algorithm or enhance existing genetic

algorithms.

12

• Aims to propose a novel population-based evolutionary algorithm that

achieves a well-balanced trade-off between exploration and

exploitation while prioritizing superior performance and accuracy.

• Proposing new real-life applications to showcase the effectiveness and

practicality of optimization algorithms. The applications aim to validate

and refine the proposed algorithm’s performance and applicability to

diverse real-world scenarios.

1.5. Dissertation Map

The subsequent sections of the dissertation are organized in the following

manner:

i. Chapter two offers a thorough literature review, tracing the evolution of

search algorithms from their early versions in computing history. It also

provides an overview of standard operators used in population-based

algorithms, including genetic recombination.

ii. In Chapter three, the LPX standard operator, enhancing population-

based algorithms through genetic recombination, is introduced. The

section details the proposed Leo algorithms, inspired by the human

immune system, outlining the methodology. The theoretical description

precedes the programmatic simulation using pseudocode or graphics.

iii. Chapter four presents experimental evaluations and discussions. The

first part assesses LPX through heuristic evaluation, comparing it to

other crossover operators using LPB. The second part focuses on

testing the Leo algorithm on various benchmarks and real-world

applications, comparing results to other algorithms. Nonparametric

statistical tests are employed for analysis.

iv. Finally, chapter five reveals the final notes and further potentials of this

work. Because of their length and complexity, some created data are

presented in the appendix section via tables.

13

CHAPTER TWO

2. Background and Literature Review

This chapter serves as literature review by providing a complete explanation

of the history and theoretical background of pertinent earlier research. First,

we examine the history of population-based optimization to understand and

shed light on its origins. Then it looks at some genetic-based algorithms that

rely heavily on genetic operators. Furthermore, it explores the evolution of

several types of crossover strategies over time and makes comparisons

between them. Notably, we highlight some typical crossings that have

previously been utilized in algorithms. Furthermore, one can delve into the

history and background of classical single-objective algorithms and explain

the phenomena of cultural algorithms, which is central to this work. Finally,

we examine the capability of the immune system to manufacture vaccines

following vaccination, citing this process as a useful source of inspiration for

our work.

2.1. Population-Based Algorithm

A population-based algorithm is a computer strategy for solving optimization

or search issues that require preserving and evolving a population of

candidate solutions. It is a metaheuristic approach influenced by natural

evolution and social behavior principles. Thus, metaheuristics is obviously a

high-level, problem-independent optimization paradigm used to address

complex and difficult optimization issues. Metaheuristics function higher than

typical optimization techniques, which rely on explicit issue structures.

Metaheuristics are adaptable and can solve a variety of problems, including

those with nonlinear and non-differentiable objective functions, restrictions,

and discrete choice variables (Boussaïd et al., 2013). Furthermore,

metaheuristic is renowned for its capability to strike a balance between

exploration and exploitation. The exploration phase enables a wide search

14

across the solution space, while the exploitation phase focuses on fine-tuning

within favorable regions. Due to their adaptability, metaheuristics can

effectively avoid being confined to local optima and, instead, converge

towards global optima. This trait makes them valuable instruments for

uncovering near-optimal solutions to complex real-world problems (Zhou et

al., 2020). Because of their adaptability, metaheuristic algorithms have the

capacity to evade local optima and, instead, converge towards global optima.

This attribute renders them valuable tools in the pursuit of identifying near-

optimal solutions for intricate real-world scenarios.

Besides, a distinct collection of persons, agents, or genes, often considered as

solutions in a population-based algorithm, represent potential answers to the

problem at hand. These individuals proceed through a selection, crossover or

variation, mutation, and evaluation procedure to enhance the quality of the

solutions through generations (Boussaïd et al., 2013; Osuna-Enciso et al.,

2022). Typically, these algorithms initiate by creating a population of

randomly generated individuals. Each individual represents a potential

solution encoded in a suitable representation format, such as binary strings or

real-valued vectors. The performance or suitability of these individuals is then

quantified using an objective function or fitness metric. After the evaluation,

a selection method is employed to determine which individuals will progress

to the next generation. The selection process may involve various methods,

such as fitness proportionate selection, tournament selection, or other

techniques that prioritize individuals with higher fitness values (Boussaïd et

al., 2013).

In the initial step, individuals responsible for the next generation are selected,

and several operators are employed to generate offspring and promote

diversity within the population (Lyakhov et al., 2013). The most common

operator is crossover, where two or more individuals exchange information to

15

create creative solutions. Crossover can be executed in various ways, such as

one-point crossover, two-point crossover, or uniform crossover, depending on

the encoding scheme used for the individuals. This standard will be discussed

further in the next section (Kora and Yadlapalli, 2017). In addition to

mutation, another operator introduces random changes in individuals to

explore new regions. It supports preventing premature convergence and

promotes diversity within the population. It can involve flipping bits in binary

representations or introducing small perturbations in real-value

representations (McGinley et al., 2011). The selection, crossover, and

mutation process continue for several generations until a termination

requirement is granted. The termination criterion can be defined based on

different factors, such as the maximum number of iterations, the desired level

of solution quality, or the fulfillment of a predetermined stopping condition

(Gutierrez et al., 2019).

GA, ACO, and ABC are examples of population-based algorithms that have

demonstrated their efficacy in tackling various optimization problems,

including function optimization, parameter tuning, and combinatorial

optimization. They provide a flexible and robust framework for solving

complicated problems where traditional optimization techniques may be

difficult or impossible to implement (Bao et al., 2020). Metaheuristic

optimization encounters greater difficulty when dealing with problems

featuring fluctuating objective functions. In such cases, real-world search or

self-adaptive optimization methods are commonly employed. The search

technique utilized to address these challenges must possess the adaptability to

effectively handle the dynamic changes in the objective function during the

optimization process (Beyer and Deb, 2001). The effective challenge with

population-based optimizers is that after identifying a locally optimal

solution, it becomes essential to implement diversity-preserving strategies.

16

These approaches can include using a substantial level of crossover or

incorporating a clustering operator to maintain diversity within the

population. As a result, most metaheuristic optimization methods have been

refined and enhanced (Mirjalili et al., 2017). In addition, several efficient

methods have been presented and improved in several special types of

research for improving novel optimizers based on gene crossing.

Alternatively, the proposed algorithms are always considered, provided they

offer novel enhancements or achieve results that are comparable to existing

methods.

One of the most well-known population-based algorithms is GA. John

Holland devised and implemented this population-based search algorithm in

the 1960s and 1970s. The GA mimics certain evolutionary processes based on

Charles Darwin’s evolution theory: Selection, fitness, reproduction,

crossover, and mutation are all factors to be considered (Sivanandam et al.,

2008). GAs have found applications in diverse optimization problems,

ranging from function optimization to scheduling and machine learning.

ACO, on the other hand, takes inspiration from ant foraging behavior, relying

on the indirect communication between ants through chemical pheromone

trails. A population of artificial ants is used in ACO, which deposits

pheromones on paths to guide the search process effectively (Jalali et al.,

2005). ACO has been extensively employed in addressing combinatorial

optimization problems such as the traveling salesman problem and vehicle

routing challenges. On the other hand, DE is another population-based

optimization algorithm that operates with real-valued vectors. It also evolved

the population through a combination of mutation, crossover, and selection

procedures. DE has proven to be useful in tackling continuous optimization,

parameter estimation, and function approximation (Wong and Dong, 2005).

Cultural Algorithm (CA) is a population-based algorithm that combines

17

genetic algorithms with cultural learning mechanisms. It incorporated cultural

knowledge, such as beliefs, traditions, and norms, into the evolutionary

process. This cultural knowledge guided the evolution and adaptation of

individuals in the population (Kuo and Lin, 2013). CA has been utilized in

diverse problem domains, encompassing applications in classification, data

mining, and optimization. At last, a novel population algorithm, called the

LPB algorithm, falls under the category of EAs. This algorithm employs a

population of individuals, often referred to as solutions, and undergoes

selection, crossover, and mutation operators stimulated by natural evolution

(Rahman and Rashid, 2021).

These examples are only a few examples of population-based algorithms

proposed and discussed in the literature. Each algorithm has its own

characteristics and is suitable for different types of problems. Researchers

continue to propose and develop various population-based algorithms to

address various real-world optimization challenges. In this basic, this study

investigates the interplay between bio-inspired algorithms and EAs in the

context of complex mathematical functions. Specifically, it explores the

relationship between these two processes using population-based algorithms.

The virus optimization algorithm was initially proposed by Liang and

Cuevas-Juarez in 2016, and later, Liang et al. further improved it (Liang and

Juarez, 2016). Similar to many other metaheuristics, the effectiveness of its

application heavily depends on its initial configuration.

2.2. Crossover Overview

Combinatorial optimization stands out as a prominent research area within

artificial intelligence, attracting multiple projects each year. To enhance

strategic metaheuristic algorithms, these projects adopt a knowledge-based

crossover mechanism that focuses on the solution structure rather than its

coding (Osaba et al., 2014). Consequently, a group of optimization

18

algorithms, influenced by natural events and animal intelligence, is classified

as evolutionary nature-inspired metaheuristic algorithms. Therefore, they can

be considered as nature-inspired algorithms, and the examples discussed in

the previous section represent instances of population-based algorithms.

Nature-inspired computing, a prominent field in computer science, finds

application and relevance in optimization algorithms, computational

intelligence, data mining and machine learning (Yang, 2018). This section

primarily centers on the creation and assessment of crossover operators and

their impact on metaheuristic algorithms. Crossover, also referred to as

recombination, represents a genetic operator in which the genetic codes of

two parents are utilized to generate offspring (children). Furthermore, the

crossover technique is seen as a vital means to stochastically generate novel

solutions from the existing population. These crossover operators play a

significant role in maintaining a balance between exploitation and

exploration, allowing for feature extraction from both parent chromosomes or

genes. The ultimate aim is to produce offspring with advantageous qualities

inherited from both parent chromosomes (Hassanat and Alkafaween, 2017).

Throughout the years, numerous forms of crossover have been developed, and

comparisons between different types have been suggested. It all began with

one-point crossover and has since evolved to encompass a variety of

techniques catering to different conditions, including uniform crossover (Bäck

et al., 2018). Various crossover operator standards have been established

based on the mathematical distribution. These standards determine the forms

of binary, real-coded, floating-point, and order-coded crossover. Similarly,

different standards have been defined for permutation-based problems like the

Traveling Salesman Problem (TSP). When using evolutionary algorithms to

address the TSP, various representations such as binary, route, closeness,

ordinal, and vector are considered. In an effort to reduce the overall distance,

19

researchers have proposed an enhanced crossover operator for the TSP

(Hussain et al., 2017). In 2010, another research study demonstrated that

sequential constructive crossover (SCX) was a successful method for solving

the TSP. The core concept of this approach involves selecting a random

crossover point and applying the SCX technique to enhance edges before this

point. After the crossover site, the remaining chromosomes are exchanged

between parents to generate two offspring. In the process, any duplicated

chromosomes are replaced with unoccupied ones (Ahmed, 2010). Also, Ring

Crossover (RC) emerged as an innovative solution to the recombination

problem. In this unique approach, parents were brought together in a circular

arrangement, and an element of randomness was introduced by selecting a cut

point at random. The circular process was thoughtfully designed with the

parents’ interactions in focus, and the slice point was chosen in a spontaneous

manner (Kaya and Uyar, 2011). Nevertheless, when it comes to evolutionary

algorithms striving to maximize the ordering of an extensive series, the need

for specific crossover operators becomes evident to steer clear of erroneous

outcomes. While it is impractical to enumerate all such operators, Table (2-1)

presents several exemplary crossovers, each meticulously crafted to cater to

distinct global solutions.

During implementation, crossover strategies are frequently classified

according to how the gene is represented; the genetic sequence is stored as

either a bit matrix or an actual code on the chromosome, depending on the

algorithm. Both conventional and illustrative examples of crossover methods,

such as genetic recombination, are extensively explained in the following

sections. Numerous contemporary techniques guarantee that these strategies

can be employed to enhance global numerical optimization and address

current practical problems, as demonstrated by recently proposed

metaheuristics, likes moth search algorithm (MSA) (Wang, 2018),

20

Table 2-1 Standard Crossovers Generation Overview

No.
Standard Crossover Operator

Name

Initial

Abbreviation
Standard Category Related Work

1 Order Crossover OX1 exchanging segments (Hussain et al., 2017)(Dey, 2017)(Puljić and Manger, 2013)

2 Sequential Constructive SCX exchanging segments (Ahmed, 2010)

3 Order-Based Crossover OX2 - OBX exchanging segments (Dey, 2017) (Umbarkar and Sheth, 2015)

4 Maximal Preservation Crossover MPX exchanging segments (Umbarkar and Sheth, 2015)(Pongcharoen et al., 2001)

5 Alternating Edges Crossover AEX exchanging segments (Puljić and Manger, 2013)(Pongcharoen et al., 2001)

6 Edge Recombination Crossover ERX exchanging segments (Dey, 2017)(Puljić and Manger, 2013)

7 Position-Based Crossover POS mathematical segments (Dey, 2017)(Umbarkar and Sheth, 2015)(Gain and Dey, 2020)

8 Voting Recombination Crossover VR mathematical segments (Dey, 2017)(Umbarkar and Sheth, 2015)

9 Alternating Position Crossover AP mathematical segments (Dey, 2017)(Larranaga et al., 1999)

10 Automated Operator Selection AOS mathematical segments (Hilding and Ward, 2005)

11 Complete Sub-tour Exchange CSEX exchanging segments (Umbarkar and Sheth, 2015)(Katayama et al., 2000)

12 Double Masked Crossover BMX exchanging segments (Umbarkar and Sheth, 2015)(Patel et al., 2001)

13 Fuzzy Connectives Based FCB fuzzy rule exchanging (Thapatsuwan et al., 2006)(Herrera et al., 1997)

14 Unimodal Normal Distribution UNDX mathematical segments (Ono, 1997)[(Kita et al., 1999)

15 Discrete Crossover DC mathematical segments (Bosch, 2007)

16 Arithmetical Crossover AC mathematical segments (Kaya and Uyar, 2011)(Herrera et al., 1997)(Tawhid and Ali, 2016)

17 Average Bound Crossover ABX mathematical segments (Ling and Leung, 2007)

19 Heuristic Crossover HC heuristic rule exchanging (Hussain et al., 2017)(Ackora-Prah et al., 2014)

20 Parent Centric Crossover PCX mathematical segments (Umbarkar and Sheth, 2015)(García-Martínez et al., 2008)

21

slime mould algorithm (SMA) (Li et al., 2020), hunger games search (HGS)

(Yang et al., 2021), harris hawks optimization (HHO) (Heidari et al., 2019),

and colony predation algorithm (CPA) (Tu et al., 2021). Consequently, there

is a need to introduce innovative criteria for advancing evolutionary

algorithms.

2.3. Optimization Problem Algorithms

Optimizing an operation is reducing or maximizing an objective function by

assigning suitable values to variables from a population of viable values.

Optimization problems appear in more of our daily activities than they do in

composite science concerns. For example, individuals travel to a location in

several directions. Using an objective function for reducing fuel consumption,

trip time, etc., the decision in the most logical direction may be obtained. As

mentioned, the exploration of nature-inspired metaheuristic algorithms dates

back to the 1960s when it was commenced at the University of Michigan

(Gandomi and Yang, 2012) .

Nevertheless, the field has seen numerous significant improvement signals

during the last two decades. S. Kirkpatrick, C. D. Gellar, and M. P. Vecchi

developed simulated annealing (SA), an algorithm inspired by metal

annealing. Additionally, the significance of swarm intelligence approaches,

which emulate the collective intelligence of natural swarms, groups, schools,

or flocks of animals, has been well-established in the realm of optimization

strategies. In 1989, Gerardo Benny and Joon Wang brought the concept of

swarm intelligence to cellular robotics systems. This breakthrough paved the

way for significant growth in the field, and the topic gained widespread

popularity as a result (Shebin S and Mallikarjunaswamy S, n.d.).

Accordingly, various instances of microbiological intelligence have been

observed, including ant colonies, bee colonies, bird flocking, eagle hunting,

22

mammal herds, bacterial development, fish schooling, and microbial

intelligence. These algorithms draw inspiration from the biological expertise

or collective behaviors exhibited by organisms. Remarkably, some creatures

can ensure the survival of their colony without the need for a centralized

control system. In such cases, organisms forage for food individually, even

when far from their nests or hives, without any external direction on where to

begin or how to search efficiently. Both Swarm intelligence (Kennedy, 2006)

and evolutionary sophistication (Jeong et al., 2015) incorporate meta-heuristic

algorithms, with EAs emulating the principles of evolution found in nature.

Among all the algorithms in this category, the GA is widely recognized as the

most effective and highly regarded (Melanie, 1999), which rooted in

simulating the Darwinian theory of evolution, draws inspiration from the

concepts of natural selection and genetic variation (Fogel, 1994).

Moreover, the algorithms most extensively utilized in this context are fitness

dependent optimizer (FDO) (Abdullah and Ahmed, 2019), salp swarm

algorithm (SSA) particle swarm optimization (PSO) (Kennedy and Eberhart,

1995), the cuckoo search (CS) (Yang and Deb, 2009), and FOX-inspired

optimization algorithm (Mohammed and Rashid, 2023). To find the shortest

route from a food source to the nest or hive, the ACO and FDO algorithms

mimic the interactions of ants and bees. The PSO algorithm, on the other

hand, models the navigation and hunting behavior of bird groups. Other

swarm intelligence methods described in the literature include: artificial bee

colony (Karaboga et al., 2014), cat swarm optimization (Chu et al., 2006),

grey wolf optimizer (Mirjalili et al., 2014), and moth-flame optimization

(Mirjalili, 2015). As a result, swarm intelligence finds applications in various

fields such as anthropology, industry, technology, and basic research.

In a vector-based approach, several algorithms outperform GA in various

applications. Later on, in 2001, Zong WooGeem et al. introduced the

23

harmony search (HS) algorithm, which has been effectively utilized to solve

various optimization problems, including transport models and water

distribution (Geem et al., 2001). The honey bee algorithm was created in 2004

by C. Tovey and S. Nakrani. They utilized it to optimize Internet hosting

centers (Nakrani and Tovey, 2004). A year later, in 2005, D. Karaboga et al.

introduced the ABC algorithm. Subsequently, in 2010, Xin-She Yang

proposed a bat-inspired algorithm (Yang, 2010). The dragonfly algorithm

(DA) (Meraihi et al., 2020) was proposed in 2015 by Mirjalili A. S., which is

PSO-based algorithm inspired by the dragonfly swarm behavior of attraction

to food and adversary distraction. Later, in 2016, the whale optimization

algorithm (WOA) was also announced (Mirjalili and Lewis, 2016).

Also, Lagrange multipliers, named in honor of Joseph-Louis Lagrange, offer a

solution to constrained optimization problems. These problems entail seeking

the maximum or minimum value of a function while satisfying one or more

constraints. By using the method of Lagrange multipliers, the constraints can

be integrated into the objective function, ultimately leading to the discovery

of the optimal solution (Naidu, 2002). The Lagrangian dual approach is a

widely used technique for resolving optimization problems, and its

applicability has been extended to address Bilinear Matrix Inequalities

(BMIs) (Tuan et al., 2000).

According to medical-based, vaccination optimization algorithms are

computer approaches used in bio-inspired situations to improve the efficiency

and efficacy of vaccination programs. These algorithms seek to enhance the

overall effect and advantages of vaccination programs by optimizing different

parts of the vaccination process (Matrajt et al., 2021). These parts include

vaccine allocation, distribution, scheduling, and prioritizing. They can help

policymakers, healthcare providers, and public health authorities create and

implement efficient and targeted vaccination regimens, contributing to

24

infectious disease control and prevention. Healthcare optimization algorithms

are computational methods used to improve healthcare delivery efficiency,

quality, and cost-effectiveness. These algorithms seek to improve overall

healthcare system performance by optimizing many areas of healthcare

operations. These areas include medical resource allocation, decision-making,

immune system care, and patient care. The bed management model based on

GA has been generated which is a good example of algorithm (Belciug and

Gorunescu, 2016).

The domain of nature-inspired metaheuristics presents numerous intricate

challenges and applications that are beyond the scope of conventional

solutions in terms of time and processing cost (Dhal et al., 2019). When

dealing with problems that involve space complexity or a large number of

variables, traditional methods or direct search techniques are often employed.

However, in such situations, fundamental algorithmic modifications may be

necessary to effectively address the challenges at hand (Arcuri and Briand,

2011). To tackle noisy objectives effectively, the application of efficient

stochastic optimization techniques is essential. In this context, the focus is on

stochastic single-objective optimization in high-dimensional parameter

spaces. For such cases, using higher-order optimization techniques is not

appropriate; hence, our discussion will be limited to first-order optimization

methods. Over time, numerous researchers have explored and refined these

algorithms, seeking to enhance their performance and leverage them to

address a wide array of problems across different domains (Xu et al., 2021).

In addition, there are problems with only one objective, known as single-

objective problems. MOO problems refer to situations where there are

multiple objective functions to be optimized simultaneously. In such cases, a

set of conflicting objectives exists, making it challenging to achieve optimal

solutions that satisfy all objectives simultaneously. However, this work did

25

not focus on multi-objective optimization. The objective functions are subject

to several minimization or maximization constraints, or both. To solve SOO

problems, various algorithms and techniques can be employed, including

gradient-based methods as discussed. The objective function can take various

forms, such as linear, non-linear, continuous, or discrete, depending on the

problem at hand. The constraints, if present, impose additional conditions on

feasible solutions. The selection of the appropriate optimization algorithm

relies on various factors, including the nature of the problem (e.g.,

smoothness and convexity of the objective function), the complexity and

dimensionality of the search space, the existence of constraints, and the

available computational resources. These considerations help in determining

the most suitable algorithm to efficiently and effectively address the

optimization task at hand. This approach represents an unbiased method for

discovering the best possible solution that meets the prerequisites of the

problem while maximizing the value of the objective function to its fullest

potential. Besides, in the realm of bio-inspired algorithms, not all are strictly

derived from biological systems; some are rooted in principles of physics and

chemistry. Many of these bio-inspired algorithms do not directly rely on

swarming behavior. Due to this distinction, the term "bio-inspired" is favored

over "swarm intelligence-based." For example, genetic algorithms draw their

inspiration from nature but are not inherently related to swarm intelligence.

Differential search algorithm (DSA) (Civicioglu, 2012) and differential

evolution (DE) algorithm (Qin and Suganthan, 2005) are two algorithms that

present a challenge in terms of classification. DE, in particular, cannot be

considered biologically inspired in the true sense of the word, as it lacks an

obvious connection to any biological function.

26

2.4. Vaccination-Induced Immune System

The immune system serves as the body’s defense against infections. When

viruses or bacteria enter the body, they start to infect and multiply, causing an

invasion known as an infection. However, the immune system counters this

invasion by deploying white blood cells to attack and neutralize the infectious

agents (Abbas, 2020). As indicated in Figure 2-1 (Eli Benjamini et al., 2000),

the majority of white blood cells in the immune system are comprised of

macrophages, B-lymphocytes, and T-lymphocytes. B-cells are responsible for

attacking intruders from outside the cells, while T-cells target infected cells.

Macrophages play a crucial role in the immune system by absorbing foreign

objects and activating an immune response, aiding in the elimination of

invaders from the body (Abbas, 2020).

When assessing the effectiveness of the immune system, it is crucial to take

into account the albumin quotient in human blood serum. To demonstrate that

the immune system is functioning well, Immunoglobulin G (𝐼𝑔𝐺) levels

should be within the restricted range and show an increasing trend. If the

albumin quotient (𝑄𝐴𝑙𝑏) is declining rapidly while serum albumin

(𝐴𝑙𝑏serum) is rising significantly, it indicates that the blood level of 𝐼𝑔𝐺 is

increasing and falls within the normal range, while the presence of albumin in

cerebrospinal fluid (𝐴𝑙𝑏𝐶𝑆𝐹) influences the albumin quotient (𝑄𝐴𝑙𝑏). (Reiber,

2003). In such cases, individuals demonstrate a high albumin quotient (𝑄𝐴𝑙𝑏),

which suggests that humans have developed a modality-immunity system

according to the function equation (2.1) proposed by (Andersson et al., 1994).

 𝑄𝐴𝑙𝑏 =
 𝐴𝑙𝑏𝐶𝑆𝐹

𝐴𝑙𝑏𝑠𝑒𝑟𝑢𝑚
 2.1

27

i- Innate Response (After Hours) ii- Adaptive Response (After Date)

Fig. 2-1 Response cells of the innate and adaptive immune systems. (Macrophages, B-lymphocytes

and T-lymphocytes) (Eli Benjamini et al., 2000)

Even when someone is still sick, behavioral traits and infectious diseases can

spread through social interactions, especially during the rapid spread of the

COVID-19 epidemic over the years. To curb this expansion, effective

vaccinations have become necessary to maintain human immunity.

Vaccinations work to naturally strengthen the immune system, helping it

combat illnesses and reduce their effects. These technologies play a crucial

role in preventing the spread of diseases among groups, as individuals often

copy their social connections when forming vaccination preferences. This

research involves investigating the relationship between these two processes

by utilizing bio-inspired algorithms and evolutionary algorithms based on

complex mathematical functions as a population-based approach.

Existing models inadequately handle the clustering of vaccination practices

within a group, assuming an even distribution of individuals, leading to

inaccuracies. Consequently, the concentration of anti-vaccination attitudes

can lead to disease outbreaks by compromising protective immunity

(Nuwarda et al., 2022)(Ndeffo Mbah et al., 2012). To study the impact of

imitation dynamics on vaccination rates and disease outbreaks, algorithms

28

create models that determine the optimal global decision by replicating

individual behavior to create a highly effective immune system for human

vaccination. However, it is essential to note that various vaccinations function

in different ways to confer protection. For example, COVID-19 vaccines aid

in disease prevention by helping our bodies develop immunity to the COVID-

19 virus. Different vaccine types, such as 𝑚𝑅𝑁𝐴𝑠, viral vectors, protein

subunits, and inactivated vaccines provide protection in diverse ways

(Lundstrom, 2020). Once administered, all vaccines are eventually eliminated

from the body, but they leave behind a pool of "memory" T-lymphocytes and

B-lymphocytes that have the ability to counter the virus in the future. This

process strengthens the immune response by increasing antibody production

and generating memory cells that can identify and respond to the actual virus

if the body becomes infected. Figure 2-2 visually depicts the sequential steps

involved in developing an immune defense system against spike proteins

(Fang et al., 2022).

Fig. 2-2 example of spike protein (mRNA) vaccine cycle life. (Fang et al., 2022)

29

CHAPTER THREE

3. Research Methodology and Design

This work concerns two linked issues, which are discussed in two sections in

this chapter. The first section provides an innovative standard generated from

several mathematical evaluation processes, which incorporates recently

developed methods. This section focuses on the effect of real-coded standard

operators on mathematical distribution, and population-based algorithms,

exploring inspiration from genetic and biological properties and introducing

LPX. These insights are then integrated into the algorithmic structure of the

proposed approach, aligning both algorithmic and biological aspects. The

second half of this work introduces Leo by offering a thorough mathematical

explanation via a set of connected equations and various sequence operators.

The practical implementation of Leo is then depicted via pseudocode, as well

as extensive explanations. The degree of information in these sections is

intended to aid other researchers in replicating our work. This is done by

assuring clarity and accessibility in understanding and copying our strategy.

3.1. Inspiration and Exploration of Genetic Recombination

Genetic recombination is the process of exchanging genetic material across

distinct gene molecules or chromosomes. It is essential for biological

diversity and evolution. In genetic recombination, gene segments (genomes)

are swapped, resulting in novel genetic material combinations. As previously

mentioned, several standard operators have been covered in earlier chapters,

and these operators have emerged after John Holland’s proposal of the GA in

the 1970s (Sivanandam et al., 2008). Subsequently, several population

algorithms have been introduced, with a notable focus on achieving a

balanced combination of exploitation and exploration phases to improve

fitness and overall performance. Correspondingly, the DNA recombination

30

phenomena have long been a source of fascination and research in a variety of

domains, including genetics, evolutionary biology, and biotechnology. These

have been inspired by genetic recombination mechanics and effects, resulting

in advances in a variety of fields. Plant and animal breeding, recombinant

DNA technologies, evolutionary, genomic, and synthetic biology, and body

systems are all areas of study (Nicholl, 2023).

The exploration of optimal solutions in metaheuristic or inspiration

algorithms revolves around generating novel members from existing ones.

The crossover process facilitates the exchange of genetic codes between

parent individuals, resulting in offspring that may possess exceptional genetic

traits inherited from their parents. The study delves into a plethora of

crossover techniques, urging researchers to delve into whether the most

effective standard strategy has been refined and embraced or not. As

highlighted, the crossover operator can be likened to a powerful combination

of multiplication and biological recombination (Takahashi and Kita, 2001).

According to the data, it is evident that the selection of more than one genome

is essential, and children are generated using genetic codes represented by sky

blue balls on the parents’ chromosomes. Additionally, two more children are

produced using two derived offspring genes depicted as dusty pink balls.

Figure 3-1 visually presents the probabilistic scale, illustrating the range of

potential offspring in a two-dimensional constrained real space between x and

y dimensions through the application of a box crossover between genes and

new offspring.

Fig. 3-1 Significant probability in the real-coded crossover

31

3.2 Crossover Operator Technique

3.2.1. Mathematical Distribution Crossover

Crossover is a widely used operation in metaheuristic algorithms, with a

significant emphasis on its implementation in GA; especially in cases

involving real-coded or binary-coded algorithms. Crossover plays a crucial

role, making it challenging to achieve desirable results without its utilization

(Herrera et al., 2005). Therefore, the introduction of crossover probability

serves the purpose of preserving genes from the parents, even if the offspring

may not outperform them. Crossover methods can be categorized into three

groups. The first category encompasses binary crossover techniques, while

the second category comprises real-coded or floating-point crossovers.

Finally, the third category includes order-coded crossovers.

The first category of crossover operators comprises a wide range of

techniques used in binary representations for metaheuristic algorithms.

Enhancements to previous results demonstrate the effectiveness of most of

these crossovers in addressing current challenges. Some crossover standards

are practically implemented, and interesting comparisons between them are

also highlighted. In traditional genetic material storage, genes are represented

as bit strings in various methods. Crossover procedures for bit-order are

prominent, including examples like binary single-point crossover, double-

point or n-point crossover, uniform crossover or half-uniform crossover,

uniform crossover with crossover mask (UCM), shuffle crossover (SHX)

(Haldurai et al., 2016), and three-parent crossover (TPX) (Zhang et al., 2017)

and qubit-crossover (Qubit-X) (Zamani et al., 2021).

The UCM operator divides the matrices into several non-overlapping ones,

and the logical operator generates a matrix known as the crossover mask

(CM) based on this control. A binary crossover mask is derived from protocol

rules using the UCM operator to determine which genes are transferred

32

between the parent individuals. Genes with mask bits set to (1) are copied

from the first parent, while genes with mask bits set to (0) are copied from the

second parent. This allows for a diverse mix of genetic material between the

parents, promoting exploration of the search space by evolutionary

algorithms.

In the TPX (Three-Parent Crossover) (Zhang et al., 2017) operator, various

probability rate algorithms are used to generate innovative offspring from

three parent genes, as per the prior solution approach. The calculation of

future generations involves deliberate offspring generated by swapping genes,

and this process is illustrated in Figure 3-2, highlighting the problems

encountered during this operation, as described in the general pseudocode. It

describes a process to generate three offspring (Offspring1, Offspring2, and

Offspring3) from a combination of three parents (Chromosome 1, 2, and 3).

The goal is to create new individuals by selecting bits from the parent

chromosomes based on specific conditions. The offspring are generated based

on certain bit-wise conditions between the parents. The process continues for

additional offspring following the specified conditions. Additionally, the

specific conditions provided in the pseudo code can be extended or modified

to suit the requirements of the genetic algorithm or evolutionary process being

implemented.

Furthermore, the second category of crossovers involves real-coded or

floating-point structures. In these representations, the genes are real-valued

without the need for encoding or decoding into binary form, which speeds up

the process. Although less intuitive than binary representations, crossover

with floating-point formats has shown to perform as well as, if not better than,

regular binary strings. Therefore, there is no need to worry about algorithm

efficiency when using floating-point encoding.

33

Fig. 3-2 Pseudocode and example to explain TPX deliberation

Numerous real-coded crossover techniques have been developed. These

methods involve effectively adjusted real-coded crossover operations that

utilize the likelihood function to generate highly diverse sequences, offering

potential alternatives to solutions. For instance, the real single-point crossover

is analogous to a binary single-point crossover, where two chromosomes are

combined, and a real number is assigned for each gene at the crossover point

(Herrera et al., 2005). Also, two-point, three-point, and n-point crossovers can

also be applied to real-coded representations. In these situations, two genes

are crossed, and real numbers are swapped, producing two new offspring.

Besides, various crossover techniques are mathematically described in the

following sections, including single arithmetic crossover, whole arithmetic

crossover, and linear crossover.

Blended Crossover (BX) (Abido, 2006) is considered one of the highly

effective crossovers that has shown improvements in various algorithms. If

we have a pair of chromosomes with two parameter values, 𝐺1 as standard of

𝑋1 and 𝐺2 as a standard of 𝑋2, where 𝐺1 as is smaller than 𝐺2, the blended

34

crossover method generates an offspring within a certain range

[𝐺1 – 𝛼 (𝐺2 – 𝐺1), 𝐺2 + 𝛼 (𝐺2 – 𝐺1)].

In cases where 𝛼 is a constant to be determined, the offspring solutions

remain within the bounds of the non-variable. This concept is illustrated in

Figure 3-3 using a mathematical example, indicating that the number is equal

to 2, 𝐺1 = 0.13 < 𝐺2 = 0.94, so calculate the range by

[𝐺1 – 𝛼 (𝐺2 – 𝐺1), 𝐺2 + 𝛼 (𝐺2 – 𝐺1)]; when 𝛼=0.5 the [−275, 1.345],

indeed, 𝐺1 and 𝐺2 are randomly selected from within the given range. This

random selection ensures variability in the offspring and allows for

exploration in the solution space. Also, to maintain a balance between

exploring and exploiting the search space (Hamid et al., 2011).

Fig. 3- 3 BX for second Genes by the range calculation

The method could not provide a global solution if applied to the preceding

range, as demonstrated in numerous improvement algorithms. Researchers

have proposed a novel approach to BX method, which involves computing

the parameter using two random numbers, denoted integer as 𝑟 and the real

line as α , within the range (0.0, 1.0). This random number 𝑟 is then used in

the revised blend formula as the incomplete gamma (γ) type function in

(equation 3.1) to determine the condition for the BX standard (Deep and

Thakur, 2007). The incomplete gamma type function

 γ = (1 + 2α) ∗ r − α (3.1)

The offspring solutions 𝐺𝑒𝑛𝑒1 and 𝐺𝑒𝑛𝑒2 are determined by the parents

according to equations (3.2) and (3.3) (Deep and Thakur, 2007).

Gene1 = (1 − γ) ∗ 𝐺1 + γ ∗ 𝐺2 (3.2)

Gene2 = (1 − γ) ∗ 𝐺2 + γ ∗ 𝐺1 (3.3)

To apply a standard crossover operation uniformly across various algorithms,

the simulated binary crossover (SBX) is commonly used and preferred. SBX

35

is specifically designed for real-coded parameters and does not involve a

mutation operator. It is an extension of the single-point crossover and can also

be utilized with multi-point crossover techniques. This approach centers on

the probability distribution of potential offspring (genes) generated from the

given parents (genes) as demonstrated in equations (3.4) or (3.5) (Carlos and

Azevedo, 2011) and SBX first calculates the number of offspring using

formulas (3.6) and (3.7) (Deb and Beyer, 2001). Nonetheless, equations (3.4)

and (3.5) operate similarly to the evaluation of equation (3.6) and (3.7), with

the subsequent example employs formulas (3.6) and (3.7), and enhance the

last two formulas proposed by Azevedo (Carlos and Azevedo, 2011), which

are widely employed in practice. To calculate the float number resulting from

the crossover, the process begins by selecting a random number µ ~ (0, 1).

Then, α is computed, and the offspring is generated using the calculated α.

Gene1 = 0.5[(1 + α𝑖)𝐺1 + (1 − α𝑖)𝐺2] (3.4)

Gene2 = 0.5[(1 − α𝑖)𝐺1 + (1 + α𝑖)𝐺2] (3.5)

Gene1 = 0.5[(𝐺1 + 𝐺2) − α𝑖|𝐺2 − 𝐺1|] (3.6)

Gene2 = 0.5[(𝐺1 + 𝐺2) + α𝑖|𝐺2 − 𝐺1|] (3.7)

The calculation of (α𝑖) functions in equations (3.8) and (3.9) is dependent on

the two-preceding offspring. Eta (𝜂) represents the index of a user-defined

distribution, where 𝜂 is a positive value chosen by the user, indicating the

number of parameters selected.

α𝑖 = {
(2𝜇)

1

η+1, 𝑖𝑓 𝜇 < 0.5

(
1

2(1−𝜇)
)

1

η+1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.8)

Utilize the probability distributions to compute the function of Alpha (α𝑖).

α𝑖 = {
0.5(η + 1)𝛼η, 𝑖𝑓 𝛼 ≤ 1 (Contracting Crossover)

0.5(η + 1)
1

𝛼η+2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (Expanding Crossover)

 (3.9)

When selecting the second gene as a parent 1 and 2 from Figure 3-4 will

produce two new offspring genes, we need to find (α𝑖) if 𝜇 = 0.4 from

36

formula (3.9) and the user chooses two parameters (𝐺1 and 𝐺2), the

calculation is executed as follows:

 α = (2 ∗ 0.4)
1

2+1 = 0.928

𝐺𝑒𝑛𝑒1 = 0.5[(0.13 + 0.94) − 0.928|0.94 − 0.13|] = 0.1592

𝐺𝑒𝑛𝑒2 = 0.5[(0.13 + 0.94) + 0.928 ∗ |0.94 − 0.13|] = 0.9108

The second offspring, with a value of 0.9108, falls outside the expected

probability distribution range. This discrepancy indicates that occasionally the

offspring gene results surpass the intended range due to the probabilistic

nature. The issue arises when the updated gene's impact is intended to be

larger than the original, but, in this instance, the updated gene is smaller.

Fig. 3- 4 SBX for the second Genes

The third classification of problem techniques includes order-coded crossover

methods. This category focuses on the fundamental types of order-coded

crossovers. Partially mapped crossover (PMX) (Desjardins et al., 2017) and

the cycle crossover operator (CX) (Hussain et al., 2017) are two method

examples of this type of operator.

The second parent chromosome determines the number of cycles between two

parents. This method is suitable for numerical strings where each component

occurs only once, ensuring that each index point in the offspring has a value

from one of its parents. According to CX, Figure 3-5 proves the generation of

the first offspring planet using the pseudocode when the random cycle

contains the numbers (2, 5, 7, 6, 11). Also, the pseudocode outlines a process

for generating two offspring, Offspring1 and Offspring2, based on certain

conditions involving two genomes, Genome1 and Genome2, within a cycle. It

essentially decides which genome to select for each offspring based on

whether the respective genome is part of the cycle or not. This selection

37

process helps generate diverse offspring by considering the presence or

absence of each genome in the cycle.

 Fig. 3-5 CX operator progressive

3.2.2. Lagrangian Problem Crossover Operator

Population-based algorithms have used binary and real code numbers

crossover operators. However, Crossover standards generally have strengths

and weaknesses. The main purpose of validating the crossover standards is to

introduce and showcase a unique crossover technique. This section is devoted

to providing a novel generated category to help enhance and generate novel

algorithms. Crossover operators assume varying levels of responsibility in

achieving global convergence rapidly. The recommended technique is based

on LDF (Ouattara and Aswani, 2018) for gene crossings. Thus, several

reasons are involved in generating a novel LPX operator. Similarly, the

Lagrange dual problem is crucial because, under certain conditions (like

convexity), it provides a lower bound on the optimal value of the primal

(original) optimization problem. This relationship is established through the

Lagrange duality theory. The LDF is a key concept in optimization theory that

plays a fundamental role in establishing relationships between the primal and

dual optimization problems, shedding light on the optimal solutions and

38

providing insights into the nature of the original constrained optimization

problem.

In cases where input values are constrained which can be equality or

inequality conditions that the solution must adhere to, the Lagrange multiplier

technique can be employed to determine the maximum or minimum of a

multivariable function (Lin et al., 2010). Inspired by the Lagrange multiplier

and LDF approaches, LPX endeavors to generate offspring that significantly

deviate from each parent, setting it apart from other conventional operators.

The primary objective of LPX is to identify regions where the contour lines of

the multivariable function closely align with the input space. Besides,

the Lagrange multiplier technique is employed to convert the constrained

population-based optimization problem into an unconstrained one, allowing

for the optimal solution to be obtained as a reference point in the crossover

standard. Additionally, optimization with the Lagrangian method explores the

application of Lagrange multiplier methods to achieve both local and global

convergence in constrained minimization or maximization problems.

The utilization of the Lagrange multiplier method is observed in identifying

local maxima and minima of a function while considering equality constraints

or requirements. The relationship between the function’s gradient and the

gradients of the constraints naturally formulates the global problem, known as

the Lagrangian Function. Points in proximity to these slopes may play a role

in generating new genes within the specific chromosome.

As indicated in the preceding discussion, Figure 3-6 depicts an objective

function denoted as 𝑓(𝑥, 𝑦), which needs to be optimized while being subject

to the constraint 𝑔(𝑥, 𝑦) = 𝑐. The Gradient 𝛻𝑓(𝑥, 𝑦) acts like a compass at

each position (𝑥, 𝑦), guiding the way for the function 𝑓 to ascend most

effectively. As long as the point keeps moving in this direction, 𝑓 will

continue to climb along the steepest path. The gradient function calculated at

39

a specific location (𝑥, 𝑦) provides a vector that stands perpendicular to the

contour line traversing through that point. As the exploring point ascends

along the gradient vector’s peak, it must always stay on the constraint curve

𝑔(𝑥, 𝑦) = 𝑐. In simpler terms, the solution can only move in directions that

are tangents to this constraint curve. These tangent values remain consistent

throughout the constraint curve 𝑔(𝑥, 𝑦) = 𝑐 since they are perpendicular to

the gradient of the constraint function 𝑔.

The Gradient Vector serves as the watchful guide to the optimizer’s journey

on the surface of 𝑓 while following the constraint curve 𝑔(𝑥, 𝑦) = 𝑐. It

ensures that the solution point keeps ascending in 𝑓 even when it ventures

along a direction indicated by the non-trivial component of the Gradient

𝛻𝑓(𝑥, 𝑦). However, if the gradient only flows in a direction perpendicular to

the Gradient 𝛻𝑓(𝑥, 𝑦), the solution can be moved orthogonally to the gradient

only once. In this scenario, the solution has reached a local maximum, where

both gradients of 𝑓 and 𝑔 point in the same general direction.

Fig. 3-6 The Lagrange multiplier shows the contour lines of the tangent function when gradient

vectors are parallel.

Furthermore, in both diagrams in Figure 3-6, the constraint 𝑔(𝑥, 𝑦) = 𝑐 is

represented by a red curve, while the blue curves represent the characteristics

of 𝑓(𝑥𝑖 , 𝑦𝑖). As 𝑆1 > 𝑆2, the point where the red constraint tangentially

contacts a blue curve corresponds to the maximum 𝑓(𝑥1, 𝑦2) , which can be

seen as being tangential to 𝑆1 in the lateral constraint. On uppermost, the

40

observation reveals that the assumption of line graphs being tangent does not

affect the magnitude of any of these gradient vectors. We may retrieve the

other vector by multiplying one by a constant when two vectors have the

same orientation. The Lagrange multiplier is based on the assumption that the

points of local minimum and maximum along the constraint occur when the

constraint is tangential to the contours, as represented by 𝑆1, 𝑆2, 𝑆3.

In the Figure 3-6, finding ourselves amidst a contour line, where the pursuit of

computing ℒ at a particular point takes centre stage. It is a realm where the

function 𝛻𝑓(𝑥, 𝑦) intertwines with 𝜆𝛻𝑔(𝑥, 𝑦), the enigmatic Lagrange

multiplier 𝜆 adding a touch of intrigue. Herein lies the embodiment of a

celebrated technique, the widely employed Lagrange multiplier approach,

skilfully presented and scrutinized by (Ito and Kunisch, 2008), guiding us in

unveiling the profound equation (12) that gracefully addresses the challenges

of constrained optimization.

ℒ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑐

𝑔(𝑥, 𝑦) = 𝑐 If 𝑐 is a constant

ℒ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)

By exploring these intricate points, a profound revelation emerges,

showcasing the significance of the Lagrange multiplier λ in the improved

form of equation (3.10) through maximization or minimization.

ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆 𝑔(𝑥, 𝑦) (3.10)

Using gradient vectors, we can determine the optimum point by computing

many examples. For instance, in the realm of physical routing, the Lagrange

multiplier proves to be invaluable. By selecting the smallest point, it aids in

discovering the shortest and most efficient physical path. However, when it

comes to unearthing multiple global solutions, the Lagrange dual function

(LDF) emerges as a useful tool. The LDF theorem’s effectiveness hinges on

41

the utilization of real equation samples. Employing a novel crossover

operator, this theorem can efficiently identify numerous local points. In this

process, each station contributes to generating offspring genes from parent

chromosomes, enabling a fruitful exploration of potential solutions. LDF

theory implies the development of an alternative to the Conic Duality theory.

The Lagrangian Duality Problem theory exhibits a significant influence in

optimizing general nonlinear constraints (Mahmudov, 2011). Through the

application of the Lagrange dual function (LDF) theorem, a remarkable

outcome is achieved as an offspring emerges from the stationary point in the

equation (3.11).

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = ℒ (𝑥1,, 𝑥2, 𝛼) = 𝑓(𝑥1, 𝑥2) − 𝛼 𝑔(𝑥1, 𝑥2) = 𝑓(𝑥1, 𝑥2) − ∑ 𝛼 𝑔𝑖 (𝑥1, 𝑥2) 𝑛=2
𝑖=1 (3.11)

For Offspring 1: 𝑓(𝑥1, 𝑥2) = (𝑥1 – 𝑥2) 2 + (𝑥2 − 1) 2

 Subject to g1(𝑥1, 𝑥2) = 𝑥1 + 2𝑥2 − 1

 g2(𝑥1, 𝑥2) = 2𝑥1 + 𝑥2 − 1

 For Offspring 2: 𝑓(x2, x1) = (x2 – x1) 2 + (x1 − 1) 2

 Subject to g1(𝑥2, 𝑥1) = 𝑥2 + 2𝑥1 − 1

 g2(𝑥2, 𝑥1) = 2𝑥2 + 𝑥1 − 1

Subsequently, it is possible to generate Offspring One (𝑂ţ1) and Offspring

Two (𝑂ţ2) by including equation (3.11) at the stationary point when (ţ) is

initialized step selection, when the Lagrange multiplier generates a random

value (α) within the designated range based on the population-based

generation crossover rate, it leads to the development of equations (3.12) and

(3.13).

𝑂ţ1 = (𝑥ţ1 – 𝑥ţ2) 2 + (𝑥ţ2 − 1) 2 − (α (𝑥ţ1 + 2𝑥ţ2 – 1) + α (2𝑥ţ1 + 𝑥ţ2 – 1)) (3.12)

𝑂ţ2 = (𝑥ţ2 − 𝑥ţ1) 2 + (𝑥ţ1 − 1) 2 − (α (𝑥ţ2 + 2𝑥ţ1 – 1) + α (2𝑥ţ2 + 𝑥ţ1 − 1))
(3.13)

42

The proposed standard (LPX) shares similarities with the real-coded

crossover. To create a modified sample crossover, we introduce a novel

approach of inserting a sub-sequence from one of the genes into the parent.

The sub-sequence is chosen to retain the initial order, encompassing as many

point states as practical. This modified sample crossover is depicted in Figure

3-7, presenting a unique and effective technique to explore new solutions and

optimize gene combinations in the optimization process. When the stationary

multiplier is specified arbitrarily as (α = 0.2), 𝑥1 is shown as Gene two 𝐺1 on

chromosome one and 𝑥2 is reported as Gene two 𝐺2 on chromosome two.

The comparison findings are enhanced heuristically and statistically in the

next section.

Fig. 3-7 Create two new offspring depending on LPX

3.3. Lagrange Elementary for Optimization

The Leo is the Lagrange elementary optimization algorithm which mimics the

activities of a swarm of immune systems, drawing inspiration from a group of

people during imitation. Generally, the Lagrange multiplier technique is

employed to minimize a multivariate function, as discussed earlier. The input

may consist of any number of dimensions for the function 𝑓(𝑥, 𝑦, 𝜆), often

taking the form of another multivariate function 𝑔(𝑥, 𝑦) set equal to a

constant (𝑐). By utilizing gradients (𝑔) as a two-variable function, this

approach presents an effective method to find the optimal solution for

reaching the top of the cliff side depicted in Figure 3-8 .

43

Fig. 3-8 Given that the solution can’t ascend significantly higher than the point where the

restriction g=c crosses the top, the objective is to climb as high on the top as possible using the

Lagrange theorem.

Equation (3.14) introduces the Lagrange function 𝐹, where the numbers

𝜆0, 𝜆1, … , 𝜆𝑚 are referred to as Lagrange multipliers. When 𝑔𝑖(𝑦) represents a

regular value of the map g = 𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑚), the statement assumes a

more elegant form. This approach proves particularly advantageous for the

first and second theorems of Lagrange multipliers since it often facilitates the

solution of associated conditions without the need for explicit formulas

expressing point set accumulation in terms of (𝑛 − 𝑚) independent variables.

Generally, the necessary conditions lead to the formation of a private

blockchain of relations or a system of (𝑛 + 𝑚) equations in (𝑛 +

𝑚) variables when utilizing the Lagrange function.

𝐹(𝜆, 𝑥) = 𝑓(𝑥) + ∑ 𝜆𝑖(𝑔𝑖(𝑦) − 𝑔𝑖(𝑥)) 𝑚
𝑖=0 (3.14)

When
𝜕𝐹

𝜕𝑥𝑗
(𝑥∗, 𝜆∗) = 0 ∀𝑗∈ {1, … , 𝑛}

And
𝜕𝐹

𝜕𝑥𝑖
(𝑥∗, 𝜆∗) = 0 ∀𝑖∈ {1, … , 𝑚}

It may often summarize these criteria; it aims to look for constants 𝑥0

, 𝑦0 𝑎𝑛𝑑 𝜆0 that fulfill 𝑔(𝑥0, 𝑦0) = 𝑐. Depending on the requirements,

equation (3.15) illustrates the tangency conditions.

44

𝑓(𝑥0, 𝑦0) = 𝜆0𝛻𝑔(𝑥0, 𝑦0) (3.15)

This can be broken into its components as equations (3.16) and (3.17):

𝑓𝑥(𝑥0, 𝑦0) = 𝜆0𝛻𝑔𝑥(𝑥0, 𝑦0) (3.16)

𝑓𝑦(𝑥0, 𝑦0) = 𝜆0𝛻𝑔𝑦(𝑥0, 𝑦0) (3.17)

Lagrange equation (3.18) stands as a wholly independent function, separate

from the broken tangency conditions. This equation takes all the same inputs

as functions 𝑓 and 𝑔, along with the introduction of a new variable, the "new

kid" in the action, now treated as a variable rather than a constant when 𝑐 =

0. The function, linked to the concept of Lagrange multipliers, serves as a

powerful tool to establish conditions for finding conditional maxima or

minima of functions with multiple variables, or more generally, of

functionals. Its primary objective is to identify local minima (or maxima)

within the specified problem domain.

ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆(𝑔(𝑥, 𝑦) − 𝑐) (3.18)

3.4. Algorithm Deterministic Process

The deterministic process of Leo encompasses the stages of initialization,

evaluation, selection, crossover, and mutation, working together to drive the

search for optimal solutions. Understanding this process provides a

foundation for exploring and implementing Leo’s in various domains,

empowering researchers and practitioners to tackle challenging optimization

problems with confidence.

3.4.1. Leo Comprehensive Definition

At the core of this method lies the inspiration drawn from parents’ endeavors

to select an appropriate and compatible group of individuals from numerous

candidate groups, with a specific focus on identifying 𝐴𝑙𝑏serum in human

blood. Moreover, the process of choosing the most effective immune system

45

(𝐼𝑔𝐺) from multiple positive systems is believed to converge towards

optimality. Each genome that explores new groups of parents with a high 𝑄Alb

offers a potential solution within this algorithm, providing a path to uncover

latent solutions and optimize the search process. The algorithm commences

with the random initialization of an 𝐴𝑙𝑏serum population within the search

space, denoted as Xţ,i(𝑖 = 1, 2, . . . 𝑁); where ţ represents the initialization

iteration selection step, and each genomic position signifies a newly

discovered 𝑄Alb solution. By employing a population-based approach, this

algorithm aims to identify the highest-quality parents from a stochastic space,

thus beginning with the essential step of selecting individuals from the

initialized population.

In the initial section of the textual Leo algorithm pseudocode, depicted in

Figure 3-9, all Leo parameter settings and symbols have been defined. If the

termination condition is not satisfied, a specific parameter will be utilized to

randomly select a percentage of individuals from the total population 𝑁.

Initially, The algorithm standard and time computation complexity impose a

limitation on the population size, confining it within the range of 30 to 80

individuals. The Genetic Algorithm (GA) dictates that the best individuals

must be selected even before being subjected to new operators to generate

improved genomes. This step is of utmost importance, as it involves dividing

the main population into two equal sub-populations after sorting the entire

population in descending order, ensuring optimal selection of individuals for

further processing.

Next, the primary Half Group (ɦɠ) is further divided into two random

subgroups: the First Group (𝑓ɠ) and Second Group (ʂɠ). Subsequently,

individuals will be selected from these half-group populations based on the

fitness function evaluation equation (3.19), which is derived from equation

(2.1), to determine the most optimal QAlb from Albserum . The selection

46

process involves choosing the highest fitness obtained from the fitness

function evaluation of individuals in the First Group (𝑓ɠ) and Second Group

(ʂɠ) to complete the selection of individuals for the identified Half Group

(ɦɠ) at the next time step, denoted as (𝑋ţ,i+1). This strategic selection of

individuals ensures that the algorithm progressively hones in on the most

promising solutions as it iterates through the optimization process.

𝑋ţ,i+1 𝑓𝑜𝑟 ɦɠ
=

 𝑋ţ,i

𝑋ţ,i+1
 (3.19)

By allowing individuals to be selected from the initial section of the sub-

population, the issue of converging towards local optima is effectively

mitigated (Kleinberg et al., 2018). The last two stages involve enhancing

individuals by enabling gene interactions within groups. This necessitates

collaboration among genes and the individuals chosen for parent selection,

thereby facilitating the creation of appropriate subsequent steps. The optimal

weight of metacognition typically influences how a genome explores

problems through mutations.

Indeed, during the process of crossover, individual genomes collaborate and

collectively influence their behavior. This collaborative effort involves

sharing genetic information and combining traits from different individuals,

leading to the creation of new genomes with potentially improved

characteristics. Once the genomes are accepted and evaluated based on

 𝐴𝑙𝑏serum from human blood to estimate 𝑄Alb, they may possess an effective

ratio of the human immune system.

Consequently, there can be advantages in increasing the 𝐼𝑔𝐺 rate through

vaccinations, which involves providing support and fostering collaboration

with others. Furthermore, as mentioned in (Saravanan et al., 2022), genomes

can mutually influence their occurrence and partake in gene group

interactions within the blood serum. They might also seek support when

47

vaccine doses impact the genome. As previously mentioned, the Leo

algorithm is founded on GA, where GA operators simulate gene inheritance

to create new individuals in each generation. In the subsequent stages, these

operators are utilized to alter the structure of individuals. The primary genetic

operators employed are selection, crossover, and mutation, which are

commonly used in genetic algorithms. In Leo, genes function as selection

operators, with a particular focus on group-based selection, contributing to the

algorithm’s distinctive approach in optimizing solutions. Subsequently, this

case delved into an explanation of how the Leo algorithm functions,

incorporating the utilization of crossover and mutation operators.

In the initial segment of the pseudocode illustrated in Figure 3-9, commence

by initializing the generation: randomly creating an initial population.

Subsequently, proceed to identify parameters, crossover rate, and mutation

rate by recognizing genomes for all individuals, taking into account the

albumin quotient to bolster the overall immunity system. The subsequent

phase centers on the selection groups of genomes: randomly selecting a

percentage based on a specified parameter, evaluating individual fitness using

Equation 3.19, and sorting individuals (parents) in decreasing order, as

elaborated in previous sections. Select ɦɠ as N/2, dividing N into two equal

parts of populations. The computational process continues by incrementing k

by 1 until the iteration's conclusion. The transition then advances to the

Lagrangian Problem Crossover LPX stage, involving the implementation of

equations 3.12 and 3.13. This includes swapping the first genome to derive

new individuals' fitness functions. Following this, the Gaussian Mutation

process is executed, iterating until the fitness of the fittest individual in the

population attains a sufficiently high level. Finally, the best solution is

selected from the created individuals.

48

Fig. 3-9 the proposed pseudocode for Leo Algorithm

As a population-based method, individuals in Leo algorithm generate diverse

offspring by modifying suggested self-adaptive systems at each stage of

49

development. The crossover parameter plays a vital role in enhancing global

search capability and increasing variance in the differential vector. On the

other hand, a rounding procedure reduces the second component of the

weighted difference vector to the nearest integer value. After the selection

process, crossover, and mutation are employed to generate updated genomes

based on the selected parents. For further clarity, Figure 3-10 presents a

flowchart illustrating the step-by-step process of the Leo algorithm. This

flowchart visually explains the various stages involved in optimizing

solutions and achieving convergence.

Fig. 3-10 Leo algorithm flowchart process

50

3.4.2. Leo Crossover Process

In the Leo algorithm, the GA-based crossover operator plays a crucial role in

this stage. By employing the crossover operator, the exchange of genes

between genomes is facilitated, leading to the development of an optimal

immune system after vaccination. As a consequence, the genome becomes a

complete set of genes distinct from the original genomes or genes of

 𝐴𝑙𝑏serum . This results in a significant impact on the overall genome of both

individuals, and the newly produced individuals exhibit variations from

 𝐴𝑙𝑏serum .

As Adam optimization pointed out (Kingma and Ba, 2014); stochastic

gradient-based optimization plays a vital role in numerous fields of science

and engineering. Various gradient theorems can be applied to ascertain the

differentiability of a function using the Lagrange method. Gradient descent

proves to be a quite effective optimization technique, particularly when its

parameters are appropriately tuned or lagged. Consequently, Leo is utilized

with the LPX standard to generate comprehensive individual structures by

exploring alternative genes. The algorithm initiates with a crossover rate of

0.6 multiplied by half of the population size. As previously mentioned, the

LDF theorem draws inspiration from real-world equation examples within the

LPX standard. Moreover, a novel crossover operator is proposed, capable of

identifying multiple local points. The LDF theory represents a significant

advancement in replacing the Conic Duality hypothesis, as highlighted earlier.

Equations (3.12) and (3.13) serve as the key tools to discover novel structural

individuals(Oţ,i).

The Lagrangian dual function and the Leo problem optimization exhibit

deterministic properties, confirming their well-defined characteristics and

behaviors. In this algorithm, the values are sampled from a uniform

distribution on the interval [0.2, 0.3]. During the creation of new individuals,

51

it is feasible to swap the first old gene for the second new gene. This

exchange determines the updated fitness function, which is then evaluated

using equation (2.1) to calculate the fitness. The Leo crossover is constructed

using pseudocode, as illustrated in Figure 3-11, showcasing the step-by-step

implementation of the crossover operation within the algorithm.

Fig. 3-11 Leo Crossover Process Pseudocode

3.4.3. Leo Mutation Process

Although scientists can provide explanations for the immunological

ambiguities resulting from genetic mutations, the precise nature of these

ambiguities remains unidentified. Additionally, mutations can have random

effects that influence behavioral changes in individuals. The most

fundamental form of mutation involves the modification of one or more

genes. As mentioned, metacognition can introduce a stochastic influence on

the overall behavior of genes. As a result, individuals have the ability to

adjust their behavior in specific directions by modulating the levels of

immunity-related activities in their genes, guided by the mutation rate. The

mutation operator, inherent in the GA-based algorithm, is effectively

 , : are the two given Genes;

, : are the two new Offspring;

, : are the two highest fitness Genes

 : is a random value between (0.2,0.3);

: is counter;

i: is additive by one gene number

: number of parents (individuals)

Leo_Crossover (, , ,){

Required: Calculate value

While smaller than

Calculate the first offspring from equation 3.12;

Calculate the second offspring from equation 3.13;

Calculate the new first gene: = ;

 =

End while

} the best individuals found during the evaluation

52

employed in the Leo algorithm to demonstrate this progressive adaptation.

Through the mutation operator, individuals can explore and navigate the

search space, allowing for diversity and exploration in the optimization

process.

The primary objective of EA mutation is to introduce diversity into the entire

population sample. Mutation operators are employed to steer clear of local

minima or local maxima by ensuring that the population of genomes does not

become overly similar to each other. By introducing variations through

mutations, individuals can be adapted to different situations or carry genes

that were not originally present in the initial population. There are several

methods to mutate individual representations, such as uniform mutation,

replacement mutation, scramble mutation, inversion mutation, dynamic

mutation, boundary mutation, and so on. These diverse mutation techniques

help maintain genetic diversity and aid in exploring the solution space more

effectively, leading to better optimization outcomes in evolutionary

algorithms. Leo operates Gaussian Mutation (Bell, 2022) as the standard for

EA. Self-adaptation enables a GA to modify its algorithm during problem-

solving (Smith, 2008). The Gaussian mutation operator has proven to be the

most effective and popular choice for self-adaptation in GA. By assigning a

random value between (-1, 1) to sigma (𝜎) and taking a random sample for

(𝑗𝑖), equation (3.20) is employed to develop Leo mutation operator, denoted

as 𝑀ţ,𝑖 . In Leo algorithm, the percentage mutation for individuals in the

sample 𝑋ţ,𝑖 (𝑗𝑖) is set to 0.3.

𝑀ţ,𝑖 = 𝑋ţ,𝑖 (𝑗𝑖) + 𝜎 ∗ 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒 (𝑗𝑖)) (3.20)

53

CHAPTER FOUR

4. Results and Discussion

This chapter presents the implementation results, followed by direct analysis

and discussion, aiming to enhance readability. Consequently, the results

section is relatively extensive, allowing for a more straightforward

mechanism by incorporating results analysis into each corresponding section.

The main sections in this chapter focus on determining the results for

validating the LPX and Leo algorithms. In this manner, the chapter offers

substantiation and showcases the efficacy of the suggested standard and

algorithm.

The initial section focuses on gauging the exploitation level and convergence

of standards in population algorithms. To assess these standard operators and

the performance of population-based algorithms, various benchmark test

functions are available. For this study, three specific test functions have been

chosen to analyze the newly introduced operator. In this sub-section, three

unimodal test functions, namely TF1, TF3, and TF7, are selected from the

classical benchmark tests. The first part of this section involves a heuristic

evaluation, where the LPX, BX, and SBX operators are compared. Moving on

to the second part, the standard operator is compared with BX, SBX, and

Qubit-X operators, all tested using LPB as a population-based algorithm to

analyze exploitation and convergence results. Finally, the last part involves

the statistical evaluation of all results using a Wilcoxon Rank Sum test.

The second part of the study aims to validate the proposed algorithm’s

functionality and assess its effectiveness. The execution of the Leo algorithm

results on Apple silicon Macs is enabled and supported by MATLAB

R2019b. The generation of real applications is contingent on the utilization of

this particular version. To achieve this, a set of widely recognized benchmark

functions from existing literature are employed. Additionally, Leo algorithm’s

54

results are compared with five other well-known algorithms from the

literature in 19 classical benchmark tests (Hussain et al., n.d.). Among these

algorithms, one is a popular approach, such as DA, PSO, or GA, while the

remaining two are novel methods, namely FDO and LPB. Besides, the results

obtained from the proposed algorithm are compared to those achieved by Leo

algorithm specifically on the CEC-2019 test functions (Brest et al., 2019)

such as DA, WOA, SSA, FDO, LPB, and FOX. Subsequently, a statistical

analysis is performed on these results using the Wilcoxon rank-sum test to

determine the significance of the outcomes by IBM SPSS Statistics Version

26. Finally, it is worth noting that Leo functions have demonstrated successful

applications in solving real-world problems.

4.1. Results and Discussion of Lagrangian Problem Crossover

LPX is a novel crossover standard being proposed, which is evaluated by

comparing it to the previous standard methods as described in the

methodology chapter. The evaluation primarily centers around estimating the

time required to discover the best optimal solution. It is important to note that

the results are influenced by the value of a random number to determine the

most suitable solution. Additionally, the study demonstrates the processing

time for dynamic cost minimization. To accomplish this, gradient vectors

have been employed to guide this model in computing numerous examples

and identifying the optimal point. The significance of this methodology lies in

its applicability to physical routing, where it streamlines the process of

identifying the smallest point to reveal the shortest physical path.

4.1.1. Heuristic Evaluation Results

Through mathematical comparisons, this assessment sought to pinpoint

significant usability and performance issues associated with the standard

operators. The tests were conducted over a series of 100 stochastic

generations (genes) involving various pairs of parents (chromosomes) and

55

crossover rate values (𝛼) set at 0.3, 0.5, and 0.7. The variation in random

values plays a crucial role in assisting newly proposed algorithms to

efficiently select the optimal range of values. In the previous chapter, various

methods of standards have been provided, but the focus of the testing lies on

the BX and SBX crossovers. Therefore, the outcomes of the two standard

heuristics are contrasted with those obtained using the LPX method.

Additionally, the performance can be assessed by examining the statistical

values generated. A higher averaged value signifies a more favorable

outcome. Regarding the crossovers, the outcomes of mathematical

calculations performed on parent chromosomes are utilized to generate genes

in the offspring chromosomes (Malik and Wadhwa, 2014). The arithmetic

operations are determined by applying equations (3.2) and (3.3) for BX,

equations (3.4) and (3.5) for SBX, and equations (3.12) and (3.13) for LPX.

The test is conducted by choosing three unimodal functions from a collection

of conventional benchmark functions. The purpose is to assess the

appropriateness of each gene on a chromosome during the evaluation process.

The benchmarks consist of three test functions: TF1, TF3, and TF7, which are

listed in Table (4-5). Achieving the global optimum requires an algorithm to

steer clear of local optimal solutions, and these selected sample test functions

can aid in devising an effective exploration strategy. The individual results are

statistically analysed by summing up the generations on the parent

chromosome. After conducting the evaluation on the selected test functions,

the next step involves calculating summation (Sum), the average (Mean) and

standard deviation (STD) for each standard depend on 100 genes. The

comparison between the different standards is based on the alpha value (𝛼),

which is a randomly generated value during the algorithm’s execution.

The Lagrangian functions are specifically designed to explore novel points in

intricate applications by searching around the most prominent local optimum.

56

As previously discussed, the Lagrange multiplier method in mathematics is a

mathematical technique utilized to ascertain the local maximum or minimum

value of an action while adhering to equality constraints. In the context of

LPX, Lagrangian functions are purposely crafted to explore new points in

complex applications, focusing on searching for the most prominent local

optimum. As mentioned earlier, in mathematics, the Lagrange multiplier

method is a powerful technique used to determine the local maximum or

minimum value of an action while satisfying equality constraints. LPX

outperforms BX and SBX for all values of alpha (α). Whereas BX and SBX

may have been reasonable choices in previous generations, at present, LPX

emerges as a better choice. Additionally, the results suggest that TF7

demonstrates strong convergence and exploitation characteristics across all

alpha values. Moreover, LPX holds potential for ranking social classes and

conducting stochastic analysis of metaheuristic algorithms as focused on

Table 4-1.

Table 4-1 The performance result test for selected crossover standards with LPX

 Standards BX SBX LPX

α Test Functions Sum Mean STD Sum Mean STD Sum Mean STD

0.2

TF1 42.36 0.42 0.30 31.37 0.31 0.32 1737.56 17.38 17.09

TF3 60.00 0.60 0.66 60.00 0.60 0.66 3197.01 31.97 31.27

TF7 779.24 7.79 10.78 487.58 4.88 9.52 1937510.53 19375.11 33631.08

0.5

TF1 30.00 0.30 0.30 38.58 0.39 0.30 2776.00 27.76 26.17

TF3 60.00 0.60 0.66 60.00 0.60 0.66 5273.89 52.74 50.06

TF7 461.88 4.62 9.41 661.72 6.62 10.21 4348187.50 43481.88 64658.48

0.7

TF1 35.49 0.35 0.31 46.82 0.47 0.30 3648.64 36.49 34.78

TF3 60.00 0.60 0.66 60.00 0.60 0.66 7019.17 70.19 67.65

TF7 579.02 5.79 9.88 941.45 9.41 11.81 7300002.73 73000.03 109185.64

Despite that, all the standards of crossovers were considered reasonable in

terms of the invincible algorithms of evolution. Nevertheless, we presented

two instances exemplifying the maximum and minimum genes on parent

chromosomes for TF1, while considering three different alpha values. The

performance of BX and SBX in TF1 was straightforward, but LPX displayed

57

slightly better outcomes, as the average and standard deviation outputs

increase, it indicates enhanced performance in algorithms and real application

problems. Moreover, LPX demonstrated both the maximum and minimum

gene expressions that exceeded the performance of both BX and SBX

methods. Besides, the convergence process in LPX revealed significantly

higher inter-generational relationships than the other two crossover standards

for all alpha values in TF3. Additionally, it successfully illustrated the

relationships between generations for both maximum and minimum gene

values based on TF3. In the case of TF7 results for all alpha values, LPX

demonstrated oddly high performance compared to BX and SBX, mainly due

to its ability to define and obtain maximum and minimum genes effectively.

The evaluation and highlighting of the chromosome comparative results for

TF7 are depicted, showcasing the divergent maximum and minimum genes.

Figures 4-1 to 4-9 illustrate the frequency of subsequent generations

originating from the parent genes on the Y-axis. This representation is

essential because it takes into account the presence of distinct maximum and

minimum genes on each chromosome, which are used to assess and compare

the results. The heuristic evaluation confirms that LPX frequencies rapidly

reach their maximum for these three test functions. Therefore, these solutions

according to LPX support obtaining the best optima in both stochastic and

bio-inspired optimizations.

Fig. 4- 2 Parents’ Generation for TF1(α=0.5)

Fig. 4-1 Parents’ Generation for TF1(α=0.2)

0.001

0.1

10

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

0.0001

0.01

1

100

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

58

Fig. 4-4 Parents’ Generation for TF3(α=0.2)

Fig. 4-3 Parents’ Generation for TF1(α=0.7)

Fig. 4-6 Parents’ Generation for TF3(α=0.7)

Fig. 4-5 Parents’ Generation for TF3 (α=0.5)

Fig. 4-8 Parents’ Generation for TF7 (α=0.5)

Fig. 4-7 Parents’ Generation for TF7 (α=0.2)

Fig. 4-9 Parents’ Generation for TF7 (α=0.7)

0.00001

0.001

0.1

10

1000

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

0.001

0.1

10

1000

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

0.001

0.01

0.1

1

10

100

1000

BX SBX LPX

Fr
eq

u
en

cy
MAX MIN

0.01

0.1

1

10

100

1000

BX SBX LPXFr
eq

u
en

cy

MAX MIN

0.01

1

100

10000

1000000

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

0.01

1

100

10000

1000000

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

0.01

1

100

10000

1000000

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

59

4.1.2. Exploitation and Convergence Evaluation Results

The prowess of LPX has undergone rigorous evaluation through a captivating

array of experiments. These inventive designs delve into the intricacies of

LPX, scrutinizing its qualitative and quantitative traits with keen interest. The

qualitative analysis beautifully showcases LPX’s exceptional exploitation

capabilities and convergence behavior in problem-solving, drawing insights

from exploration and average fitness values. To accomplish this objective,

LPB, the population algorithm mentioned earlier, is carefully chosen.

Alongside, a quantitative analysis is conducted to compare LPX against other

standard crossovers like BX, SBX, and Qubit-X. We have handpicked three

classical test functions, presented in Table (4-5), to gauge LPX effectiveness.

LPX’s performance evaluation involves two crucial aspects: its capacity to

break free from local optima and its convergence speed, gauged by summing

the elapsed time to reach the optimal fitness point. This study demonstrates

the influence and efficacy of the random value factor. To establish this, three

distinct random values are selected for each test function, illuminating the

significance of the stochastic element in LPX’s outcomes.

The experiment involved 500 iterations, testing each standard with different

random values using the LPB algorithm. LPB was executed 30 times with 80

search agents in each run. The evaluation included computing SUM, STD,

and processing time. Remarkably, LPX showcased exceptional performance,

consistently ranking first or second in SUM and STD depend on 30 rounds

across almost all three test functions. The remarkable convergence speed and

outstanding results are boldly highlighted in Table (4-2). In particular, when

comparing the LPX standard with others on unimodal test functions, it was

observed that LPX exhibited a higher rate of exploitation and convergence,

specifically in TF7 for all random value approaches, and in TF1, LPX high

time computation for all random values rather than compared other crossover

standards. Also, LPX

60

Table 4- 2 The crossover operator’s comparison results of classical test functions

TFs α
LPX SBX BX Qubit-X

Mean STD Time (s.) Mean STD Time (s.) Mean STD Time (s.) Mean STD Time (s.)

TF1

0.2 0.0635 0.0184 141.740 0.01751 0.0236 161.423 0.04428 0.0446 150.384 0.1758 0.0926 144.474

0.5 0.0680 0.0281 149.798 0.04161 0.0270 162.160 0.04178 0.0323 157.700 0.1411 0.0510 151.992

0.7 0.0596 0.0279 151.112 0.02959 0.0172 188.501 0.04150 0.0294 163.809 0.1425 0.1045 157.042

TF3

0.2 43.5652 24.8093 159.289 83.37500 59.0221 178.260 41.60497 28.4041 169.970 120.7210 73.2963 164.986

0.5 40.4260 26.2073 165.144 78.18210 52.1304 161.057 52.58699 37.7840 169.130 175.6268 119.6147 165.608

0.7 66.7197 58.8220 164.711 85.92191 71.4473 180.216 50.67240 49.2447 167.669 81.3198 52.6167 164.450

TF7

0.2 0.0048 0.0031 143.005 0.01351 0.0188 153.884 0.00624 0.0045 156.457 0.0076 0.0043 160.718

0.5 0.0049 0.0027 152.029 0.00770 0.0066 164.322 0.00616 0.0029 162.973 0.0094 0.0051 147.530

0.7 0.0052 0.0033 157.893 0.00773 0.0056 164.504 0.00709 0.0042 163.520 0.0123 0.0064 155.061

61

 exhibited marginally faster execution times in comparison to the calculations

for TF3 with the random value approaches 0.2. Furthermore, during TF3,

when the random value approaches 0.5, LPX demonstrated the optimal

convergence and exploitation rates with second rank after for time

commutation after SBX.

4.1.3. Statistical Evaluation Results

Stochastic optimization algorithms allow for the use of non-parametric

statistical tests like Wilcoxon signed-rank sum and analysis of variance

(ANOVA) to assess their overall performance. Another non-parametric test,

the Wilcoxon rank-sum test (also known as Mann-Whitney U test), compares

two independent groups or samples (Fay and Proschan, 2010). As it makes no

assumptions about the data distribution, it is very useful when comparing

optimization techniques. A considerable difference between the ranks of data

from two different algorithms is also assessed. Optimization performance

evaluates whether one approach consistently outperforms the other.

Additionally, it offers an accurate technique for comparing algorithms or

standards based on their rank-based performance metrics, without assuming

anything about the distribution’s underlying properties .

When using a standard to address optimization problems, it is essential to

assess its statistical applicability. Table (4-3) presents a comparison using the

Wilcoxon signed-rank sum test between LPX and SBX, as well as LPX and

BX standards. The statistical tests conduct on LPX results show significant

results, rejecting the null hypothesis. All p-values obtained for these three test

functions, which are tested with random values (α), are smaller than 0.05 .

62

The statistical analysis presented in Table (4-4) is conducted using the

Wilcoxon rank-sum test to examine the results. The objective is to determine

the significance of the crossover operators when compared to LPX . Based on

the results, Qubit-X demonstrated statistically significant outcomes for all

three test functions, except for TF2 (α=0.7), where the significance was not

observed. As a result, the null hypothesis was rejected for TF2 (α=0.7).

Furthermore, SBX demonstrated statistically significant results for all test

functions and values, except for TF3 and TF7 at α=0.7. On the other hand,

LPX showed statistical significance compared to the BX standard for TF1

across all alpha (α) values, indicating a (p-value) lower than 0.05.

Table 4-3 The Wilcoxon rank-sum test (p-value) between crossovers operator for random generations

TFs α
Standards

LPX vs SBX LPX vs BX

TF1

0.2 3.6746E-16 5.3124E-16

0.5 4.7409E-17 4.0951E-17

0.7 4.7409E-17 3.8618E-17

TF3

0.2 8.5768E-16 8.5768E-16

0.5 9.5355E-17 9.5355E-17

0.7 8.2482E-17 8.2482E-17

TF7

0.2 1.6983E-16 2.6103E-16

0.5 4.0951E-17 3.2378E-17

0.7 3.2378E-17 2.0802E-17

Table 4-4 The Wilcoxon rank-sum test (p-value) between standards by the LPB algorithm

TFs α
Standards

LPX vs SBX LPX vs BX LPX vs Qubit-X

TF1

0.2 0.000031 0.002415 0.000005

0.5 0.000241 0.001965 0.000002

0.7 0.00042 0.015658 0.000031

TF3

0.2 0.002765 0.517048 0.000002

0.5 0.006836 0.318491 0.000002

0.7 0.328571 0.393334 0.271155

TF7

0.2 0.000716 0.298944 0.009271

0.5 0.044919 0.085896 0.000664

0.7 0.071903 0.057096 0.000058

63

4.2. Results and Discussion of Single-Objective Lagrange Elementary

for Optimization

The performance evaluation of the single-objective Leo algorithm involves

using various standard benchmark test functions from existing literature.

Furthermore, we compare our results with five other well-known algorithms

mentioned in the introduction. It is worth mentioning that the results of 19

classical benchmark test functions are obtained from a prior study, while we

conduct the CEC-C06 tests. To determine the statistical significance of the

test outcomes, we use the Wilcoxon rank-sum test for comparison .

Furthermore, four measurement metrics are utilized for additional analysis

and observation.

4.2.1. Classical Benchmark Test Functions

The Leo algorithm underwent 30 tests, with each test utilizing 80 search

agents. In each test, the algorithm searched for the most efficient optimum

solution within 500 iterations, and subsequently, the Mean and STD values

were calculated from 30 round tests. Detailed information about the parameter

sets for DA, PSO, GA, FDO, and LPB can be found in Tables (9 and 10) of

this work. In the context of the general convex learning problem, our results

are comparable to the best-known bound.

To evaluate the effectiveness of the Leo algorithm, we selected three sets of

test functions, which are grouped into three distinct categories: unimodal,

multimodal, and composite test functions (Arora et al., 2020). Each of these

test functions evaluates different aspects of algorithm effectiveness and

benchmarking specific characteristics. For instance, unimodal benchmark

functions are used to assess the level of exploitation and convergence of

algorithms or standard operator effect on the algorithm, as they have a single

optimal solution. On the other hand, multimodal benchmark functions include

64

multiple optimal solutions, enabling the evaluation of the ability of algorithm

to avoid local optima and explore the search space.

 Indeed, the test functions encompass a variety of optimal solutions, including

the global optimum and several individual optimal solutions. This

characteristic resembles the scenarios often encountered in multimodal

optimization problems, much like the scenarios encountered in multimodal

optimization problems. To obtain a globally optimal solution, an algorithm

must effectively avoid local optima. Composite benchmark functions, in

particular, are constructed as a combination of blended, rotated, shifted, and

biased versions of other test functions. These composite benchmarks contain a

significant number of local optima and exhibit various shapes in different

regions of the search landscape. Examples of such benchmark functions can

be found in Tables (4-5, 4-6, and 4-7) (Hussain et al., n.d.).

 Table 4-5 Unimodal benchmark functions (Hussain et al., n.d.)

Functions Dimension Range Shift position 𝒇𝒎𝒊𝒏

𝑻𝑭𝟏(𝒙) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0

𝑻𝑭𝟐(𝒙) = ∑ |𝑥𝑖

𝑛

𝑖=1

| + ∏ |𝑥𝑖|

𝑛

𝑖=1

 10 [-10,10] [-3, -3, … -3] 0

𝑻𝑭𝟑(𝒙) = ∑ (∑ 𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0

𝑻𝑭𝟒(𝒙) = max
𝑖

{|𝑥|, 1 ≤ 𝑖 ≤ 𝑛} 10 [-100, 100] [-30, -30, … -30] 0

𝑻𝑭𝟓(𝒙) = ∑[100(𝑥𝑖+1 − 𝑥1
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 10 [-30,30] [-15, -15, … -15] 0

𝑻𝑭𝟔(𝒙) = ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

 10 [-100, 100] [-750, … -750] 0

𝑻𝑭𝟕(𝒙) = ∑ 𝑖𝑥𝑖
4 + random[0, 1]

𝑛

𝑖=1

 10 [-1.28,1.28] [-0.25, …-0.25] 0

65

Table 4-6 Multimodal benchmark functions (10 dimensional) (Hussain et al., n.d.)

Functions Range Shift position 𝒇𝒎𝒊𝒏

𝑻𝑭𝟖(𝒙) = ∑ −𝒙𝒊

𝒏

𝒊=𝟏

𝐬𝐢𝐧 (√|𝒙𝒊|)
 [-500, 500] [-300, … -300] -418.9829* 𝑛

When 𝑛 equals to

dimensions

𝑻𝑭𝟗(𝒙) = ∑[𝒙𝒊
𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝝅𝒙𝒊) + 𝟏𝟎]

𝒏

𝒊=𝟏

 [-5.12,5.12] [-2, -2, …-2]

0

𝑻𝑭𝟏𝟎(𝒙) = −𝟐𝟎𝒆𝒙𝒑 (−𝟎. 𝟐√∑ 𝒙𝒊
𝟐

𝒏

𝒊=𝟏

) − 𝒆𝒙𝒑 (
𝟏

𝒏
∑ 𝒄𝒐𝒔(𝟐𝝅𝒙𝒊)

𝒏

𝒊=𝟏

) + 𝟐𝟎 + 𝒆

 [-32, 32] 0

𝑻𝑭𝟏𝟏(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

− ∏ 𝐜𝐨𝐬 (
𝒙𝒊

√𝒊
)

𝒏

𝒊=𝟏

+ 𝟏
 [-600, 600] [-400, … -400] 0

𝑻𝑭𝟏𝟐(𝒙) =
𝝅

𝒏
{𝟏𝟎 𝐬𝐢𝐧(𝝅𝒚𝟏) + ∑ (𝒚𝒊 − 𝟏)𝟐[𝟏 + 𝟏𝟎 𝐬𝐢𝐧𝟐(𝝅𝒚𝒊+𝟏)] + (𝒚𝒏 − 𝟏)𝟐𝒏−𝟏

𝒊=𝟏 } +

∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)𝒏
𝒊=𝟏.

𝒚𝒊 = 𝟏 +
𝒙+𝟏

𝟒
. 𝒖(𝒙𝒊, 𝒂, 𝒌, 𝒎) = {

𝒌(𝒙𝒊 − 𝒂)𝒎 𝒙𝒊 > 𝒂
𝟎 − 𝒂 < 𝒙𝒊 < 𝒂

𝒌(−𝒙𝒊 − 𝒂)𝒎 𝒙𝒊 < −𝒂

 [-50,50] [-30, 30, … 30] 0

𝐓𝐅𝟏𝟑(𝐱) = 𝟎. 𝟏{𝐬𝐢𝐧𝟐(𝟑𝝅𝒙𝟏) + ∑ (𝒙𝒊 − 𝟏)𝟐[𝟏 + 𝐬𝐢𝐧𝟐(𝟑𝝅𝒙𝒊 + 𝟏)] +𝒏
𝒊=𝟏

(𝒙𝒏 − 𝟏)𝟐[𝟏 + 𝐬𝐢𝐧𝟐(𝟐𝝅𝒙𝒏)]} + ∑ 𝒖(𝒙𝒊, 𝟓, 𝟏𝟎𝟎, 𝟒).𝒏
𝒊=𝟏

 [-50,50] [-100, … -100] 0

66

Table 4-7 Composite benchmark functions (Hussain et al., n.d.)

Functions Dimension Range 𝒇𝒎𝒊𝒏

TF14 (CF1) 𝑓1, 𝑓2, 𝑓3 … 𝑓10 = Sphere function 𝛿1, 𝛿2, 𝛿3 … 𝛿10 [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[
5

100
,

5

100,
,

5

100
, …

5

100
]

10 [-5, 5] 0

TF15 (CF2) 𝑓1, 𝑓2, 𝑓3 … 𝑓10 Griewank’s function 𝛿1, 𝛿2, 𝛿3 … 𝛿10, [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[
5

100
,

5

100,
,

5

100
, …

5

100
]

10 [-5, 5] 0

TF16 (CF3) 𝑓1, 𝑓2, 𝑓3 … 𝑓10 Griewank’s function 𝛿1, 𝛿2, 𝛿3 … 𝛿10, [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [1,1,1, … .1] 10 [-5, 5] 0

TF17 (CF4) 𝑓1, 𝑓2 = Ackley’s function, 𝑓3, 𝑓4 = Rastrigin’s function, 𝑓5, 𝑓6 = Weierstrass functio, 𝑓7, 𝑓8 =
Griewank’s function, 𝑓9, 𝑓10 = Sphere function, 𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … =

[
5

32
,

5

32,
, 1,1,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

100
,

5

100
]

10 [-5, 5] 0

TF18 (CF5) 𝑓1, 𝑓2 = Rastrigin’s function, 𝑓3, 𝑓4 = Weierstrass function, 𝑓5, 𝑓6 = Griewank’s function, 𝑓7, 𝑓8 =
Ackley’s function 𝑓9, 𝑓10 = Sphere function, 𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[
1

5
,

1

5,
,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

32
,

5

32
,

5

100
,

5

100
]

10 [-5, 5] 0

TF19 (CF6) 𝑓1, 𝑓2 = Rastrigin’s function, 𝑓3, 𝑓4 = Weierstrass function, 𝑓5, 𝑓6 = Griewank’s function, 𝑓7, 𝑓8 =
Ackley’s function, 𝑓9, 𝑓10Sphere function, 𝛿1, 𝛿2, 𝛿3 … 𝛿10 [0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1], 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[0.1 ∗
1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5 ∗

5

100
 ,0.6 ∗

5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
, 0.9 ∗

5

100
, 1 ∗

5

100
]

10 [-5, 5] 0

67

The Leo algorithm is executed following the fundamental steps as indicated

earlier. The obtained results are then compared to those of three well-known

alternative algorithms, namely DA, PSO, and GA. The results of DA, PSO,

and GA can be found in Table (4-8), reported in the papers by (Abdullah and

Ahmed, 2019; Mirjalili, 2016; Rahman and Rashid, 2021). Thus, in the first

unimodal function, the DA algorithm demonstrated optimal performance,

while the PSO algorithm showed superior efficiency in the sixth test function.

However, upon analyzing the results of tests TF2, TF3, TF4, TF5, and TF7, it

becomes evident that the Leo algorithm consistently outperforms the other

algorithms in terms of exploitation capacity and achieving optimal results.

Furthermore, when compared to the FDO and LPB algorithms, whose results

are reported in papers by (Abdullah and Ahmed, 2019 and Rahman and

Rashid, 2021) respectively, the Leo algorithm consistently achieved superior

outcomes. However, it should be noted that for TF1 and TF6, the Leo

algorithm exhibited even better levels of exploitation and convergence. Leo is

the only algorithm to do better than the others in TF12 and also outperforms

them in TF11 and TF13, earning the second spot. Leo obtained the second

rank in TF11 and TF13 when compared to all other methods in Table (4-9)

except for these two functions. In multimodal functions, the Leo algorithm

achieves the second rank, demonstrating an improved outcome in TF12

compared to the other algorithms in TF11 and TF13. Additionally, in Table

(4-9), Leo performs better than every other algorithm, except for TF9 and

TF10, where it attains the runner-up position. Leo also outperforms DA, PSO,

and GA in composite test functions for each test function. Furthermore, Leo

algorithm consistently outperforms the LPB algorithms in all test functions. In

comparison to FDO, Leo achieves the second rank with better performance in

all test functions, as shown in Tables (4-8 and 4-9).

68

Table 4-8 Comparing the results of Leo with DA, PSO, and GA algorithms on classical test functions

TF
Leo DA PSO GA

Mean STD Mean STD Mean STD Mean STD

TF1 2.69874E-09 7.49992E-09 2.85E-18 7.16E-18 4.20E-18 1.31E-18 748.5972 324.9262

TF2 3.7305E-06 3.95635E-06 1.49E-05 3.76E-05 0.003154 0.009811 5.971358 1.533102

TF3 5.31468E-09 2.07901E-08 1.29E-06 2.10E-06 0.001891 0.003311 1949.003 994.2733

TF4 3.60286E-05 3.22842E-05 0.000988 0.002776 0.001748 0.002515 21.16304 2.605406

TF5 10.60296667 13.93285916 7.600558 6.786473 63.45331 80.12726 133307.1 85007.62

TF6 4.31581E-10 5.51803E-10 4.17E-16 1.32E-15 4.36E-17 1.38E-16 563.8889 229.6997

TF7 0.001449721 0.002690575 0.010293 0.010293 0.005973 0.003583 0.166872 0.072571

TF8 -2989.147333 202.684514 -2857.58 383.6466 -7.10E+11 1.2E+12 -3407.25 164.478

TF9 37.07867 12.2775166 16.01883 9.479113 10.44724 7.879807 25.51886 6.66936

TF10 4.8836E-05 2.89869E-05 0.23103 0.487053 0.280137 0.601817 9.498785 1.271393

TF11 2.7393E-08 5.51514E-08 0.193354 0.073495 0.083463 0.035067 7.719959 3.62607

TF12 1.87667E-08 2.89749E-08 0.031101 0.098349 8.57E-11 2.71E-10 1858.502 5820.215

TF13 8.90491E-09 1.88063E-08 0.002197 0.004633 0.002197 0.004633 68047.23 87736.76

TF14 6.9979 5.833242622 103.742 91.24364 150 135.4006 130.0991 21.32037

TF15 0.001673093 0.003539145 193.0171 80.6332 188.1951 157.2834 116.0554 19.19351

TF16 -0.622100333 0.396782974 458.2962 165.3724 263.0948 187.1352 383.9184 36.60532

TF17 1.788405333 2.237631581 596.6629 171.0631 466.5429 180.9493 503.0485 35.79406

TF18 3.590623333 0.711917144 229.9515 184.6095 136.1759 160.0187 118.438 51.00183

TF19 -2.670808 1.185307969 679.588 199.4014 741.6341 206.7296 544.1018 13.30161

69

Table 4-9 Comparing the results of Leo with FDO and LPB algorithms on classical test functions

TF
Leo FDO LPB

Mean STD Mean STD Mean STD

TF1 2.69874E-09 7.49992E-09 7.47E-21 7.26E-19 0.001877545 0.002093616

TF2 3.7305E-06 3.95635E-06 9.39E-06 6.91E-06 0.005238111 0.003652512

TF3 5.31468E-09 2.07901E-08 8.55E-07 4.40E-06 36.4748883 29.22415523

TF4 3.60286E-05 3.22842E-05 6.69E-04 0.0024887 0.393866 0.135818

TF5 10.60296667 13.93285916 23.501 59.7883701 16.76919 22.19251

TF6 4.31581E-10 5.51803E-10 1.42E-18 4.75E-18 0.00203173 0.0027832

TF7 0.001449721 0.002690575 0.544401 0.3151575 0.004975 0.002965

TF8 -2989.147333 202.684514 -2285.207 206684.91 -3747.65 189.0206

TF9 37.07867 12.2775166 14.56544 5.202232 0.001567 0.001842

TF10 4.8836E-05 2.89869E-05 4.00E-15 6.38E-16 0.017933 0.013532

TF11 2.7393E-08 5.51514E-08 0.568776 0.1042672 0.066355 0.030973

TF12 1.87667E-08 2.89749E-08 19.83835 26.374228 2.79E-05 3.84E-05

TF13 8.90491E-09 1.88063E-08 10.2783 7.42028 0.000309 0.000512

TF14 6.9979 5.833242622 3.79E-07 6.32E-07 0.998004 1.26E-11

TF15 0.001673093 0.003539145 0.001502 0.0012431 0.002358 0.003757

TF16 -0.622100333 0.396782974 0.006375 0.0105688 -1.03163 2.46E-06

TF17 1.788405333 2.237631581 23.82013 0.2149425 0.397888 3.16E-06

TF18 3.590623333 0.711917144 222.9682 9.96E-06 3.000142 0.000283

TF19 -2.670808 1.185307969 22.7801 0.0103584 -3.86278 9.61E-07

4.2.2. CEC-C06 2019 Benchmark Test Functions

In real-world scenarios, there are situations where obtaining an accurate

solution is more crucial than quick results. Moreover, refining an algorithm

and running it multiple times is possible for many individuals. Clients seek

the most effective algorithm that suits their specific needs, regardless of the

time it takes. As part of this modern benchmark collection, ten test functions

were introduced at the CEC-2019 conference (Bacanin et al., 2022; Brest et

al., 2019). These test functions have been evaluated using Leo algorithm to

assess their performance. The test functions known as "The 100-Digit

Challenge" are intended for use in annual optimization competitions, as

shown in Table (4-10). These functions, introduced in CEC-2019, have

become popular and are considered cutting-edge benchmarks for evaluating

the performance of various algorithms in addressing real-world problems. In

this evaluation, we have selected several highly competitive and widely

70

employed algorithms, including DA, WOA, SSA, FDO, LPB, and FOX.

These algorithms were chosen due to their extensive citations in the literature

background to determine exceptional performance on benchmark test

functions and practical applications. The creators of these algorithms facilitate

their accessibility to enhance algorithm credibility and research replicability.

Table 4-10 CEC-2019 benchmarks “the 100-digit challenge” (Brest et al., 2019)

No. Functions Dimension Range 𝒇𝒎𝒊𝒏

1 STORN’S CHEBYSHEV POLYNOMIAL FITTING

PROBLEM

9 [-8192, 8192] 1

2 INVERSE HILBERT MATRIX PROBLEM 16 [-16384, 16384] 1

3 LENNARD-JONES MINIMUM ENERGY CLUSTER 18 [-4,4] 1

4 RASTRIGIN’S FUNCTION 10 [-100, 100] 1

5 GRIEWANGK’S FUNCTION 10 [-100, 100] 1

6 WEIERSTRASS FUNCTION 10 [-100, 100] 1

7 MODIFIED SCHWEFEL’S FUNCTION 10 [-100, 100] 1

8 EXPANDED SCHAFFER’S F6 FUNCTION 10 [-100, 100] 1

9 HAPPY CAT FUNCTION 10 [-100, 100] 1

10 ACKLEY FUNCTION 10 [-100, 100] 1

CEC01 to CEC03 functions have varying dimensions, while the remaining

functions share a common range between [-100, 100]. Thus, CEC01 to

CEC03 functions are unaffected by shift and rotation, while CEC04 to CEC10

functions undergo such transformations. This ensures that all test procedures

remain scalable and flexible. The parameter set for the CEC benchmark

allows algorithms to run 30 times with 30 or 80 agents according to basic of

algorithms and conduct 500 iterations for landscape search. In Table (4-11),

Leo outperforms widely cited algorithms in the literature, except for the

CEC04 test function. Leo achieves comparable results to WOA in

benchmarks like CEC02 and CEC05. However, as indicated in Table (4-12),

Leo surpasses FOX, a recent algorithm. Markedly, Leo performs

exceptionally well in just CEC02 but for CEC06, Leo better performance

rather than FDO and LPB.

71

Table 4-11 Comparing the results of Leo with DA, WOA, and SSA algorithms on CEC-2019 test functions

CEC
Leo DA WOA SSA

Mean STD Mean STD Mean STD Mean STD

CEC01 7294147266 5767198154 5.43E+10 6.69E+10 4.11E+10 5.42E+10 6.05E+09 4.75E+09

CEC02 17.47763 0.098108754 78.0368 87.7888 17.3495 0.0045 18.3434 0.0005

CEC03 12.70311 0.000889537 13.7026 0.0007 13.7024 0 13.7025 0.0003

CEC04 69.86527333 23.78089555 344.3561 414.0982 394.6754 248.5627 41.6936 22.2191

CEC05 2.760246667 0.432754261 2.5572 0.3245 2.7342 0.2917 2.2084 0.1064

CEC06 3.01982 0.755956506 9.8955 1.6404 10.7085 1.0325 6.0798 1.4873

CEC07 195.5583033 236.5351502 578.9531 329.3983 490.6843 194.8318 410.3964 290.5562

CEC08 5.062283333 0.459751941 6.8734 0.5015 6.909 0.4269 6.3723 0.5862

CEC09 3.26147 0.744492954 6.0467 2.871 5.9371 1.6566 3.6704 0.2362

CEC10 20.01238667 0.028550895 21.2604 0.1715 21.2761 0.1111 21.04 0.078

Table 4-12 Comparing the results of Leo with FDO, LPB, and FOX algorithms on CEC-2019 test functions

CEC
Leo FDO LPB FOX

Mean STD Mean STD Mean STD Mean STD

CEC01 7294147266 5767198154 4585.27 20707.627 7494381364 8138223463 2.58E+04 22624.86
CEC02 17.47763 0.098108754 4 3.22414E-09 17.63898 0.31898 18.3442 0.000529
CEC03 12.70311 0.000889537 13.7024 1.649E-11 12.7024 0 13.7025 0.000449
CEC04 69.86527333 23.78089555 34.0837 16.528865 77.90824 29.88519 1.06E+03 501.8163
CEC05 2.760246667 0.432754261 2.13924 0.085751 1.18822 0.10945 6.295 1.27819
CEC06 3.01982 0.755956506 12.1332 0.600237 3.73895 0.82305 5.0325 1.285264
CEC07 195.5583033 236.5351502 120.4858 13.59369 145.28775 177.8949 456.3214 189.4313
CEC08 5.062283333 0.459751941 6.1021 0.756997 4.88769 0.67942 5.6778 0.52774
CEC09 3.26147 0.744492954 2 1.5916E-10 2.89429 0.23138 3.7959 0.339462
CEC10 20.01238667 0.028550895 2.7182 8.8817E-16 20.00179 0.00233 20.9878 0.005376

72

4.2.3. Statistical Tests and Scalability Analysis

As mentioned earlier, statistical tests for comparing multiple result groups use

both parametric and non-parametric approaches. The two-sample T-test

necessitates certain assumptions, while the Wilcoxon Rank-Sum Test serves

as a non-parametric alternative Tables (4-13 and 4-14) present the statistical

analysis results in these distributions, where the samples consist of 30 rounds

of solution for Leo algorithm which are noted in appendix tables (Table 8-1 to

8-6).

Researchers should be confronted a noteworthy challenge when they applied a

statistical model randomly to determine significance values (p-values),

lacking prior studies to select a specific model for evaluating performance

outcomes. The study employed rigorous statistical testing to illuminate

substantial performance variations between pairs of algorithms, emphasizing

the pivotal role of statistical significance in comparative analysis.

Furthermore, it offers valuable insights into the suitability of algorithms for

diverse optimization challenges, empowering professionals with information

for informed decision-making. This is achieved through the identification of

algorithm pairs with favourable statistical distributions, facilitating practical

algorithm selection. The presumptions concerning near equality or symmetry

are upheld, but the fulfilment of requirements regarding variance spread and

normalcy is not entirely satisfactory.

The research shows that DA results with Leo are statistically significant

compared to PSO and GA. Additionally, DA was already evaluated against

PSO, GA, FDO, and LPB algorithms in this research work. To further assess

Leo’s performance, statistical comparisons between Leo and DA, FDO, and

LPB algorithms are presented in Table (4-13).

73

In all statistical tests conducted on unimodal, multimodal, and composite test

functions, Leo algorithm’s results are deemed significant, leading to the

rejection of the null hypothesis, except for TF6 and TF12 when compared to

DA, where the p-values are greater than 0.05. Additionally, Leo consistently

outperforms the FDO and LPB algorithms, except for TF5 and TF15, where

the results do not reject the null hypothesis. Furthermore, there are no

significant differences between Leo and FDO in TF17.

Table 4-13 P-value by the Wilcoxon rank-sum test overall runs for classical benchmark test functions.

TF Leo VS DA Leo VS LPB Leo VS FDO

TF1 0.000031 0.000031 0.000002

TF2 0.000002 0.000002 0.047162

TF3 0.000002 0.000002 0.002585

TF4 0.000031 0.000002 0.000002

TF5 0.000148 0.781264 0.557743

TF6 0.057096 0.000002 0.000002

TF7 0.000002 0.000097 0.000002

TF8 0.031603 0.000002 0.000016

TF9 0.000002 0.000002 0.000002

TF10 0.000002 0.000002 0.000002

TF11 0.000002 0.000002 0.000002

TF12 0.328571 0.000002 0.000002

TF13 0.517048 0.000002 0.000002

TF14 0.000013 0.000013 0.002929

TF15 0.000359 0.012453 0.781264

TF16 0.000001 0.000002 0.000115

TF17 0.000001 0.000002 0.120288

TF18 0.00015 0.000393 0.00015

TF19 0.000002 0.000002 0.000004

Interestingly, in all composite test functions, the null hypothesis is not

rejected for DA, FDO, and LPB algorithms across all 30 individual tests.

Table (4-14) showcases the statistical comparisons of Leo with DA, SSA,

WOA, FDO, and FOX algorithms, employing the Wilcoxon rank-sum test.

The results for Leo are highly significant, as the p-values are significantly less

than 0.05, leading to the rejection of the null hypothesis when compared to

DA and FOX. Additionally, DA results for Leo are statistically significant

74

when compared to SSA, WOA, and FDO, except for CEC01 with SSA,

CEC05 with WOA, and CEC07 with FDO.

Table 4-14 P-value by the Wilcoxon rank-sum test overall runs for CEC-2019 test functions

TF Leo VS DA Leo VS SSA Leo VS WOA Leo VS FDO Leo VS FOX

CEC01 0.000012 0.360039 0.038723 0.000002 0.000002

CEC02 0.000002 0.000002 0.000002 0.000002 0.000002

CEC03 0.000001 0.000001 0.000001 0.000001 0.000001

CEC04 0.000012 0.000125 0.000002 0.000005 0.000002

CEC05 0.033264 0.000026 0.688359 0.000004 0.000002

CEC06 0.000002 0.000002 0.000002 0.000002 0.000002

CEC07 0.000359 0.011079 0.000115 0.171376 0.000148

CEC08 0.000002 0.000002 0.000002 0.000008 0.000082

CEC09 0.000003 0.002765 0.000002 0.000002 0.001593

CEC10 0.000002 0.000002 0.000002 0.000002 0.000002

4.2.4. Quantitative Measurement Metrics

In this subsection, the proposed measurement metrics are used to observe and

analyze Leo algorithm’s performance in more detail. This experiment

evaluates convergence and assesses how well Leo algorithm tackles real-

world problems. The first metric measures convergence, drawing an analogy

to how vaccinations enhance immune responses within the body landscape.

For each experiment, benchmark functions are selected carefully, covering

unimodal, multimodal, and composite benchmark functions, respectively.

Figure 4-10 illustrates the agents’ rapid exploration of the entire region,

gradually converging towards optimality, with the offspring finding the most

optimal positions. This pattern is observed in each experiment for (FT2),

(TF10), and (TF17). The experiment records the agents’ performance from

the beginning to the end of the test, showing their progress over time.

In Figure 4-11, the second experiment for each of (FT2), (TF9), and (TF17)

demonstrates Leo starting with a high fitness value and gradually reducing it

until reaching the desired optimum. In multimodal tests, functions undergo

rapid development within a few iterations. The third test metric, displayed in

75

Figure 4-12 for each of (FT2), (TF9), and (TF17), shows the average fitness

value of all Leo agents decreasing significantly throughout the iterations. The

results indicate that the algorithm not only improves the global most effective

agent but also enhances the optimal solution for all agents. The fourth

measure records the convergence of the global most optimal agent throughout

each iteration, showing that it becomes more accurate as the number of

iterations increases. Figure 4-13, observed in each experiment of (FT2),

(TF8), and (TF17), illustrates a significant shift due to the algorithm’s focus

on local search and exploitation. This emphasizes the algorithm’s ability to

fine-tune and improve the overall performance over time.

76

Fig. 4-10 Search history of the Leo algorithms on unimodal, multimodal, and composite test functions

Fig. 4-11 The trajectory of Leo’s search agents on unimodal, multimodal, and composite test functions

77

Fig. 4-12 The average fitness of Leo’s search agents on unimodal, multimodal, and composite test function

Fig. 4-13 Convergence curve of Leo algorithms on unimodal, multi-modal, and composite test function

78

4.2.5. Real-World Application

As with any other metaheuristic algorithm, Leo is capable of addressing

application-specific challenges in the real world. In this section, Leo is

utilized in two distinct applications, offering customized enhancements that

cater to their unique real-world contexts.

4.2.5.1. The Pathological IgG Fraction in the Nervous System

The determination method used is not influenced by variables that could

potentially impact individuals, such as sex, blood-brain barrier condition,

extraction volume of cerebrospinal fluid (CSF), and the specific protein

measurement technique. This approach ensures optimal evaluation of

pathogenic IgG values in CSF and outperforms other methods described in

the existing literature, particularly in statistical analysis and biochemical

considerations (Link and Huang, 2006). The core goal of this problem is to

find the best solution that effectively evaluates pathological IgG values in

CSF, considering the variations in the nervous system. Taking both statistical

and functional aspects into account, the frequency of the regression line

passing through the source, represented by equation (4.1), is considered

reasonable and has been improved through the aggregation of statistical

regression lines (LEFVERT and LINK, 1985; Su and Chiu, 1986). Most

inquiries concentrate on establishing a connection between serum and fluid

albumin concentrations. However, in this real-world application, a link

between serum albumin levels and IgG levels in cerebrospinal fluid is

demonstrated. To pinpoint the optimal correlation, Leo algorithm is

employed. This method helps identify the most suitable point, ensuring a

comprehensive examination of the correlation between serum albumin and

IgG concentrations in CSF.

79

Equation (4.2) can be utilized to calculate the locally generated concentration

of pathological 𝐼𝑔𝐺 (𝐼𝑔𝐺𝑝) in 𝐶𝑆𝐹 by evaluating the patient’s unique

albumin ratio and 𝐼𝑔𝐺 quotient. Moreover, 𝑆𝑇𝐷(𝑥,𝑦) represents the standard

deviation of the (𝑦) values from the regression line within the range of (-

0.001, +0.001). These two variables, along with the regression line, provide

the confidence interval of the 𝐼𝑔𝐺 quotient (𝑦) for a given albumin quotient

(𝑥).

𝐼𝑔𝐺𝑝 = 𝐼𝑔𝐺(𝐶𝑆𝐹) − (0.43 𝐴𝑙𝑏(𝑆𝑒𝑟𝑢𝑚) − 𝐴𝑙𝑏(𝐶𝑆𝐹) + 0.001) ∗ 𝐼𝑔𝐺(𝑆𝑒𝑟𝑢𝑚) (4.1)

To prove that: 𝐼𝑔𝐺𝑝 = 𝑋𝑖 So, IgG (IgGp) = Y (Xi) then:

𝑌 (𝑋𝑖) = ∑(0.41 + 0.0014 𝑋𝑖)

𝑛

𝑖=1

 (4.2)

The stained gel strip reveals a cutting sequence with twelve fractions, which

are then employed to calculate the number of search agents. Stippled

regression lines depict the level of each proportion. Neutralization is

represented by the two antibody actions, which are displayed for statistical-

level results (Vandvik and Norrby, 1973). Considering the constraints of

equation (4.2), the problem is addressed using Leo algorithm. The outcomes

are depicted in Figure 4-14, demonstrating both the global average fitness and

the average fitness value for each iteration. To optimize the problem, twelve

search agents were employed over 150 iterations. The results indicate that the

optimal solution was attained at iteration 61, with a value of 5.088.

80

Fig. 4-14 Global best with average fitness results from for150 Iteration with 12 search agents

(dimensions) in (IgGp) fraction in the nervous system

4.2.5.2. Integrated Cyber-Physical-Attack for Manufacturing System

Computational analysis can be a valuable asset for the security community, as

it aids in comprehending risks and analyzing attacker behavior in cyber-

physical attacks. This understanding allows for actual responses to adversarial

behaviors at various stages of an attack. Despite its potential benefits, there is

a notable gap in research concerning the evaluation and assessment of

defensive systems, particularly from a security standpoint. Therefore, it

becomes imperative to change a suitable theoretical model to identify optimal

solutions and selecting the global one.

One promising approach to address this challenge is by utilizing or integrating

cyber-physical attacks on manufacturing systems (CPAMS). Such integration

can enhance flexibility and responsiveness while maintaining product quality

to meet clients’ demands. By doing so, manufacturers can strengthen their

security measures and ensure a robust defence against potential threats.

Through computational analysis and the implementation of an effective

theoretical model, the security community can better protect cyber-physical

systems and respond proactively to evolve cyber threats in manufacturing

81

environments (Tran et al., 2019). The presented model is an object-oriented

Petri net-based formal model of a cyber-physical-attack manufacturing system

to enhance system integrity during dynamic simulation (Yu et al., 2017). The

verification and validation of this system can be achieved by optimizing Leo

system using mathematical techniques and supportive tools, including Petri

nets.

Petri nets (Bordbar et al., 2000) have evolved into captivating artistic

masterpieces for distributed systems, providing mesmerizing visualizations

and profound evaluations for a diverse range of complex applications. These

applications span from orchestrating communication networks and refining

healthcare systems to harnessing the power of artificial intelligence and

optimizing manufacturing engineering systems, creating an imaginative

canvas of possibilities. Petri nets also serve as computational mathematical

tools, facilitating the simulation and analysis of dynamic systems. These nets

form a directed graph model, where arcs (𝐹) connect two sets of nodes:

locations (𝑃) and transitions (𝑇). Tokens (or ‘marks’) are represented by dots

inside the spots. Figure 4-15 illustrates this configuration, particularly when

𝑅1 is explicitly defined in the net interpretation between transitions (𝑇) and

locations (𝑃).

Fig. 4-15 The network station is represented by a stochastic Petri net

82

Syntax: A Petri net is a net of the form 𝑃𝑁 = (𝑁, 𝑀, 𝑊), which extends the

elementary net so that:

Given a net 𝑁 = (𝑃, 𝑇, 𝐹), a configuration is a set 𝐶 so that 𝐶 ⊆ 𝑃.

𝑀: 𝑃 → 𝑍 is a place multiset, where is a countable set, covers the concept

of configuration, and is normally described concerning Petri net diagrams as

a marking.

𝑊: 𝐹 → 𝑍 is an arc multiset. The count (or weight) for each arc indicates the

multiplicity of arcs that can be calculated.

 Its transition relation can be described as a pair of |𝑃|by |𝑇| matrices:

𝐹−, defined by ∀𝑠, 𝑡: 𝐹− [𝑝, 𝑡] = 𝐹(𝑝, 𝑡)

𝐹+, defined by ∀𝑠, 𝑡: 𝐹+ [𝑝, 𝑡] = 𝐹(𝑡, 𝑝)

When the pre-set of a transition t is the set of its input places: *𝑡 =

{𝑝 𝜖 𝑃)| 𝐹(𝑝, 𝑡) > 0}; its posset is the set of its output places: 𝑡∗ =

{𝑝 𝜖 𝑃) | 𝐹(𝑝, 𝑡) > 0};. Definitions of pre- and post-sets of places are

analogous.

Following the syntax of Petri nets, system evaluation entails examining

numerous instances of CPAMS. In this context, various nodes, including

machines, robots, sensors, and AGVs, are susceptible to becoming infected by

malicious software and subsequently transmitting it to other vulnerable nodes.

As time progresses, these vulnerable nodes transform into infected nodes.

Once the malicious software is eliminated, the infected nodes can transition

back to being recovered nodes. The susceptible nodes, infectious nodes, and

recovered nodes are symbolized, respectively, as 𝑆, 𝐼, and 𝑅 (Singh et al.,

2018). When considering the attributes of Logistic, new nodes are categorized

as susceptible nodes, and they exhibit a growth rate denoted by 𝑝.

To combat harmful software bifurcation in CPAMS, a novel hybrid

bifurcation law control strategy was introduced by (Zhou et al., 2018). This

83

strategy, defined by equation (4.3), is designed to alleviate the adverse effects

of bifurcations and maintain the integrity of CPAMS. In the equation,

𝐾1 denotes the variable parameter, while 𝐾2 represents the feedback

parameter.

𝑁(𝐼(𝑝, 𝑡)) = 𝑘1𝐹(𝐼(𝑝, 𝑡)) + 𝑘2(𝐼(𝑝, 𝑡) + 𝐼(𝑝, 𝑡)3) (4.3)

To evaluate the probabilistic complex system, the fitness function 𝐹(𝐼(𝑝, 𝑡) is

derived from the Jacobian matrix at the equilibrium point (Jia, 2007). This

process yields simulation results and the optimal point that regulates the

probabilistic occurrence of harmful nodes, updated by the susceptible node.

Consequently, the probabilistic equation (4.4) serves as a method to identify

the node point where it equals zero.

𝐹((𝐼(𝑝, 𝑡)) = ∑ 𝑋3

𝑛

𝑖=1

 + 𝐴 ∑ 𝑋2

𝑛

𝑖=1

+ 𝐵 ∑ 𝑋

𝑛

𝑖=1

+ 𝐶 (4.4)

When,

𝐴 = 0.0283 (1 +
1

𝑑
− 𝑘2)

𝐵 =
0.0283 − 1.0283𝑘2

𝑑

𝐶 =
0.0013 𝑘1 − 0.0283𝑘2

𝑑

In this realistic scenario, let’s consider a set of parameters: the number of

nodes (𝑑) ranges from 15 to 36, 𝑘1 varies from 0 to 1, and 𝑘2 varies from 0.1

to 0.5. To identify the optimal method for updating infection nodes, the Leo

algorithm is utilized. The algorithm produces valuable outcomes, including

the average fitness value and the global average fitness for each iteration.

These results offer valuable insights into the effectiveness of different

updating strategies for infection nodes in the given complex system. In this

training, a total of 300 iterations were conducted with 10 search agents. The

findings indicate that the most successful result was achieved during iteration

84

209 of the globally optimized solution, which yielded a fitness value of

0.072028. Figure 4-16 visually represents the progression of the process.

Fig. 4-16 Fitness results in Leo process for 300 Iteration with 10 search agents depend on the

Jacobian matrix for cyber-physical-attack in the manufacturing system

1 1
8

3
5

5
2

6
9

8
6

1
0
3

1
2
0

1
3
7

1
5
4

1
7
1

1
8
8

2
0
5

2
2
2

2
3
9

2
5
6

2
7
3

2
9
0

0.066

0.071

0.076

0.081

0.086

0.091

0.096

0.101

0.106

Iterations

Fr
eq

u
en

cy

85

CHAPTER FIVE

5. Conclusions, Future Works and Limitations

In this chapter, we provide a comprehensive summary of the proposed

technique and demonstrate its main findings. Furthermore, we offer valuable

recommendations for potential modifications and approaches to enhance the

effectiveness of the technique in the future. These suggestions aim to further

improve the proposed approaches’ effectiveness and efficiency.

5.1. Conclusions

Optimization has been proposed for solving complex dependent problems.

These multiple optimization algorithms draw inspiration from the search

agent’s reproductive swarming process, which involves the birth of new

search agents that explore optimal individuals and sites. Thus, metaheuristic

population-based algorithms such as auto-self optimization were powerful

optimization techniques widely used to solve complex problems across

various domains. These algorithms were designed to mimic natural systems

such as evolution, swarm intelligence, and social interactions to find near-

optimal or even optimal solutions. As a result, metaheuristic population-based

algorithms offer a powerful and flexible approach to solve optimization

problems in diverse domains. Their ability to perform global exploration,

efficiency, and scalability make them attractive tools for tackling real-world

challenges.

Exploration refers to the process of searching the solution space broadly to

discover new and diverse regions that may contain better solutions. The

primary goal of exploration is to ensure that the algorithm explores a wide

range of possibilities, avoiding premature convergence to suboptimal

solutions. During exploration, the algorithm may focus on moving away from

the current solutions and exploring uncharted regions of the search space.

This helps in identifying novel solutions and understanding the overall

86

landscape of the problem such as algorithms based on GA and PSO.

Exploitation involves intensively searching the local neighbourhood of

promising solutions to find the best possible solutions in the vicinity. The

main objective of exploitation is to refine and improve the quality of solutions

by focusing on the most promising areas of the search space. Exploitation is

often characterized by a focus on the best-known solutions, exploiting their

local structure and making incremental improvements. This helps in refining

the search around regions where good solutions are likely to be found.

Thus, striking the right balance ensures that the algorithm is capable of both

exploring diverse regions of the solution space and exploiting the local

structure to refine solutions. This balance is often controlled through

algorithm parameters, such as mutation rates, crossover probabilities, or

particle velocities, depending on the specific optimization algorithm being

used. Achieving an optimal balance is essential for effectively solving

complex optimization problems.

Nevertheless, users should be aware of their non-deterministic nature, the

need for parameter tuning, and the possibility of varying convergence speeds

based on the problem at hand. Optimization processes can be improved by

suggesting, understanding, and selecting the most suitable algorithm tailored

to a specific problem. By carefully considering the problem’s characteristics

and requirements, one can make informed decisions regarding the choice of

algorithm aiming at maximizing the chances of obtaining global solutions in a

timely manner.

In this dissertation, our goal was achieved through two pivotal works in the

field of metaheuristic optimization. First part, the involvement included the

creation of a standardized variant of the crossover operator, known as LPX.

As well, a comprehensive overview of conventional types of crossover

operators was undertaken. This novel operator presented a fresh perspective

87

on the amalgamation of genetic information and solution optimization. The

integration of encoding techniques and standard operators, with a special

emphasis on crossover operators, has been recognized as a pivotal factor in

bolstering the capabilities of metaheuristic optimization and influencing its

overall performance and results.

In the second part, a groundbreaking algorithm titled "Leo" has been

introduced. This innovative algorithm offered an effective and novel approach

to tackle optimization challenges, demonstrating promising outcomes across

various applications. These outcomes collectively have propelled

optimization science and provided invaluable tools for solving complex

problems. Furthermore, Leo was rigorously tested and validated through two

real-life applications, showcasing its practical applicability and robustness .

In the introductory phase, the primary objective was to aid researchers in

identifying an efficient crossover operator that could lead to selecting a global

solution for the problem under investigation. A significant proportion of these

standards were notable for their computational simplicity, resulting in faster

calculations, as demonstrated through heuristic, exploitation, and convergence

evaluations of the selected methods. Additionally, these crossover operators

facilitated the generation of a diverse set of offspring by combining attributes

from two-parent solutions. Thus, this study led to the enhancement of novel

mathematical evolutionary algorithms’ performance through the

implementation of an improved standard option for the crossover operator.

Typically, the standard crossover operators were classified into three types

based on their mathematical definitions: binary-coded crossover, real-coded

crossover (floating point), and order-coded problem crossover. With the

introduction of LPX as a novel mathematical approach to crossover standards,

its effectiveness on algorithms was examined and compared to other existing

standards to assess its efficiency. Likewise, the selection of these random

88

values has played a crucial role in determining the appropriate range for

generating newly developed population-based populations. Besides, the study

performed a heuristic evaluation to assess the technique’s proficiency in

generating parent chromosomes, comparing it with BX and SBX methods.

Through a comparison involving three test functions from classical

benchmark testing functions, LPX exhibited the most performance in terms of

exploitation rate and convergence fitness for the chosen random values. LPX

is built upon the stationary Lagrange multiplier (𝜆), derived from the LDF

theorem, which proved to be a superior standard compared to BX and SBX in

the obtained results.

The first part of excremental evaluation in this study was concluded by

evaluating the performance of LPX in conjunction with LPB algorithm. For

the assessment, the performance of LPX was compared with that of SBX, BX,

and Qubit-X, where all these algorithms were employed. The majority of test

functions showed reasonable convergence during the exploitation evaluation,

considering the chosen random values. LPX for random value (0.2) achieved

a Mean value of 0.0048 with a STD of 0.0031 in TF7. Also, the

corresponding execution time was 143.005 seconds. To compare, the mean

and standard deviation for the other algorithm were Mean and STD, with an

execution time of. LPX is better comparable based metrics then other

crossover standards. The statistical findings for LPX, when compared to the

other standards, provided substantial evidence, confirming that LPX achieved

the optimal balance between effectiveness and exploitation. However, it

should be noted that while LPX showed promising results, a comprehensive

evaluation of the proposed standard with a few other population-based

algorithms would be necessary to fully establish its superiority .

The second part of the research centred on the primary objective of LEO,

which aimed to achieve precise immunizations by leveraging the albumin

89

quotient of human blood. This novel algorithm was conceptualized by

incorporating the transfer of genetic chromosomes and drew inspiration from

genetic algorithms. Moreover, the study delved into explaining the two

fundamental stages of metaheuristic algorithms: exploitation and exploration.

Both of these factors were instrumental in influencing the effectiveness of

LEO. The exploration phase was meticulously crafted to emulate the immune

system’s improvement through effective vaccinations. During the process,

these parameters efficiently divide the population into multiple groups. The

Leo algorithm comprises crossover and mutation parameters that function

separately from the exploitation of individuals. The process established a

population distribution that depended on the level of success. Leo

demonstrated auto-adaptivity by integrating these crossover and mutation

techniques, particularly through the implementation of Lagrange orientation

and Lagrange multiplier stationary point navigation. These mechanisms

allowed Leo to dynamically adjust and optimize its performance as it

progressed through the optimization process.

Leo’s initialization, exploration, and exploitation stages all employ a

randomization approach. To evaluate Leo’s performance, the study employed

19 classical single-objective benchmark testing functions, which were

categorized into three subgroups: unimodal, multimodal, and composite test

functions. Leo was separately compared to other algorithms in each subgroup,

where the first subgroup included DA, PSO, and GA. Remarkably, Leo’s

efficiency and performance were consistently close to those of the comparison

algorithms in each subgroup of test functions. In the comparison with FDO

and LPB, Leo emerged as the superior choice in most cases, except for the

composite benchmark functions sub-group. Dependently, Leo demonstrated

commendable performance and effectiveness across various types of

benchmark functions.

90

Moreover, Leo was tested on 10 current CEC-C06 benchmarks and

consistently outperformed its competitors in the majority of scenarios when

compared to two well-known algorithms (PSO and GA), three modern

algorithms (DA, WOA, and SSA), and three recent algorithms (FDO, LPB,

and FOX). However, it should be noted that the results did not perfectly align

with all recent algorithms, as well as the other algorithms utilizing Leo

approach. This suggests that while Leo showed significant promise and

superiority in many cases, further evaluations and refinements may be needed

to achieve consistent success across all scenarios and with all algorithms. The

Wilcoxon rank-sum test was used to determine the statistical significance of

the results. Additionally, Leo was put to practical use in two newly proposed

real-life applications to assess and validate its performance and suitability in

tackling real-world scenarios .

In sum, during the evaluation of various test functions and real-world

applications, it was noticed that the algorithm’s performance is largely

affected by the number of search agents used. The algorithm relies heavily on

the Lagrange stationary point during gene crossover, which is a vital part of

its search mechanism. Due to this characteristic, the algorithm is

appropriately named Lagrange Elementary for Optimization. It was observed

that using a small number of search agents (below seven, as the median for all

benchmarks) significantly decreases the algorithm’s accuracy. Conversely,

increasing the number of search agents improves the accuracy of the

algorithm but comes with higher gene costs and more frequent offspring

updates. The study results indicate that the proposed approach surpasses the

performance of most algorithms in the field. Nevertheless, it is important to

acknowledge that Leo faces challenges when dealing with some problem in

inspired optimization and may not identify the best optimal solution for all

91

specific problems. Despite this limitation, Leo has remained focused, aligning

with achieved results and optimizing methods across various domains.

5.2. Recommendations for Future Works

Future studies should pursue several of the following research trajectories:

• The first suggestion includes an assessment of LPX’s performance

through comparisons with established crossover techniques, covering

binary, real-coded, and order-coded problem methods. Expanding the

evaluation, LPX will undertake testing on a diverse set of test

functions, which will include two-dimensional functions among others.

The effectiveness of LPX will be demonstrated through functional tests

involving multimodal and composite test functions. Furthermore,

researchers have improved a novel evolutionary metaheuristic

algorithm, designed to address both single-objective and multi-

objective optimization scenarios by operating on populations.

• In the future, Leo’s major areas of focus will be twofold. First, the

researchers aim to modify, implement, and test Leo for multi-objective

and binary objective optimization tasks, expanding its capabilities to

handle a broader range of optimization jobs. Secondly, researchers will

explore incorporating evolutionary operators into Leo to enhance its

performance and search abilities. Additionally, they will investigate

combining Leo with other algorithms to create more powerful

optimization approaches that leverage various techniques’ strengths.

This hybridization could lead to improved optimization solutions and

increased applicability across different problem domains. These

explorations hold great potential to enhance and advance the

capabilities of Leo as an optimization method, leading to significant

improvements in its performance and applicability.

92

• A novel Lagrange mutation standard will be introduced to replace the

current Leo parameters, aiming to enhance the optimization process

significantly. This innovative approach will enable the application of

the proposed technique to diverse problem domains, facilitating result

comparisons with other heuristic techniques. Moreover, there is

potential for identifying and incorporating new parameters into the

genetic algorithm, leading to further improvements in the optimization

performance.

• The last one; however, it is challenging. Embarking on the

development of a novel technique anchored in reinforcement learning

or deep learning to identify non-dominated solutions represents a

captivating and demanding trajectory in the realm of future research.

This avenue also possesses the capability to introduce an innovative

classification methodology. The advancements and refinements within

this proposed approach hold substantial promise in broadening the

scope of the optimization domain, thereby opening up new avenues for

adeptly and efficiently tackling intricate problems.

5.3. Limitations

Every research endeavor encounters specific and general limitations, both

during the identification of problem gaps and the subsequent efforts to

address these gaps, particularly in the realm of solving independent

optimization problems. Consequently, this study inevitably faced certain

limitations, which are outlined below:

• The primary limitation of stochastic methods lies in their inherent

challenge to deliver high accuracy, often falling short of precision,

although typically maintaining proximity to the actual solution.

93

• A notable drawback is the requirement for extensive tuning, as these

methods may not perform optimally without meticulous parameter

adjustments.

• Additionally, the lack of assured convergence poses a significant

concern, making it unpredictable and, at times, necessitating careful

consideration and monitoring during the optimization process.

94

References

Abbas, A.K., 2020. Basic immunology : functions and disorders of the immune system,

Sixth edition. ed. Elsevier, Philadelphia, PA.

Abdullah, J.M., Ahmed, T., 2019. Fitness Dependent Optimizer: Inspired by the Bee

Swarming Reproductive Process. IEEE Access 7, 43473–43486.

https://doi.org/10.1109/ACCESS.2019.2907012

Abido, M.A., 2006. Multiobjective evolutionary algorithms for electric power dispatch

problem. IEEE transactions on evolutionary computation 10, 315–329.

Ackora-Prah, J., Gyamerah, S.A., Andam, P.S., 2014. A heuristic crossover for portfolio

selection.

Ahmed, Z.H., 2010. Genetic algorithm for the traveling salesman problem using sequential

constructive crossover operator. Int J Biom Bioinformatics 3, 96.

Andersson, M., Alvarez-Cermeñio, J., Bernardi, G., Cogato, I., Fredman, P., Frederiksen,

J., Fredrikson, S., Gallo, P., Grimaldi, L.M., Grønning, M., Keir, G., Lamers, K.,

Link, H., Magalhães, A., Massaro, A.R., Öhman, S., Reiber, H., Rönnbäck, L.,

Schluep, M., Schuller, E., Sindic, C.J.M., Thompson, E.J., Trojano, M., Wurster, U.,

1994. Cerebrospinal fluid in the diagnosis of multiple sclerosis: A consensus report. J

Neurol Neurosurg Psychiatry 57, 897–902. https://doi.org/10.1136/jnnp.57.8.897

Arcuri, A., Briand, L., 2011. A Practical Guide for Using Statistical Tests to Assess

Randomized Algorithms in Software Engineering, in: Proceedings of the 33rd

International Conference on Software Engineering, ICSE ’11. Association for

Computing Machinery, New York, NY, USA, pp. 1–10.

https://doi.org/10.1145/1985793.1985795

Arora, K., Kumar, A., Kamboj, V.K., Prashar, D., Jha, S., Shrestha, B., Joshi, G.P., 2020.

Optimization Methodologies and Testing on Standard Benchmark Functions of Load

Frequency Control for Interconnected Multi Area Power System in Smart Grids.

Mathematics 8, 980. https://doi.org/10.3390/math8060980

Bacanin, N., Zivkovic, M., Al-Turjman, F., Venkatachalam, K., Trojovsky, P.,

Strumberger, I., Bezdan, T., 2022. Hybridized sine cosine algorithm with

convolutional neural networks dropout regularization application. Sci Rep 12, 6302.

https://doi.org/10.1038/s41598-022-09744-2

Bäck, T., Fogel, D.B., Michalewicz, Z., 2018. Evolutionary computation 1: Basic

algorithms and operators. CRC press.

Bao, T.N., Huynh, Q.-T., Nguyen, X.-T., Nguyen, G.N., Le, D.-N., 2020. A novel particle

swarm optimization approach to support decision-making in the multi-round of an

auction by game theory. International Journal of Computational Intelligence Systems

13, 1447–1463.

Belciug, S., Gorunescu, F., 2016. A hybrid genetic algorithm-queuing multi-compartment

model for optimizing inpatient bed occupancy and associated costs. Artif Intell Med

68, 59–69.

Bell, O., 2022. Applications of Gaussian Mutation for Self Adaptation in Evolutionary

Genetic Algorithms.

Beloglazov, A., Buyya, R., 2012. Optimal online deterministic algorithms and adaptive

heuristics for energy and performance efficient dynamic consolidation of virtual

machines in cloud data centers. Concurr Comput 24, 1397–1420.

Beyer, H.-G., Deb, K., 2001. On self-adaptive features in real-parameter evolutionary

algorithms. IEEE Transactions on evolutionary computation 5, 250–270.

Bordbar, B., Giacomini, L., Holding, D.J., 2000. UML and Petri Nets for design and

analysis of distributed systems. https://doi.org/10.1109/CCA.2000.897497

95

Bosch, W., 2007. Discrete crossover analysis, in: Dynamic Planet: Monitoring and

Understanding a Dynamic Planet with Geodetic and Oceanographic Tools IAG

Symposium Cairns, Australia 22–26 August, 2005. Springer, pp. 131–136.

Boussaïd, I., Lepagnot, J., Siarry, P., 2013a. A survey on optimization metaheuristics. Inf

Sci (N Y) 237, 82–117.

Boussaïd, I., Lepagnot, J., Siarry, P., 2013b. A survey on optimization metaheuristics. Inf

Sci (N Y) 237, 82–117.

Brest, J., Maučec, M.S., Bošković, B., 2019. The 100-Digit Challenge: Algorithm jDE100,

in: 2019 IEEE Congress on Evolutionary Computation (CEC). pp. 19–26.

https://doi.org/10.1109/CEC.2019.8789904

Carlos, P., Azevedo, R.B., 2011. “Geração de Diversidade na Otimização Dinâmica

Multiobjetivo Evolucionária por Paisagens de Não-Dominância.”

Chaparro, B.M., Thuillier, S., Menezes, L.F., Manach, P.-Y., Fernandes, J. V, 2008.

Material parameters identification: Gradient-based, genetic and hybrid optimization

algorithms. Comput Mater Sci 44, 339–346.

Chu, S.-C., Tsai, P.-W., Pan, J.-S., 2006. Cat swarm optimization, in: PRICAI 2006:

Trends in Artificial Intelligence: 9th Pacific Rim International Conference on

Artificial Intelligence Guilin, China, August 7-11, 2006 Proceedings 9. Springer, pp.

854–858.

Civicioglu, P., 2012. Transforming geocentric cartesian coordinates to geodetic

coordinates by using differential search algorithm. Comput Geosci 46, 229–247.

https://doi.org/https://doi.org/10.1016/j.cageo.2011.12.011

Cook, S.A., Mitchell, D.G., 1997. Finding hard instances of the satisfiability problem: A

survey. Satisfiability Problem: Theory and Applications 35, 1–17.

Copeland, B.J., 2000. The modern history of computing.

Deb, K., Beyer, H.-G., 2001. Self-adaptive genetic algorithms with simulated binary

crossover. Evol Comput 9, 197–221.

Deep, K., Thakur, M., 2007. A new crossover operator for real coded genetic algorithms.

Appl Math Comput 188, 895–911.

Desjardins, B., Falcon, R., Abielmona, R., Petriu, E., 2017. Planning robust sensor

relocation trajectories for a mobile robot with evolutionary multi-objective

optimization. Computational Intelligence in Wireless Sensor Networks: Recent

Advances and Future Challenges 179–210.

Dey, N., 2017. Advancements in applied metaheuristic computing. IGI global.

Dey, S., Bhattacharyya, S., Maulik, U., 2017. Efficient quantum inspired meta-heuristics

for multi-level true colour image thresholding. Appl Soft Comput 56, 472–513.

Dey, S., Saha, I., Bhattacharyya, S., Maulik, U., 2014. Multi-level thresholding using

quantum inspired meta-heuristics. Knowl Based Syst 67, 373–400.

Dhal, K.G., Ray, S., Das, A., Das, S., 2019. A Survey on Nature-Inspired Optimization

Algorithms and Their Application in Image Enhancement Domain. Archives of

Computational Methods in Engineering 26, 1607–1638.

https://doi.org/10.1007/s11831-018-9289-9

Eli Benjamini, Geoffrey Sunshine, Richard Coico, 2000. Immunology : A Short Course,

4th edition. ed. Wiley-Liss, New York.

Ewens, W.J., Lessard, S., 2015. On the interpretation and relevance of the fundamental

theorem of natural selection. Theor Popul Biol 104, 59–67.

Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Liu, J., Zhao, D., Li, Y.,

2022. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target

Ther 7, 94. https://doi.org/10.1038/s41392-022-00950-y

96

Fay, M.P., Proschan, M.A., 2010. Wilcoxon-Mann-Whitney or t-test? On assumptions for

hypothesis tests and multiple interpretations of decision rules. Stat Surv 4, 1.

Fister Jr, I., Yang, X.-S., Fister, I., Brest, J., Fister, D., 2013. A brief review of nature-

inspired algorithms for optimization. arXiv preprint arXiv:1307.4186.

Fogel, D.B., 1994. An introduction to simulated evolutionary optimization. IEEE Trans

Neural Netw 5, 3–14. https://doi.org/10.1109/72.265956

Gain, A., Dey, P., 2020. Adaptive Position–Based Crossover in the Genetic Algorithm for

Data Clustering. Recent Advances in Hybrid Metaheuristics for Data Clustering 39–

59.

García-Martínez, C., Lozano, M., Herrera, F., Molina, D., Sánchez, A.M., 2008. Global

and local real-coded genetic algorithms based on parent-centric crossover operators.

Eur J Oper Res 185, 1088–1113.

Geem, Z.W., Kim, J.H., Loganathan, G.V., 2001. A new heuristic optimization algorithm:

harmony search. Simulation 76, 60–68.

Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., Wright, M.H., 2008. George B.

Dantzig and systems optimization. Discrete Optimization 5, 151–158.

https://doi.org/https://doi.org/10.1016/j.disopt.2007.01.002

Gopalakrishna, A.K., Ozcelebi, T., Lukkien, J.J., Liotta, A., 2019. Runtime evaluation of

cognitive systems for non-deterministic multiple output classification problems.

Future Generation Computer Systems 100, 1005–1016.

Gutierrez, J.C.T., Adamatti, D.S., Bravo, J.M., 2019. A new stopping criterion for multi-

objective evolutionary algorithms: application in the calibration of a hydrologic

model. Comput Geosci 23, 1219–1235.

Haldurai, L., Madhubala, T., Rajalakshmi, R., 2016. A study on genetic algorithm and its

applications. Int. J. Comput. Sci. Eng 4, 139–143.

Hamid, Z.A., Musirin, I., Othman, M.M., Rahim, N.A., 2011. Efficient power scheduling

via stability index based tracing technique and blended crossover continuous ant

colony optimization. Aust J Basic Appl Sci 5, 1335–1347.

Hassanat, A.B.A., Alkafaween, E., 2017. On enhancing genetic algorithms using new

crossovers. International Journal of Computer Applications in Technology 55, 202–

212.

Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H., 2019. Harris

hawks optimization: Algorithm and applications. Future generation computer systems

97, 849–872.

Henderson, D., Jacobson, S.H., Johnson, A.W., 2003. The theory and practice of simulated

annealing. Handbook of metaheuristics 287–319.

Herrera, F., Lozano, M., Sánchez, A.M., 2005. Hybrid crossover operators for real-coded

genetic algorithms: an experimental study. Soft comput 9, 280–298.

Herrera, F., Lozano, M., Verdegay, J.L., 1997. Fuzzy connectives based crossover

operators to model genetic algorithms population diversity. Fuzzy Sets Syst 92, 21–

30.

Hilding, F.G., Ward, K., 2005. Automated operator selection on genetic algorithms, in:

Knowledge-Based Intelligent Information and Engineering Systems: 9th International

Conference, KES 2005, Melbourne, Australia, September 14-16, 2005, Proceedings,

Part IV 9. Springer, pp. 903–909.

Hoos, H.H., Stützle, T., 2004. Stochastic local search: Foundations and applications.

Elsevier.

Hussain, A., Muhammad, Y.S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A.,

Gani, S., 2017. Genetic algorithm for traveling salesman problem with modified cycle

crossover operator. Comput Intell Neurosci 2017.

97

Hussain, K., Najib, M., Salleh, M., Cheng, S., Naseem, R., n.d. Common Benchmark

Functions for Metaheuristic Evaluation: A Review.

Iqbal, M., Azam, M., Naeem, M., Khwaja, A.S., Anpalagan, A., 2014. Optimization

classification, algorithms and tools for renewable energy: A review. Renewable and

sustainable energy reviews 39, 640–654.

Ito, K., Kunisch, K., 2008. Lagrange multiplier approach to variational problems and

applications. SIAM.

Jalali, M.R., Afshar, A., MARINO, M., 2005. Ant Colony Optimization Algorithm (ACO);

A new heuristic approach for engineering optimization 2.

Jeong, Y.-S., Shin, K.S., Jeong, M.K., 2015. An evolutionary algorithm with the partial

sequential forward floating search mutation for large-scale feature selection problems.

Journal of the Operational Research Society 66, 529–538.

https://doi.org/10.1057/jors.2013.72

Jia, Q., 2007. Hyperchaos generated from the Lorenz chaotic system and its control. Phys

Lett A 366, 217–222. https://doi.org/https://doi.org/10.1016/j.physleta.2007.02.024

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., 2014. A comprehensive survey:

artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42, 21–57.

Katayama, K., Sakamoto, H., Narihisa, H., 2000. The efficiency of hybrid mutation genetic

algorithm for the travelling salesman problem. Math Comput Model 31, 197–203.

Kaya, Y., Uyar, M., 2011. A novel crossover operator for genetic algorithms: ring

crossover. arXiv preprint arXiv:1105.0355.

Kennedy, J., 2006. Swarm Intelligence, in: Zomaya, A.Y. (Ed.), Handbook of Nature-

Inspired and Innovative Computing: Integrating Classical Models with Emerging

Technologies. Springer US, Boston, MA, pp. 187–219. https://doi.org/10.1007/0-387-

27705-6_6

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95

- International Conference on Neural Networks. pp. 1942–1948 vol.4.

https://doi.org/10.1109/ICNN.1995.488968

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kita, H., Ono, I., Kobayashi, S., 1999. Theoretical analysis of the unimodal normal

distribution crossover for real-coded genetic algorithms. Transactions of the Society

of Instrument and Control Engineers 35, 1333–1339.

Kleinberg, B., Li, Y., Yuan, Y., 2018. An Alternative View: When Does SGD Escape

Local Minima?, in: Dy, J., Krause, A. (Eds.), Proceedings of the 35th International

Conference on Machine Learning, Proceedings of Machine Learning Research.

PMLR, pp. 2698–2707.

Kora, P., Yadlapalli, P., 2017. Crossover operators in genetic algorithms: A review. Int J

Comput Appl 162.

Kuo, H.C., Lin, C.H., 2013. Cultural evolution algorithm for global optimizations and its

applications. Journal of applied research and technology 11, 510–522.

Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S., 1999. Genetic

algorithms for the travelling salesman problem: A review of representations and

operators. Artif Intell Rev 13, 129–170.

LEFVERT, A.K., LINK, H., 1985. Igg Production Within the Central Nervous System – a

Critical Review of Proposed Formulae, in: PEETERS, H. (Ed.), Protides of the

Biological Fluids. Elsevier, pp. 199–202. https://doi.org/https://doi.org/10.1016/B978-

0-08-031739-7.50051-3

98

Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S., 2020. Slime mould algorithm: A

new method for stochastic optimization. Future Generation Computer Systems 111,

300–323.

Liang, Y.-C., Juarez, J., 2016. A novel metaheuristic for continuous optimization

problems: Virus optimization algorithm. Engineering Optimization 48, 73–93.

https://doi.org/10.1080/0305215X.2014.994868

Lin, Z., Chen, M., Ma, Y., 2010. The augmented lagrange multiplier method for exact

recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.

Ling, S.-H., Leung, F.H.F., 2007. An improved genetic algorithm with average-bound

crossover and wavelet mutation operations. Soft comput 11, 7–31.

Link, H., Huang, Y.-M., 2006. Oligoclonal bands in multiple sclerosis cerebrospinal fluid:

An update on methodology and clinical usefulness. J Neuroimmunol 180, 17–28.

https://doi.org/https://doi.org/10.1016/j.jneuroim.2006.07.006

Lundstrom, K., 2020. The Current Status of COVID-19 Vaccines. Front Genome Ed 2.

https://doi.org/10.3389/fgeed.2020.579297

Lyakhov, A.O., Oganov, A.R., Stokes, H.T., Zhu, Q., 2013. New developments in

evolutionary structure prediction algorithm USPEX. Comput Phys Commun 184,

1172–1182.

Mahmudov, E.N., 2011. Approximation and optimization of discrete and differential

inclusions. Elsevier.

Malik, S., Wadhwa, S., 2014. Preventing premature convergence in genetic algorithm

using DGCA and elitist technique. International Journal of Advanced Research in

Computer Science and Software Engineering 4.

Matrajt, L., Eaton, J., Leung, T., Brown, E.R., 2021. Vaccine optimization for COVID-19:

Who to vaccinate first? Sci Adv 7, eabf1374.

McGinley, B., Maher, J., O’Riordan, C., Morgan, F., 2011. Maintaining healthy population

diversity using adaptive crossover, mutation, and selection. IEEE Transactions on

Evolutionary Computation 15, 692–714.

Melanie, M., 1999. 0−262−63185−7 (PB) 1. Genetics-Computer simulation.2. Genetics-

Mathematical models.

Meraihi, Y., Ramdane-Cherif, A., Acheli, D., Mahseur, M., 2020. Dragonfly algorithm: a

comprehensive review and applications. Neural Comput Appl 32, 16625–16646.

https://doi.org/10.1007/s00521-020-04866-y

Mirjalili, S., 2016. Dragonfly algorithm: a new meta-heuristic optimization technique for

solving single-objective, discrete, and multi-objective problems. Neural Comput Appl

27, 1053–1073. https://doi.org/10.1007/s00521-015-1920-1

Mirjalili, S., 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic

paradigm. Knowl Based Syst 89, 228–249.

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M., 2017.

Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.

Advances in engineering software 114, 163–191.

Mirjalili, S., Lewis, A., 2016. The Whale Optimization Algorithm. Advances in

Engineering Software 95, 51–67.

https://doi.org/https://doi.org/10.1016/j.advengsoft.2016.01.008

Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer. Advances in

engineering software 69, 46–61.

Mohammed, H., Rashid, T., 2023. FOX: a FOX-inspired optimization algorithm. Applied

Intelligence 53, 1030–1050. https://doi.org/10.1007/s10489-022-03533-0

Naidu, D.S., 2002. Optimal control systems. CRC press.

99

Nakrani, S., Tovey, C., 2004. On honey bees and dynamic server allocation in internet

hosting centers. Adaptive behavior 12, 223–240.

Ndeffo Mbah, M.L., Liu, J., Bauch, C.T., Tekel, Y.I., Medlock, J., Meyers, L.A., Galvani,

A.P., 2012. The Impact of Imitation on Vaccination Behavior in Social Contact

Networks. PLoS Comput Biol 8, e1002469-.

Nicholl, D.S.T., 2023. An introduction to genetic engineering. Cambridge University

Press.

Nuwarda, R.F., Ramzan, I., Weekes, L., Kayser, V., 2022. Vaccine Hesitancy:

Contemporary Issues and Historical Background. Vaccines (Basel) 10, 1595.

https://doi.org/10.3390/vaccines10101595

Ono, I., 1997. A Real-coded Gemetic Algorithm for Function Optimization Using

Unimodal Normal Disribution Crossover, in: Proc. 7th Int. Conf. on Genetic

Algorithms. pp. 246–253.

Osaba, E., Diaz, F., Onieva, E., Carballedo, R., Perallos, A., 2014. AMCPA: A population

metaheuristic with adaptive crossover probability and multi-crossover mechanism for

solving combinatorial optimization problems. International Journal of Artificial

Intelligence 12, 1–23.

Osuna-Enciso, V., Cuevas, E., Castañeda, B.M., 2022. A diversity metric for population-

based metaheuristic algorithms. Inf Sci (N Y) 586, 192–208.

Ouattara, A., Aswani, A., 2018. Duality approach to bilevel programs with a convex lower

level, in: 2018 Annual American Control Conference (ACC). IEEE, pp. 1388–1395.

Patel, R., Collins, D., Bullock, S., Swaminathan, R., Blake, G.M., Fogelman, I., 2001. The

effect of season and vitamin D supplementation on bone mineral density in healthy

women: a double-masked crossover study. Osteoporosis International 12, 319–325.

Pongcharoen, P., Stewardson, D.J., Hicks, C., Braiden, P.M., 2001. Applying designed

experiments to optimize the performance of genetic algorithms used for scheduling

complex products in the capital goods industry. J Appl Stat 28, 441–455.

Puljić, K., Manger, R., 2013. Comparison of eight evolutionary crossover operators for the

vehicle routing problem. Mathematical Communications 18, 359–375.

Qin, A.K., Suganthan, P.N., 2005. Self-adaptive differential evolution algorithm for

numerical optimization, in: 2005 IEEE Congress on Evolutionary Computation. pp.

1785-1791 Vol. 2. https://doi.org/10.1109/CEC.2005.1554904

Rahman, C.M., Rashid, T.A., 2021. A new evolutionary algorithm: Learner performance

based behavior algorithm. Egyptian Informatics Journal 22, 213–223.

https://doi.org/10.1016/j.eij.2020.08.003

Reiber, H., 2003. Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and

source-related dynamics. Restor Neurol Neurosci 21, 79–96.

Saravanan, K.A., Panigrahi, M., Kumar, H., Rajawat, D., Nayak, S.S., Bhushan, B., Dutt,

T., 2022. Role of genomics in combating COVID-19 pandemic. Gene 823, 146387.

https://doi.org/https://doi.org/10.1016/j.gene.2022.146387

Singh, J., Kumar, D., Hammouch, Z., Atangana, A., 2018. A fractional epidemiological

model for computer viruses pertaining to a new fractional derivative. Appl Math

Comput 316, 504–515. https://doi.org/https://doi.org/10.1016/j.amc.2017.08.048

Sivanandam, S.N., Deepa, S.N., Sivanandam, S.N., Deepa, S.N., 2008. Genetic algorithms.

Springer.

Smith, J.E., 2008. Self-Adaptation in Evolutionary Algorithms for Combinatorial

Optimisation, in: Cotta, C., Sevaux, M., Sörensen, K. (Eds.), Adaptive and Multilevel

Metaheuristics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 31–57.

https://doi.org/10.1007/978-3-540-79438-7_2

100

Su, C., Chiu, H., 1986. [Measurements of IgG and albumin in CSF and serum in various

neurological diseases]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 19,

250–257.

Takahashi, M., Kita, H., 2001. A crossover operator using independent component analysis

for real-coded genetic algorithms, in: Proceedings of the 2001 Congress on

Evolutionary Computation (Ieee Cat. No. 01th8546). IEEE, pp. 643–649.

Tawhid, M.A., Ali, A.F., 2016. Simplex particle swarm optimization with arithmetical

crossover for solving global optimization problems. Opsearch 53, 705–740.

Thapatsuwan, P., Chainate, W., Pongcharoen, P., 2006. Investigation of genetic algorithm

parameters and comparison of heuristic arrangements for container packing problem.

Curr Appl Sci Technol 6, 274–284.

Tran, N.-H., Park, H.-S., Nguyen, Q.-V., Hoang, T.-D., 2019. Development of a Smart

Cyber-Physical Manufacturing System in the Industry 4.0 Context. Applied Sciences

9, 3325. https://doi.org/10.3390/app9163325

Tu, J., Chen, H., Wang, M., Gandomi, A.H., 2021. The colony predation algorithm. J

Bionic Eng 18, 674–710.

Tuan, H.D., Apkarian, P., Nakashima, Y., 2000. A new Lagrangian dual global

optimization algorithm for solving bilinear matrix inequalities. International Journal

of Robust and Nonlinear Control: IFAC‐Affiliated Journal 10, 561–578.

Umbarkar, A.J., Sheth, P.D., 2015. Crossover operators in genetic algorithms: a review.

ICTACT journal on soft computing 6.

Vandvik, B., Norrby, E., 1973. Oligoclonal IgG Antibody Response in the Central Nervous

System to Different Measles Virus Antigens in Subacute Sclerosing Panencephalitis.

Proceedings of the National Academy of Sciences 70, 1060–1063.

https://doi.org/10.1073/pnas.70.4.1060

Wang, G.-G., 2018. Moth search algorithm: a bio-inspired metaheuristic algorithm for

global optimization problems. Memet Comput 10, 151–164.

Wong, K.P., Dong, Z.Y., 2005. Differential evolution, an alternative approach to

evolutionary algorithm, in: Proceedings of the 13th International Conference on,

Intelligent Systems Application to Power Systems. IEEE, pp. 73–83.

Xu, Y., Liu, Xin, Cao, X., Huang, C., Liu, E., Qian, S., Liu, Xingchen, Wu, Y., Dong, F.,

Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M.,

Roepman, R., Dietmann, S., Virta, M., Kengara, F., Zhang, Z., Zhang, Lifu, Zhao, T.,

Dai, J., Yang, J., Lan, L., Luo, M., Liu, Z., An, T., Zhang, B., He, X., Cong, S., Liu,

Xiaohong, Zhang, W., Lewis, J.P., Tiedje, J.M., Wang, Q., An, Z., Wang, Fei, Zhang,

Libo, Huang, T., Lu, C., Cai, Z., Wang, Fang, Zhang, J., 2021. Artificial intelligence:

A powerful paradigm for scientific research. The Innovation 2, 100179.

https://doi.org/https://doi.org/10.1016/j.xinn.2021.100179

Yang, X.-S., 2018. Social algorithms. arXiv preprint arXiv:1805.05855.

Yang, X.-S., 2010. A new metaheuristic bat-inspired algorithm. Nature inspired

cooperative strategies for optimization (NICSO 2010) 65–74.

Yang, X.-S., Deb, S., 2009. Cuckoo Search via Lévy flights, in: 2009 World Congress on

Nature & Biologically Inspired Computing (NaBIC). pp. 210–214.

https://doi.org/10.1109/NABIC.2009.5393690

Yang, Y., Chen, H., Heidari, A.A., Gandomi, A.H., 2021. Hunger games search: Visions,

conception, implementation, deep analysis, perspectives, and towards performance

shifts. Expert Syst Appl 177, 114864.

Yu, Z., Ouyang, J., Li, S., Peng, X., 2017. Formal modeling and control of cyber-physical

manufacturing systems. Advances in Mechanical Engineering 9.

https://doi.org/10.1177/1687814017725472

101

Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H., 2021. QANA: Quantum-based avian

navigation optimizer algorithm. Eng Appl Artif Intell 104, 104314.

Zhang, Xin, Zhang, Q., Zhang, Xiu, 2017. Nonuniform antenna array design by

parallelizing three-parent crossover genetic algorithm. EURASIP J Wirel Commun

Netw 2017, 1–7.

Zhou, W., Huang, C., Xiao, M., Cao, J., 2018. Hybrid tactics for bifurcation control in a

fractional-order delayed predator–prey model. Physica A: Statistical Mechanics and

its Applications 515. https://doi.org/10.1016/j.physa.2018.09.185

Zhou, Y., Hao, J.-K., Duval, B., 2020. Frequent pattern-based search: A case study on the

quadratic assignment problem. IEEE Trans Syst Man Cybern Syst 52, 1503–1515.

102

6. APPENDIX

Table 6-1Thirty turns result of the Leo Algorithm for solving the classical benchmark TF1 to TF5

Turns TF1 TF2 TF3 TF4 TF5

T1 5.7150E-11 5.6762E-07 1.2188E-09 1.0351E-04 7.3772E+00

T2 9.7092E-09 1.4933E-06 1.8392E-09 3.3539E-05 8.5613E+00

T3 1.5077E-11 8.2411E-06 3.9375E-10 1.4748E-05 8.1545E+00

T4 1.4520E-08 2.0330E-05 6.6221E-09 8.9398E-05 1.0881E+01

T5 2.4333E-09 4.5991E-06 3.1757E-09 3.6133E-05 1.1694E+01

T6 3.1336E-09 7.2257E-07 3.5319E-10 3.3947E-05 1.1959E+01

T7 3.8117E-08 2.8734E-06 5.6831E-10 1.3090E-05 7.4091E+00

T8 1.0295E-09 2.9747E-07 5.6088E-09 1.9830E-06 7.5175E+00

T9 2.0270E-09 9.1651E-06 1.1493E-07 3.7754E-05 5.8598E+00

T10 4.2913E-11 4.0526E-06 2.3359E-10 1.5411E-05 7.7933E+00

T11 1.1978E-09 1.2771E-06 1.5672E-10 3.7263E-05 4.8039E+00

T12 8.7826E-13 1.8492E-06 4.2791E-10 2.9099E-05 1.1516E+01

T13 1.8536E-09 3.3741E-06 1.8434E-09 3.5766E-05 8.4861E+00

T14 1.2309E-10 3.9459E-06 1.6274E-09 2.4712E-06 9.5808E+00

T15 8.7594E-11 4.5005E-07 5.0069E-09 1.0353E-05 7.6523E+00

T16 1.1294E-10 4.4229E-06 4.6875E-10 4.0288E-05 3.7435E+00

T17 2.3213E-10 2.9973E-06 4.4602E-09 4.7540E-05 8.0218E+00

T18 8.4904E-13 1.8652E-06 1.9485E-11 2.7245E-06 8.2870E+01

T19 5.7187E-10 6.6887E-06 3.4550E-10 8.7197E-05 5.0199E+00

T20 1.4445E-10 3.7356E-06 1.8066E-09 1.1329E-04 7.6728E+00

T21 1.9079E-12 2.4884E-07 4.8771E-11 9.7449E-06 6.5145E+00

T22 1.4302E-10 7.2899E-06 9.7532E-12 3.0302E-05 7.6977E+00

T23 2.8635E-10 4.1894E-06 3.3301E-10 1.0475E-05 3.4204E+00

T24 5.6676E-11 1.8531E-06 1.2847E-10 1.7099E-06 5.6097E+00

T25 7.1417E-10 3.1320E-06 6.3531E-13 8.5247E-06 1.0548E+01

T26 7.7583E-10 3.5953E-06 4.7430E-09 2.2244E-05 1.7122E+01

T27 2.7639e-11 4.8630E-08 6.9433E-12 2.7588E-05 9.1110E+00

T28 8.2552E-12 5.3771E-06 7.0212E-12 9.4228E-05 8.8853E+00

T29 8.5767E-10 2.8846E-06 1.5666E-09 1.8485E-05 7.8466E+00

T30 9.5326E-12 3.4788E-07 1.4899E-09 7.2053E-05 4.7603E+00

STD 7.49992E-09 3.956E-06 2.079E-08 3.228E-05 13.932859

Average 2.6987E-09 3.7305E-06 5.3147E-09 3.6029E-05 1.0603E+01

103

Table 6-2 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF6 to TF10

Turns TF6 TF7 TF8 TF9 TF10

T1 7.0149E-11 2.5099E-03 -2.9856E+03 5.6712E+01 3.4618E-05

T2 7.4016E-10 3.8098E-04 -2.5117E+03 2.5869E+01 8.6764E-05

T3 6.8509E-10 3.0393E-03 -2.7092E+03 4.7758E+01 6.6370E-05

T4 7.8929E-12 3.6169E-04 -2.8671E+03 4.5768E+01 8.1759E-05

T5 4.3749E-11 1.0235E-03 -2.5301E+03 4.2783E+01 7.0249E-05

T6 1.5629E-11 6.6818E-03 -3.2803E+03 4.9748E+01 9.9201E-05

T7 2.4195E-12 8.0361E-04 -3.0251E+03 3.0844E+01 5.5008E-05

T8 8.4324E-12 8.2193E-05 -2.7289E+03 4.5768E+01 3.4954E-06

T9 1.6519E-12 5.6315E-04 -3.2408E+03 4.7758E+01 7.9909E-05

T10 5.9208E-10 7.6974E-05 -3.2422E+03 4.2783E+01 3.4072E-05

T11 8.5238E-11 4.6642E-05 -2.9856E+03 5.1738E+01 6.4573E-06

T12 9.5523E-10 1.1847E-04 -3.1633E+03 1.1940E+01 7.4044E-05

T13 9.0493E-12 2.0231E-05 -2.9460E+03 3.6813E+01 5.1958E-05

T14 4.7900E-10 1.1363E-03 -3.0448E+03 1.7909E+01 6.2033E-06

T15 2.4611E-09 1.9565E-04 -3.0843E+03 3.5818E+01 2.7682E-05

T16 3.2176E-11 2.4935E-04 -3.0236E+03 3.7808E+01 5.7349E-05

T17 6.4177E-10 8.8483E-05 -2.8277E+03 4.6763E+01 7.2002E-05

T18 3.3274E-12 5.6389E-04 -3.0843E+03 2.6864E+01 8.4044E-05

T19 1.5748E-09 3.0174E-04 -3.0236E+03 3.0844E+01 7.8349E-05

T20 5.2737E-10 7.5564E-05 -3.0647E+03 6.4672E+01 5.2670E-05

T21 1.6897E-10 1.1689E-02 -2.9066E+03 3.1839E+01 5.6411E-06

T22 2.7896E-12 5.0307E-04 -3.1634E+03 2.3879E+01 6.4216E-06

T23 3.1894E-10 2.5549E-04 -2.8078E+03 2.7859E+01 2.7110E-05

T24 8.7873E-10 8.3372E-04 -2.9856E+03 3.2834E+01 3.0071E-05

T25 6.8917E-12 9.1768E-04 -2.8474E+03 2.1889E+01 3.5876E-05

T26 5.4885E-10 5.9488E-04 -2.9659E+03 5.1738E+01 1.5349E-05

T27 4.4977E-11 3.5254E-04 -2.9066E+03 3.3829E+01 8.8663E-05

T28 8.9078E-10 8.2515E-03 -3.2013E+03 3.7808E+01 4.8216E-05

T29 5.2499E-10 1.0392E-03 -3.2818E+03 3.0844E+01 5.2336E-05

T30 6.2519E-10 7.3514E-04 -3.2393E+03 2.2884E+01 3.3192E-05

STD 5.51803E-10 0.002690575 202.684514 12.2775166 2.89869E-05

Average 4.3158E-10 1.4497E-03 -2.9891E+03 3.7079E+01 4.8836E-05

104

Table 6-3 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF11 to TF15

Turns TF11 TF12 TF13 TF14 TF15

T1 5.2619E-09 8.8402E-10 9.1906E-08 4.9505E+00 1.2267E-03

T2 2.6104E-09 5.9989E-08 1.5827E-10 9.8039E+00 1.2274E-03

T3 3.6737E-09 4.0766E-08 5.8812E-10 9.9800E-01 9.4100E-04

T4 2.5042E-07 1.1926E-10 1.9637E-09 1.2671E+01 7.0377E-04

T5 1.4561E-07 4.1079E-08 9.4619e-11 9.9800E-01 1.2266E-03

T6 1.5060E-09 7.8765E-09 2.5188E-09 9.9800E-01 7.1367E-04

T7 8.7729E-08 2.5148E-11 4.0983E-09 1.0763E+01 7.0209E-04

T8 4.2372E-08 4.9800E-08 8.5378E-09 2.9821E+00 2.0363E-02

T9 4.2149E-11 3.2272E-08 5.8833E-12 5.9288E+00 1.2328E-03

T10 2.3184E-09 2.3220E-08 2.7538E-09 1.0763E+01 7.4800E-04

T11 2.8083E-10 1.9841E-09 1.2700E-08 9.9800E-01 1.2584E-03

T12 1.2006E-09 1.4427E-10 6.9274E-10 4.9505E+00 1.2267E-03

T13 4.6796E-10 1.5565E-08 2.9044E-08 5.9288E+00 5.7737E-04

T14 7.0717E-10 1.1461E-10 4.1487E-08 1.2671E+01 1.2232E-03

T15 6.2201E-10 8.0409E-08 6.0606E-10 4.9505E+00 1.2268E-03

T16 1.6439E-08 1.3261E-10 2.3379E-08 9.9800E-01 1.2260E-03

T17 3.7406E-09 2.4453E-08 6.2936E-11 3.9683E+00 1.2310E-03

T18 9.0209E-08 2.1404E-08 4.1740E-11 1.9920E+00 8.6937E-04

T19 2.9759E-10 1.2371E-08 8.0147E-09 1.0763E+01 1.2276E-03

T20 3.2030E-10 1.1869E-09 1.5614E-08 2.9821E+00 1.2324E-03

T21 7.5053E-09 1.2559E-07 2.5654E-10 2.1988E+01 9.8483E-04

T22 5.4198E-09 3.1577E-10 2.4013E-12 1.0763E+01 1.2341E-03

T23 8.1218E-08 3.7855E-10 2.3334E-09 5.9288E+00 1.4480E-03

T24 3.8170E-08 4.5392E-11 1.6102E-10 2.0154E+01 7.5459E-04

T25 4.5173E-10 8.4744E-09 2.9168E-10 1.3619E+01 7.4609E-04

T26 7.6004E-11 9.0137E-10 1.7740E-11 1.9920E+00 6.6188E-04

T27 6.3383E-11 1.0420E-09 2.8680E-09 1.5504E+01 6.8985E-04

T28 2.5184E-08 4.2723E-09 7.2103E-09 2.9821E+00 1.2537E-03

T29 2.4614E-13 9.3154E-10 8.5324E-10 9.9800E-01 1.2315E-03

T30 7.8738E-09 7.2539E-09 7.5359E-11 4.9505E+00 8.0438E-04

STD 5.51514E-08 2.89749E-08 1.88063E-08 5.833242622 0.003539145

Average 2.7393E-08 1.8767E-08 8.9049E-09 6.9979E+00 1.6731E-03

105

Table 6-4 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF16 to TF19

Turns TF16 TF17 TF18 TF19

T1 -2.1546E-01 3.9789E-01 3.0000E+00 -3.7807E+00

T2 -1.0316E+00 4.9398E-01 3.9871E+00 -2.9525E+00

T3 -2.1546E-01 4.9398E-01 5.0172E+00 -3.0832E+00

T4 -1.0316E+00 3.9789E-01 5.0172E+00 -8.3916E-01

T5 -1.0316E+00 3.9789E-01 3.0000E+00 -1.8881E+00

T6 -2.1546E-01 2.4153E+00 3.9871E+00 -1.3441E+00

T7 -2.1546E-01 4.9398E-01 3.0000E+00 -1.3781E+00

T8 -2.1546E-01 3.9789E-01 3.0000E+00 -1.4012E+00

T9 -1.0316E+00 2.7054E+00 3.0000E+00 -1.0008E+00

T10 -4.1618E-01 2.7054E+00 3.0000E+00 -1.0008E+00

T11 -1.0316E+00 5.8444E+00 3.0000E+00 -9.9928E-01

T12 -2.1546E-01 5.8444E+00 3.0000E+00 -1.0008E+00

T13 -1.0316E+00 2.7054E+00 3.9871E+00 -2.4215E+00

T14 -2.1546E-01 3.9789E-01 3.9871E+00 -3.8160E+00

T15 -2.1546E-01 3.9789E-01 3.9871E+00 -3.8628E+00

T16 -1.0316E+00 2.4153E+00 3.9871E+00 -3.8305E+00

T17 -2.1546E-01 3.9789E-01 3.9871E+00 -3.6584E+00

T18 -1.0316E+00 2.7054E+00 5.0172E+00 -1.0924E+00

T19 -2.1546E-01 3.9789E-01 5.0172E+00 -2.0298E+00

T20 -1.0316E+00 3.9789E-01 3.9871E+00 -2.0298E+00

T21 -2.1546E-01 4.9398E-01 3.0000E+00 -3.0014E+00

T22 -2.1546E-01 4.9398E-01 3.9871E+00 -3.5176E+00

T23 -4.1618E-01 3.9789E-01 3.0000E+00 -3.5707E+00

T24 -1.0316E+00 3.9789E-01 3.0000E+00 -3.6177E+00

T25 -1.0316E+00 7.7827E+00 3.0000E+00 -3.7767E+00

T26 -1.0000E+00 7.7827E+00 3.1532E+00 -3.8160E+00

T27 -7.6566E-01 3.9789E-01 3.1532E+00 -3.8425E+00

T28 -1.0316E+00 3.9789E-01 3.1532E+00 -3.8628E+00

T29 -1.5610E-01 2.7054E+00 3.1532E+00 -3.8624E+00

T30 -9.4417E-01 3.9789E-01 3.1532E+00 -3.8465E+00

STD 0.39678297 2.2376316 0.7119171 1.18530797

Average -6.2210E-01 1.7884E+00 3.5906E+00 -2.6708E+00

106

Table 6-5 Thirty turns result of the Leo Algorithm for CECC06 2019 benchmark from CEC01 to CEC05

Turns CEC01 CEC02 CEC03 CEC04 CEC05

T1 5815932303 17.378 12.7039 39.1798 2.7937

T2 5712129381 17.3807 12.7024 49.8577 2.6028

T3 6216690442 17.6698 12.7024 39.1013 3.4027

T4 1585174688 17.4542 12.7049 78.8027 2.4969

T5 9220344881 17.6344 12.7024 83.2009 3.64

T6 8418457844 17.5348 12.7039 52.0287 2.993

T7 1567417025 17.667 12.7024 53.1781 3.066

T8 1688209977 17.5919 12.7024 61.6233 3.0998

T9 27536483350 17.6247 12.7038 44.9834 2.6969

T10 6322536308 17.4901 12.7024 85.0411 3.2708

T11 17143729506 17.3681 12.7047 103.1185 2.8597

T12 9307644320 17.3956 12.7039 64.3646 2.4969

T13 2545929820 17.3448 12.7024 62.0859 3.2391

T14 9927465777 17.4605 12.7024 130.5873 2.729

T15 4846304503 17.3664 12.7024 69.881 2.0278

T16 4908828949 17.4189 12.7039 122.7165 3.0347

T17 9708582167 17.41 12.7024 86.7732 2.8715

T18 1694437894 17.4241 12.7044 80.3519 2.3543

T19 15092830730 17.406 12.7024 40.8155 2.8656

T20 6056256418 17.5058 12.7037 80.2602 2.5656

T21 9461370318 17.4199 12.7049 76.094 2.4162

T22 7274760836 17.4107 12.7035 42.2611 2.7223

T23 2738732176 17.4562 12.7026 71.4022 1.8685

T24 2203478766 17.4308 12.7027 67.0105 2.6082

T25 8324911133 17.5325 12.7039 76.7896 2.3647

T26 1470849386 17.4333 12.7024 93.1453 2.9336

T27 8868821921 17.4984 12.7026 42.4095 3.4587

T28 3427675957 17.6728 12.7024 78.893 2.9821

T29 3257616112 17.4298 12.7024 38.9709 1.9253

T30 16480815108 17.5187 12.7024 81.0305 2.421

STD 7294147266 17.47763 12.70311 69.86527333 2.760246667

Average 5767198154 0.098108754 0.000889537 23.78089555 0.432754261

107

Table 6-6 Thirty turns result of the Leo Algorithm for CECC06 2019 benchmark from CEC06 to CEC10

Turns CEC06 CEC07 CEC08 CEC09 CEC10

T1 2.4444 111.9963 4.6443 3.2709 19.9997

T2 2.729 6.279 5.2963 2.8535 20.0002

T3 3.7425 341.5468 5.2276 2.7229 19.9999

T4 3.2169 90.4789 4.4763 2.766 20.0761

T5 1.9316 514.6286 4.7009 2.7147 20.0001

T6 2.8572 138.608 4.939 2.9986 20.0214

T7 2.8216 48.3782 5.8893 2.8272 20.0002

T8 2.7715 466.8038 5.2182 2.7412 20.0001

T9 2.289 -215.6031 5.7596 2.6432 20.0683

T10 3.532 607.4944 4.9719 2.9111 20

T11 1.8078 86.8596 5.6254 3.1509 20

T12 4.8188 1059.1107 5.1002 2.9682 20

T13 3.1563 177.642 5.578 2.6983 20.0002

T14 3.3149 99.4334 6.1724 2.7382 20.0001

T15 3.129 256.9525 5.2011 3.0207 20.0005

T16 2.5807 187.3906 4.3387 2.9384 20.0004

T17 3.4561 60.3966 5.0964 2.6718 20.0001

T18 3.3106 -13.6686 4.9131 2.9292 20.0001

T19 4.0572 181.4768 4.7398 2.9802 20.0002

T20 3.5707 182.4722 5.1698 2.632 20

T21 3.8623 90.2608 5.3156 4.41 20

T22 4.3316 214.1007 4.684 3.6393 20.0002

T23 2.2843 97.8762 5.2246 3.6572 20.0992

T24 2.3059 55.0337 4.8591 3.5732 20.0002

T25 2.486 465.8648 4.7907 4.392 20.0195

T26 2.5048 183.0413 4.5701 3.4268 20.0002

T27 1.6545 107.7778 4.6682 4.1321 20.0843

T28 2.6987 -20.8859 4.6043 6.0846 20.0001

T29 3.9246 121.9088 4.4443 3.3914 20.0001

T30 3.0041 163.0942 5.6493 3.9603 20.0002

STD 3.01982 195.5583033 5.062283333 3.26147 20.01238667

Average 0.755956506 236.5351502 0.459751941 0.744492954 0.028550895

108

7. Publications

The initial crossover standard operator, LPX, has been published in the

journal "Systems" by MDPI publisher. The paper titled "A New Lagrangian

Problem Crossover: A Systematic Review and Meta-Analysis of Crossover

Standards" has been published in a journal with an impact factor of 2.895 and

is indexed by reputable databases like Clarivate Analytics and Scopus, among

others. As for the second proposed algorithm, Leo, it is currently under

consideration at (Expert Systems with Applications Journal-IF:8.5) for review

and has not been published yet.

109

 یما ەبن رەسەلاگرانج ل ییتاەرەس یباشکردن یتمیرۆلگئە

 رۆڤەئ سۆکر ێی نو کارپیکەرێکی

 كى دكتؤرايةتيَزيَ

كراوة لة زانكؤي ريَهةول ياريئةنداز يكينةكت ثيَشكةشى ئةنجومةنى كؤليَذى
ثؤليتةكنيكى هةوليَر وةكو بةشيَك لة ثيَداويستيةكانى بةدةست هيَنانى ثلةى

 سيستةمى زانياريي اريندازةئلة دكتؤراى فةلسةفة

 لةلايةن

 ئاسۆ محمد علاءالدین محمد

 ٢٠١٢زانکۆی شەفێڵد - ئینتەرنێتلەپرۆگڕامسازی و تەکنەلۆجیای ر ەماست

 ٢٠١٠زانکۆی سلێمانی -ئامارو کۆمپیوتەرلة بەكالۆريۆس

 بةسةرثةرشتيارى
 طارق احمد رشيدث.د.

 ٢٠٢٣ کانونی دووەم

https://epu.edu.iq/ku/%DA%A9%DB%86%D9%84%DB%8E%DA%98%DB%8C-%D8%A6%DB%95%D9%86%D8%AF%D8%A7%D8%B2%DB%8C%D8%A7%D8%B1%DB%8C-%D8%AA%DB%95%DA%A9%D9%86%DB%8C%DA%A9%DB%8C-%D9%87%DB%95%D9%88%D9%84%DB%8E%D8%B1-2/

110

 پوختە

 مەڵ ب ! کات ەد رەس ەچار)ئۆپتیمایزەیشن(باشکردن ی کانەشێک ندنە سەر ەپ ی نی وردب یواز ێش

. کان ەشێک ی زڵۆئا ی ادبوونیز ەڵ گ ەل داەحەت ر ەب ە ت ێبخر ەی کەدانانەبارە وق ی ر ەگیکار ت ێتوانر ەد

برۆز شتوانیدان ی ماەبن ر ەسەل ندن ەس ەرەپ ی ستی وری تاهیم یکان ەتمیر ۆلگەئ کارپێکەرەکان پشت ە

ئن ە کەد یار ید انۆیخ یتگش ی داەئ ەک ستن ەبەد (کانە رۆرات ەپۆ ئ -)ستاندەرەکان ەران ۆرات ەپۆ ئ مە .

لەسەر ئ انەڕگکاریگەری ڕۆڵیکی ک ،ەوە نەک ەد رز ەب ستغلالکردنیو ۆ ب دەگێرن گرنگ ر ۆز ە

باشکردن ان ەڕگ تورەگی کار ی و ی رۆڤەئ س ۆکر بەناوی رۆڤەئ س ۆ کر کارپێکەری ە ک ەوەن یژ ێ.

 ەی وە رزکردنەب ۆ ب ت، ێنێ ناسەد (Lagrangian Problem Crossover -LPX) یلاگرانج ەی شێک

 ی اەڕرەباشترکردن. س ی کانێیەنو ەشێ ک ەی وە ووبوونەڕووب ڕ ە ل ندن ەسەر ەپ ی کانەتمی رۆلگ ەئ یداەئ

 (Lagrange Elementary Optimization -Leo) لاگرانج ییتاە رەس یباشکردن ش،ە وەئ

 ی ک ڕۆڵێ LPX ەک، (Single-Objective)یی ئامانج ەتاک ی کێتم یر ۆلگەئ وەک ووڕ ە خاتەد

 .ت ێڕێگ ەد رچاوەب

 ی بژاردنەڵه ۆ ب ەگرنگ رۆز شتوواندایدان یما ەبن ی کانەتمی رۆلگ ەئ ە ل ر ۆڤەئ س ۆکرکارپێکەری

 م ەک کان ەڵەوه کات ەکات د ی وتەک ەپاش ەیکییەباشترکردندا. کارا ی کانەسۆ پر ەگونجاو ل ی رەسەچار

 ە ک ەوەن یژ ێتو ییتاە رەس ی ناغۆ. ق ە وەکاتەد مەک کانداییەار یندازەئ ەرنام ەب ەل کان ەچوون ێ و ت ە وەکاتەد

پشتیپێدەبەسترێت ک ووڕ ەخات ەد ستا ێئ ی ر ۆڤەئ سۆکر یکان ەوازێ ش ەل ی گشت یک ێنی وانێڕ ت ەل ە

نو یار یندازە ئ ی کانەکار جگکانداەشێک ی کردنیت یەرا ەنێو ، LPXیشکردنە شکێپ ش،ەو ەل ە.

داه ە تاز یو ەڵکێت یک ێکیکن ەت ەی دووان یکارکرد یماکان ەبن ەل وەردەگیرێت ە ک ەیەرانەنێو

 ەڵ گ ەل LPX کانییەکار یتاق ە نگاندنە سەڵ. ه(LDF – Lagrangian Dual Function) ی لاگرانج

کر(SBX) کراوەوێ هاوش ەییدووان ی رۆڤەئ س ۆکر کو ەو یتر یکان ەستاندارد ی رۆڤەس ۆ،

کر(BX) کراوەڵکێت و ە ر ۆڤەئ سۆکر ەل (Qubit-X) رۆڤەسۆکر-ت یکوب ی رۆڤەئ سۆ،

ئن ەکەد راورد ەب دا ەنیق ەاستڕ ی کان ەدکراوۆک ە ل ی گشتەب LPX ەک ن ە کەد ەوە ب ە ئاماژ کانەنجام ە .

 ەل ،یت ەبی تا ە . بدات ەد شانین دا ەکید ی کانەتڵەحا ەل یراوردکار ەب یداەو ئ ەتر باشتر ی کانەوازێش

TF7بۆ LPX کات یداەئ و ل ی سابکردنیح ی باشتر ی ها ەب ێ س ر ەه ی ر ەرانسەس ە کورتتر

تر راورد ەب ەب دات ەد شان ین دایک ەمەڕەه لەب ستانداردەکانی ناوەندی بەهای دەکاتە (α=0.2) ۆ دا

دەکاتە (α=0.2)د لەستاندار ی کێن ، لادا0.0048 تی پێویست بۆکا ەهەژمارکردنی ، و0.0031 دا

(α=0.2) شەکیە 143.005دەکاتە متمان یگرنگ یئامار یکار ی. راورد ەب ەب LPX یکراوێپە و

 .ەوکراوەتەاستڕپشت ر ۆڤەئ سۆکر ی تر ی کانەستاندارد ەڵگەل

111

ل ت ێنرێ ناسەد یۆ ل ی ناو ەب یمانس ڕۆ یندنە سەرەپ یک ێوازێ ش داەکەوە ن یژ ێتو ی مەدوو یناغ ۆق ەل یۆ .

هاوکێشەی بە ۆڤمر ی نێخو یکان ەنی لبومەئ ە شەب ە ک ە ووبەست کوتان ی ورد ەی سۆ پر پشتی

لت ێن ێه ەکارد ەب ە ل کانەکەریز ەکارۆه یدان ێپە رەپبۆ ت ێنێ هە کارد ەب گونجاندن ۆخ یکێ بازڕێ یۆ .

هاوکێشە دیاریکراوەکان و سیستەمی یکارکرد ی هاکانە ب ی ما ەبن رەسەل ە وە کانەنیج ی نڕی ب ەی گڕێ

 ە کەتمی رۆلگ ەئ ی نیو وردب ی. ورد نوێی ستانداردی کرۆسئۆڤەر کە لە بەشی یەکەم باسی لێوە کراوە

 کان ەرەوێپ ی کانەرۆ راوج ۆج ە رکەئ رەس ەل ەوە توند ەی وە کردنیتاق ەی گڕێ ە ل رفراوانەب یک ەیەو ێش ەب

ئەد CECC06 2019 و ید یقلەت یکانەرەوێ پ ردووەه شە وان ەل ،کراوەتەوەاستڕپشت ەل یۆ ل یا.

 Dragonfly ،Genetic Algorithm ،Practical کەو یناسراو یکانەتمی رۆلگ ەئ ر ەرامبەب

Swarm Optimization ئ ل ی وانەو . ت ێکرەد ەوان ێ پ رکدا ەئ ن یند ەچ ی رەرانسە س ە تر

 ر ەرامبەب ەباشکردن ل یکانەشێک یرکردنەسەچار ەل یۆل ییو کارا یرەگی کار ریگشتگ یک ێراورد ەب

ل ت ێن ێنگ ەسەد ەڵه زراون ەدام ە ک ەی تمانیر ۆلگەئ م ەئ ە فر ەی وەکردنیتاق ی کانەرکەئ ی باشکردن ە.

تر یکان ەتم یرۆلگە ئ ەل ەکەکراواریشنێپ ئەلگۆریزمە، TF11ی تە بیتا ە، ب (TF8-TF13) یواز ێش

ب بوو، جێی(2.7393E-08)ە ک TF11 یهاەب ی اڕکێت ەباشتر ی رەرانسەس ەل ،ەیە ئاماژ .

 ی رز ەب ی داەئ وامە رد ەب ارکراویشنێپ یواز ێ، ش(TF14-TF19) داەکهاتێ پ ەیو ەکردنیتاق ی کانەرکەئ

ش شانی ن ت ەڕەبن ی کانەتمیر ۆلگەئ ە ب راورد ەب یکان ەنجام ە ئ ە ل ی ر یپشتگ ی ئامار یکاری دا.

بۆدۆزینەوەی ن ێکرەد شینما ئەپلیکەیشنی نوێ ی کانەنانێکاره ەبدوو هاەرو ەو ه کات ەد ەکەو ەنی ژێتو

نوێیەکان سکێشە و ان ەڕگ ۆ ب کان ەستاندارد ە رەوێپ ی نان ێ کارهەب ە ب یۆ لئەلگۆریتمی یر یقامگە.

 .ەوەتکراوەاستڕپشت ستغلالکردنیئ

112

 اوفر-روسلك جديدالخوارزمية التحسين الابتدائية لاغرانج تعتمد على مشغل

 رسالة
جزء من كأربيل -فى الجامعة التقنية اربيل-ةيلهندساالتقنية كليةالمقدمة الى مجلس

 . علوماتم نظمهندسة متطلبات نيل درجة الدكتوراه في اختصاص

 من قبل
 ئاسو محمد علاءالدين محمد

 ٢٠١٢ جامعة شفيلد - برمجيات و تكنولوجيا الانترنت ةأنظم ماجستير

 ٢٠١٠ السليمانية جامعة - كومبيوترالأحصاء وال بكالوريوس في

 باشراف
 طارق احمد رشيد .د.أ

 ٢٠٢٣ ديسمبر

113

 ختصرالم

فعالیتها وقابلیة التوسع يمكن أن تتعرض ومع ذلك ،طريقة التطور الخوارزمیات تحل مشاكل التحسین

السكان بشكل كبیر على المعتمدة على التطورية تعتمد خوارزمیات المشكلة. تعقید للتحدي مع زيادة

المشغلین الذين يحددون أدائهم العام. يعمل هؤلاء المشغلون على تعزيز الاستكشاف والاستغلال، وهو

 Lagrangian Problemأمر بالغ الأهمیة للبحث والتحسین الفعالیات. يقدم البحث مشغل التقاطع)

Crossover -LPX .الجديدة التحسین مشاكل معالجة في التطورية الخوارزمیات أداء لتعزيز ،)

 (خوارزمیة يقدم فإنە ذلك، إلى (، Lagrange Elementary Optimization - Leoبالإضافة

 دورًا مهمًا. LPXوهي خوارزمیة ذات هدف واحد حیث يلعب

يعد مشغل التقاطع في الخوارزمیات المعتمدة على السكان أمرًا بالغ الأهمیة لاختیار الحلول المناسبة

التطبیقات التكالیف في الوقت وتقلیل الأخطاء وتقلیل تعمل كفاءتها على توفیر التحسین. في عملیات

في المستخدمة الحالیة التقاطع أسالیب عن عامة لمحة الدراسة من الأولیة المرحلة تقدم الهندسیة.

تقديم فإن ذلك مع المشكلة. وتمثیل الهندسیة ومبتكرة LPXالعملیات جديدة هجینة تقنیة عن عبارة

 (المزدوجة لاغراض وظیفة مبادئ من الإلهام (. Lagrangian Dual Function - LDFتستمد

التجريبیة التقییمات) LPXتقارن مثل الأخرى المعايیر SBX – Simulated Binaryمع

Crossover(و ،)BX – Blend Crossover(و ،)Qubit-X – Qubit-Crossover في)

أن إلى النتائج تشیر الحقیقیة. المشفرة الانتقال الطر LPXعملیات على عمومًا الأخرى ويتفوق ق

أداءً فائقًا ووقتاً حسابیًا LPX، يظُهر TF7ويظهر أداءً مشابهة للحالات المتبقیة. على وجە التحديد في

) أقصرعبر بالمتوسط مقارنةً الثلاثة العشوائیة عند α=0.2القیم المعیاري 0.0048(والانحراف ،

(α=0.2 عند)0.0031(وحساب الوقت ،α=0.2 عند)وحدة. يتحقق التحلیل الإحصائي 143.005

 مقارنة بمعايیر التقاطع الأخرى. LPXمن أهمیة وموثقة

من الثانیة المرحلة الدراسةفي خوارزمیة هذا تسمى جديدة تطورية طريقة تقديم تم ،Leo هذه .

يستخدم البشري. الدم زلال في تستخدم التي الدقیقة التطعیم عملیة من مستوحى Leoالخوارزمیة

. ة یأسلوب التكیف الذاتي، حیث يقوم بتطوير عوامل ذكیة من خلال التقاطع الجیني بناءً على قیم وظیف

يتم التحقق من دقة الخوارزمیة وإحكامها على نطاق واسع من خلال اختبارات صارمة على وظائف

 Leo. يتم قیاس أداء CECC06 2019قیاس الأداء المتنوعة، بما في ذلك المعايیر التقلیدية ومعايیر

مثل معروفة خوارزمیات Dragonfly ،Genetic Algorithm ،Practical Swarmمقابل

Optimization وغیرها عبر وظائف متعددة. تقوم المقارنة الشاملة بتقییم فعالیة ،Leo وكفاءتە في

متعدد الاختبار وظائف تحسین في بها. المعمول الخوارزمیات هذه مقابل التحسین مشكلات حل

114

، تفوق النهج المقترح على الخوارزمیات الأخرى، بمتوسط TF11(، وخاصة TF8-TF13الوسائط)

(2.7393E-08(المركبة الاختبار وظائف عبر أنە بالذكر والجدير .)TF14-TF19 أظهرت ،)

الإحصائي التحلیل ويدعم الأساسیة. بالخوارزمیات مقارنة باستمرار عالیا أداءً المقترحة الطريقة

يتم كما البحث، خوارزم استنتاجات لهذه الحقیقي العالم تطبیقات هةیعرض استقرار تأكید يتم ذه .

 القیاسیة للاستكشاف والاستغلال. ر ايیعباستخدام الم ةیخوارزم

