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Abstract 

The evolutionary sophistication method solves optimization problems; 

however, its effectiveness and scalability can be challenged as problem 

complexity increases. Population-based evolutionary metaheuristic algorithms 

heavily rely on operators that determine their overall performance. These 

operators enhance exploration and exploitation, crucial for effective search 

and optimization. The research introduces the crossover operator, Lagrangian 

Problem Crossover (LPX), to boost evolutionary algorithms' performance in 

tackling new optimization problems. Additionally, it presents Lagrange 

Elementary Optimization (LEO), a single-objective algorithm where LPX 

plays a significant role. 

The crossover operator in population-based algorithms is crucial for selecting 

suitable solutions in optimization processes. Its efficiency saves time, 

minimizes errors, and reduces costs in engineering applications. The initial 

phase of the study presents an overview of the current crossover methods 

utilized in engineering operations and problem representation. Furthermore, 

presenting LPX, it is a fresh and inventive hybrid technique that draws 

inspiration from the principles of the Lagrangian Dual Function (LDF). 

Experimental evaluations compare LPX with other standards such as 

Simulated Binary Crossover (SBX), Blended Crossover (BX), and Qubit-

Crossover (Qubit-X) in real-coded crossovers. The results indicate that LPX 

generally outperforms other methods and shows comparable performance in 

remaining cases. Specifically, in TF7, LPX demonstrates superior 

performance and shorter computation time across all three random values 

compared to Mean (α=0.2) at 0.0048, Standard Deviation (α=0.2) at 0.0031, 

and time computation (α=0.2) at 143.005 units. Statistical analysis validates 

the significance and reliability of LPX compared to other crossover standards. 



vii 
 

In the second phase of the research, a novel evolutionary method named Leo 

is introduced. Leo is inspired by the accurate vaccination process that utilizes 

the human blood albumin quotient.  Leo utilizes a self-adaptive approach, 

evolving intelligent agents through gene crossover based on fitness function 

values. The algorithm's accuracy and precision are extensively validated 

through rigorous testing on diverse benchmark functions, including both 

traditional and CECC06 2019 benchmarks. Leo's performance is 

benchmarked against well-known algorithms like Dragonfly, Genetic 

Algorithm, Practical Swarm Optimization, and others across multiple 

functions. A comprehensive comparison evaluates Leo's effectiveness and 

efficiency in solving optimization problems against these established 

algorithms. In optimizing multimodal test functions (TF8-TF13), particularly 

TF11, the proposed approach outperformed other algorithms, with an average 

TF11 value of (2.7393E-08). Notably, across the composite test functions 

(TF14-TF19), the proposed method exhibited consistently high performance 

compared to the base algorithms. The statistical analysis supports the research 

conclusions, and real-world applications of Leo are also showcased. The 

stability of Leo is confirmed using standard metrics for exploration and 

exploitation. 
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CHAPTER ONE 

1. Introduction 

This chapter of the dissertation centers on the categorization and overview of 

optimization techniques for complex problems, while also delves into the 

concept of self-adaptation for such complexities. Additionally, it serves to 

provide clarity regarding the dissertation’s problem statement, objectives, and 

the motivation that drove the investigation of the issues encountered 

throughout the project development. Ultimately, the chapter outlines the 

dissertation organizational structure, designed to assist readers in navigating 

the inquiries effectively. 

1.1. An Overview of Optimization Algorithms and their Categorizations 

Searching for the unknown and seeking the most effective solution have been 

priorities since computers were invented. In 1945, Alan Turing utilized a 

specific search method to decrypt German Enigma ciphers during World War 

II (Copeland, 2000). Following that, in (Gill et al., 2008) technique for 

solving linear programming problems (Gill et al., 2008). Since then, a myriad 

of algorithms has been developed for diverse applications, including 

optimization and problem-solving. These optimization algorithms play a 

crucial role in finding suitable solutions to various problems. While multiple 

approaches might exist for a given situation, the optimal approach is the one 

that takes a global perspective into account. Typically, optimization problems 

exhibit non-linearity and possess intricate characteristics.  

Moreover, based on the predictability and repeatability of their behavior, 

algorithms can be categorized into two main groups: deterministic algorithms 

and non-deterministic algorithms. It is extremely important to understand that 

non-deterministic algorithms do not mean they are completely arbitrary or 

random. To explore and discover better answers, they adhere to 
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predetermined norms or heuristics. However, given the inherent randomness, 

their output can still fluctuate. Providing consistency and predictability is 

essential or when an optimal solution can be found without exploration or 

randomization, deterministic algorithms are often used. Non-deterministic 

algorithms, on the other hand, come in handy when the issue is complicated 

and finding approximations or close to ideal solutions can be accomplished by 

considering many options (Gopalakrishna et al., 2019)(Beloglazov and 

Buyya, 2012).  

These are illustrations of categorization using optimization algorithms. It is 

crucial to remember that each category contains a wide range of additional 

specialized algorithms and modifications. The selection of the algorithm 

depends on the nature of the present problem and the specific requirements of 

the optimization task. Depending on how they are used throughout searches, 

optimization algorithms can be divided into numerous groups depending on 

various criteria (Iqbal et al., 2014). Here are some commonly recognized 

classifications. 

▪ Discrete Optimization Algorithms: These algorithms solve optimization 

problems with discrete variables and discrete basic problems. They consist 

of problems in which variables can only assume specific discrete values. 

▪ Continuous Optimization Algorithms: These algorithms are designed for 

solving optimization problems with continuous variables and basic 

counting problems. They have to demonstrate the optimal values of 

variables within continuous domains and spaces. 

▪ Linear Programming Algorithms: Linear programming approaches have 

been developed for solving linear optimization problems. In these issues, a 

linear objective function is maximized or minimized under linear 

constraints. 
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▪ Non-linear Optimization Algorithms: They solve optimization problems 

with non-linear or complex objective functions or constraints. These 

algorithms handle more complex optimization scenarios where variables 

are non-linearly related. 

▪ Heuristic Algorithms: They are problem-solving techniques that may not 

guarantee an optimal solution but aim to find satisfactory solutions within 

a reasonable timeframe. They are categorized as traditional algorithms.  

▪ Metaheuristic Algorithms: These are high-level strategies that guide search 

across a problem space and domain. They are frequently employed to 

solve complex optimization problems or non-linear optimization problems, 

where traditional algorithms encounter difficulties or limitations. They are 

categorized as traditional algorithms. Examples include GAs, ACO, and 

ABC. 

▪ Stochastic Optimization Algorithms: They incorporate randomness or 

probabilistic elements into their search process. These algorithms are 

suitable for uncertain or noisy data problems. 

▪ Gradient-based Optimization Algorithms: They utilize information from 

the gradients (derivatives) or lagrangians of the objective function to 

iteratively improve the solution. These algorithms are primarily used for 

smooth and differentiable optimization problems (Chaparro et al., 2008). 

1.2. Optimization Techniques Synopsis 

Normally, exploring algorithms and optimization techniques are fascinating 

voyages into problem-solving and efficiency improvement. To take on 

difficult computational issues and make wise decisions, humans explore the 

huge landscape of algorithms and optimization techniques. Algorithms are 

logical, sequential processes created to solve particular problems or complete 

particular activities. They offer a methodical methodology for segmenting a 

problem into more manageable, smaller parts, enabling effective problem-
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solving. Thus, one develops a deeper grasp of the fundamental concepts, 

advantages, and disadvantages of many algorithms by researching a wide 

variety of them. 

Additionally, evolutionary sophistication is the advanced complexity and 

efficiency achieved in evolutionary algorithms' problem-solving strategies 

and mechanisms and widely used to resolve global optimization challenges. 

However, as the initial issue grows more intricate, so does its effectiveness 

and expandability. Furthermore, evolutionary nature-inspired metaheuristic 

algorithms are a category of optimization algorithms influenced by natural 

phenomena and animal intelligence. These algorithms draw inspiration from 

the principles of evolution and mimic the behaviors observed in nature to 

solve complex optimization problems. Stochastic parabolic curve 

optimization is emphasized in a wide range of scientific and technical fields. 

Global optimization finds applications in engineering, financial services, and 

management systems by optimizing linear and non-linear objective functions 

to address structural problems in these fields. Due to this and as a result, two 

categories of large-scale algorithms are established: the first is traditional 

algorithms, including gradient-based optimization algorithms or quadratic 

programming. Secondly, evolutionary algorithms (EAs) are among several 

artificial intelligence techniques, including heuristic and meta-heuristic 

algorithms. Traditional algorithms demonstrate efficiency and deterministic 

behavior throughout their execution. They primarily rely on local searches; 

which means that achieving global optimality in the majority of optimization 

problems is not guaranteed. Consequently, these algorithms have restricted 

solution diversity and are ineffective when confronted with highly non-linear 

and multimodal problems (Henderson et al., 2003). Although traditional 

algorithms are efficient, several key aspects can be discussed about their 

characteristics.  
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The majority of their algorithms are deterministic, meaning that a given input 

will consistently produce the same output, except for the Hill-climbing 

Algorithm that is restarted randomly, which is found in the algorithms that are 

derived from Lagrange stationary points. Additionally, their reliance on local 

searches presents uncertainty regarding global optimality in most 

optimization problems. Therefore, the range of solutions that can be obtained 

is limited (Cook and Mitchell, 1997). Furthermore, traditional algorithms 

operate on problem-specific information, tailoring them to precise problem 

domains. Moreover, their inability to effectively address non-linear problems 

restricts their effectiveness at cracking multimodal problems. 

Evolutionary algorithms, as stochastic methods, overcome limitations by 

exploring solution spaces more broadly than conventional algorithms, 

utilizing heuristics and meta-heuristics for experimental and empirical 

searches. These algorithms integrate specific randomization mechanisms and 

employ various methods of local search to navigate the problem landscape 

(Dey et al., 2017)(Dey et al., 2014). In addition, with further research and 

development, heuristic algorithms have evolved into meta-heuristic 

algorithms. The "meta" prefix implies a higher level of performance 

compared to traditional heuristics. However, it is important to highlight that 

the terms "heuristic" and "meta-heuristic" are often used interchangeably, as 

their definitions have minimal distinction. Lastly, meta-heuristic algorithms, 

including EAs, offer advantages over heuristic algorithms in terms of 

productivity and performance. These algorithms leverage stochastic 

procedures and auto-adaptive plans to more effectively explore the solution 

space, theoretically overcoming the limitations encountered by traditional 

algorithms (Fister Jr et al., 2013)(Hoos and Stützle, 2004). 

Nature-inspired or bio-inspired algorithms draw from biological behaviors. 

Effective categorization involves defining genetic operators based on these 
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behaviors. Thus, optimization problems can be classified into three main 

types based on complexity: Single-Objective Optimization (SOO) focuses on 

optimizing one objective, finding the best solution. Multi-Objective 

Optimization (MOO) involves optimizing multiple conflicting objectives 

simultaneously. Many-Objective Optimization (MAOO) extends MOO to 

scenarios with an unusually large number of conflicting objectives, requiring 

advanced techniques for effective solution exploration and trade-off analysis. 

The effectiveness of the majority of evolutionary metaheuristic algorithms or 

bio-inspired algorithms is contingent upon the utilization of different 

operators. An individual within the genetic material of populations 

(chromosomes, people or animals) during the evolutionary process is called a 

genetic operator in the context of adaptive algorithms. These operators 

replicate biological evolution concepts of genetic diversity and natural 

selection. The common genetic operators used in GAs are classified into 

selection, crossover (recombination), mutation, and elitism (Haldurai et al., 

2016).  However, these genetic operators work together to simulate natural 

selection and genetic variation processes. They play a crucial role in 

enhancing the fitness of the population across multiple generations, aiming to 

find optimal or near-optimal solutions for a given problem. Among these 

operators, the crossover or recombination operator holds particular 

significance. It is categorized into two types: application-dependent and 

application-independent crossover operators. As part of the find-best solution 

procedure, the crossover standard allows the best-fitted point to be chosen 

during the process of finding the best solution. 

SOO, also known as single-objective problems, refers to a type of 

optimization problem where the objective is to find the optimal solution that 

meets a specific goal or constraint. The goal is to identify the input variables 

or parameters that result in the ideal value for the objective.  
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This may involve maximizing or minimizing a given function. In SOO, the 

objective function establishes a mathematical relationship between the 

variables within the solution space, known as choice variables. The main goal 

is to explore the solution space and find the set of variables that optimally 

maximize the objective function. 

Finally, the EA typically discovers SOOs that are simple and have only one 

objective. SOO’s goal is finding the most efficient solution for a particular 

principle or metric, such as execution time or performance. This can involve 

incorporating additional metrics like energy consumption and power 

dissipation. By defining the single-objective cost function as a weighted sum 

of normalized costs associated with each metric, multiple criteria can be 

combined into a single-objective optimization problem. 

1.2.  Problem Statement 

Real-world problems are intricate and challenging to solve comprehensively 

due to limitations in time, space, and cost. As a result, there is a demand for 

cost-effective, efficient, and intelligent mechanisms. Mimicking biological 

behaviors provides effective solutions for tackling intricate problems in 

various domains. Firstly, unlike evolutionary optimization techniques that 

discard information after each generation, bio-based techniques retain 

information about the search agent throughout each iteration. Secondly, 

biological behavior algorithms have fewer constraints on parameters and a 

reduced number of operators compared to EAs, making them highly adaptable 

to diverse problem domains. Therefore, researchers have investigated the 

effectiveness of viruses and anti-viruses in animals and humans, alongside 

analyzing animals’ behaviors and natural phenomena. The object is to 

comprehend how these organisms tackle problems and find potential solutions 

by drawing inspiration from their strategies and behaviors. This study 

investigates the manner in which vaccines influence the immune system of 
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the body and the process of immunity development. It draws parallels 

between this study and previous research on the navigation, predator evasion, 

group selection, and prey hunting behaviors of ants, animals, fish, birds, and 

prey. The dissertation primarily focuses on the following core problem issues: 

• Identifying the optimal operator, specifically the crossover standard, for 

gene rejoining, is crucial in achieving a balance between heuristic 

evaluation and exploration. 

• How does research play a significant role in efficiently addressing 

complex problems? 

•  What is the importance of identifying the optimal operator, especially 

the crossover standard, for gene recombination? 

•  How critical is the operator's role in striking a balance between 

heuristic evaluation and exploration? 

•  Can the combination of operators for generating a new generation 

yield satisfactory levels of accuracy and performance? 

• How does research play a significant role in efficiently addressing 

complex problems? 

•  What is the importance of identifying the optimal operator, especially 

the crossover standard, for gene recombination? 

•  How critical is the operator's role in striking a balance between 

heuristic evaluation and exploration? 

•  Can the combination of operators for generating a new generation 

yield satisfactory levels of accuracy and performance? 

1.3. Work Contributions  

Optimization algorithms are among the most effective metaheuristics for 

dealing with multi-case problems. As a result, population-based approaches 

have emerged as highly efficient methods for creating and combining new 

algorithms to optimize combinatorial functions. In accordance with this 
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specification and the dissertation, the subsequent section delineates the key 

contributions of this research. 

1. Listing the evolution from previous standards to binary, real-coded, and 

ordered-coded forms, with specific emphasis on each and a brief overview 

of implemented crossover mathematical forms. 

2. This dissertation proposes a novel crossover method based on LDF which 

provides original metaheuristic optimization to build a more efficient 

optimum solution. Hence, the anticipated LPX is evaluated through a 

comparison with other previously existed tuning methods. In this 

assessment, an updated LPB algorithm is employed to compare the LPX 

standard with other particular real-coded standard form operators. The 

LPX results are then experimentally evaluated alongside these alternatives. 

3. An innovative bio-inspired intelligence algorithm is proposed called Leo. 

This algorithm resolves SOOs and practical problems. It explores previous 

standards that contributed to advancements in modulated immunity 

systems and periodic antenna array designs. To find the most appropriate 

solution, several factors are taken into account based on the immunity 

system during vaccination. An illustrative example of this is the utilization 

of a fitness function to assign appropriate weights; thereby assisting the 

algorithm in both the exploration and exploitation phases. Consequently, 

the algorithm achieves rapid convergence towards global optimal 

population coverage. 

4. Because this proposed algorithm use a similar mechanism for updating 

agent positions, Leo can be considered a GA-based algorithm as a 

population-based algorithm; however, this newly introduced algorithm 

employs a distinct fitness function and identifies stationary points based on 

the principles of LDF, and it is experimental evaluation proven in this 
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work by comparing this proposed algorithm with PSO, DA, GA, WOA, 

SSA, FDO, LPB, and FOX which has comparative results on others. 

5. Finally, this dissertation introduces two new real-world applications that 

address significant optimization problems and achieves a balanced 

approach between different cases or phases. 

1.4. Work Motivations and Objectives 

A plethora of studies have been conducted in the realm of bio- or nature-

inspired metaheuristic algorithms, with a substantial number of effective 

algorithms identified in the literature. Researchers are motivated by the 

aspiration to enhance the exploration and exploitation capabilities of bio-

inspired algorithms, such as genetic algorithms. As a result, they actively 

develop and propose novel genetic crossover operators. These operators are 

crucial components of genetic algorithms and play a significant role in 

generating new solutions by combining genetic information from different 

individuals in the population. Thus, several motivations drive the effort to 

generate new genetic crossover operators. For instance, one motivation is to 

enhance the algorithm’s capacity to explore the search space more efficiently. 

Additionally, addressing problem-specific characteristics enables the 

algorithm to exploit the unique features of the problem at hand. Furthermore, 

improving the algorithm’s performance can be achieved by incorporating 

domain knowledge and maintaining diversity within the population. 

Designing adaptive crossover operators becomes crucial to adapt to different 

problem scenarios effectively. The continuous pursuit of integrating ideas 

from algorithms like simulated annealing, PSO, or local search into new 

crossover operators fuels the ongoing improvement of bio-inspired 

algorithms, addressing diverse optimization challenges effectively. 



11 
 

Whenever evolving algorithms demonstrate comparable or superior 

performance, they are always welcomed as viable alternatives. The 

"Fundamental Theorem of Optimization" is a theory about optimization, as 

stated by Ewen and Lessard in 2015, establishing the prerequisites for a point 

to be a local minimum (or maximum) of a restricted optimization difficulty, 

and improving existing optimization problems and creating new ones (Ewens 

and Lessard, 2015). 

As a result, no single global algorithm offers the most accurate or better 

answer to every optimization problem and all real applications. For instance, 

there is a reasonable possibility that optimization problem Y will work better 

with an improved algorithm than on an old algorithm. This is if the new 

algorithm performs better than the old algorithm with optimization problem X 

and vice versa.  Hence, this dissertation's objective is to propose novel 

algorithms, named Leo, designed to facilitate real-world applications in the 

pursuit of global solutions. It is inspired by the behavior of vaccines when it 

comes to finding new immune systems.  

As discussed, optimizing the diverse range of optimization problems 

effectively remains challenging for a single algorithm. Encouraging results 

from existing techniques have motivated researchers to propose novel 

approaches with superior performance and problem-solving capabilities 

compared to previous algorithms. Therefore, the primary objectives of this 

achievement are preserved as follow: 

• Introduce an innovative crossover operator utilizing the rejoining of 

parent genes to generate unique genetic variations. This process aims to 

be implemented in a new algorithm or enhance existing genetic 

algorithms. 
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• Aims to propose a novel population-based evolutionary algorithm that 

achieves a well-balanced trade-off between exploration and 

exploitation while prioritizing superior performance and accuracy. 

• Proposing new real-life applications to showcase the effectiveness and 

practicality of optimization algorithms. The applications aim to validate 

and refine the proposed algorithm’s performance and applicability to 

diverse real-world scenarios. 

1.5. Dissertation Map 

The subsequent sections of the dissertation are organized in the following 

manner:  

i. Chapter two offers a thorough literature review, tracing the evolution of 

search algorithms from their early versions in computing history. It also 

provides an overview of standard operators used in population-based 

algorithms, including genetic recombination. 

ii. In Chapter three, the LPX standard operator, enhancing population-

based algorithms through genetic recombination, is introduced. The 

section details the proposed Leo algorithms, inspired by the human 

immune system, outlining the methodology. The theoretical description 

precedes the programmatic simulation using pseudocode or graphics. 

iii. Chapter four presents experimental evaluations and discussions. The 

first part assesses LPX through heuristic evaluation, comparing it to 

other crossover operators using LPB. The second part focuses on 

testing the Leo algorithm on various benchmarks and real-world 

applications, comparing results to other algorithms. Nonparametric 

statistical tests are employed for analysis.  

iv. Finally, chapter five reveals the final notes and further potentials of this 

work. Because of their length and complexity, some created data are 

presented in the appendix section via tables. 
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CHAPTER TWO 

2. Background and Literature Review  

This chapter serves as literature review by providing a complete explanation 

of the history and theoretical background of pertinent earlier research. First, 

we examine the history of population-based optimization to understand and 

shed light on its origins. Then it looks at some genetic-based algorithms that 

rely heavily on genetic operators. Furthermore, it explores the evolution of 

several types of crossover strategies over time and makes comparisons 

between them. Notably, we highlight some typical crossings that have 

previously been utilized in algorithms. Furthermore, one can delve into the 

history and background of classical single-objective algorithms and explain 

the phenomena of cultural algorithms, which is central to this work. Finally, 

we examine the capability of the immune system to manufacture vaccines 

following vaccination, citing this process as a useful source of inspiration for 

our work. 

2.1.  Population-Based Algorithm  

A population-based algorithm is a computer strategy for solving optimization 

or search issues that require preserving and evolving a population of 

candidate solutions. It is a metaheuristic approach influenced by natural 

evolution and social behavior principles. Thus, metaheuristics is obviously a 

high-level, problem-independent optimization paradigm used to address 

complex and difficult optimization issues. Metaheuristics function higher than 

typical optimization techniques, which rely on explicit issue structures. 

Metaheuristics are adaptable and can solve a variety of problems, including 

those with nonlinear and non-differentiable objective functions, restrictions, 

and discrete choice variables (Boussaïd et al., 2013). Furthermore, 

metaheuristic is renowned for its capability to strike a balance between 

exploration and exploitation. The exploration phase enables a wide search 
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across the solution space, while the exploitation phase focuses on fine-tuning 

within favorable regions. Due to their adaptability, metaheuristics can 

effectively avoid being confined to local optima and, instead, converge 

towards global optima. This trait makes them valuable instruments for 

uncovering near-optimal solutions to complex real-world problems (Zhou et 

al., 2020). Because of their adaptability, metaheuristic algorithms have the 

capacity to evade local optima and, instead, converge towards global optima. 

This attribute renders them valuable tools in the pursuit of identifying near-

optimal solutions for intricate real-world scenarios. 

Besides, a distinct collection of persons, agents, or genes, often considered as 

solutions in a population-based algorithm, represent potential answers to the 

problem at hand. These individuals proceed through a selection, crossover or 

variation, mutation, and evaluation procedure to enhance the quality of the 

solutions through generations (Boussaïd et al., 2013; Osuna-Enciso et al., 

2022). Typically, these algorithms initiate by creating a population of 

randomly generated individuals. Each individual represents a potential 

solution encoded in a suitable representation format, such as binary strings or 

real-valued vectors. The performance or suitability of these individuals is then 

quantified using an objective function or fitness metric.  After the evaluation, 

a selection method is employed to determine which individuals will progress 

to the next generation. The selection process may involve various methods, 

such as fitness proportionate selection, tournament selection, or other 

techniques that prioritize individuals with higher fitness values (Boussaïd et 

al., 2013). 

In the initial step, individuals responsible for the next generation are selected, 

and several operators are employed to generate offspring and promote 

diversity within the population (Lyakhov et al., 2013). The most common 

operator is crossover, where two or more individuals exchange information to 
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create creative solutions. Crossover can be executed in various ways, such as 

one-point crossover, two-point crossover, or uniform crossover, depending on 

the encoding scheme used for the individuals. This standard will be discussed 

further in the next section (Kora and Yadlapalli, 2017). In addition to 

mutation, another operator introduces random changes in individuals to 

explore new regions. It supports preventing premature convergence and 

promotes diversity within the population. It can involve flipping bits in binary 

representations or introducing small perturbations in real-value 

representations (McGinley et al., 2011). The selection, crossover, and 

mutation process continue for several generations until a termination 

requirement is granted. The termination criterion can be defined based on 

different factors, such as the maximum number of iterations, the desired level 

of solution quality, or the fulfillment of a predetermined stopping condition 

(Gutierrez et al., 2019).  

GA, ACO, and ABC are examples of population-based algorithms that have 

demonstrated their efficacy in tackling various optimization problems, 

including function optimization, parameter tuning, and combinatorial 

optimization. They provide a flexible and robust framework for solving 

complicated problems where traditional optimization techniques may be 

difficult or impossible to implement (Bao et al., 2020). Metaheuristic 

optimization encounters greater difficulty when dealing with problems 

featuring fluctuating objective functions. In such cases, real-world search or 

self-adaptive optimization methods are commonly employed. The search 

technique utilized to address these challenges must possess the adaptability to 

effectively handle the dynamic changes in the objective function during the 

optimization process (Beyer and Deb, 2001). The effective challenge with 

population-based optimizers is that after identifying a locally optimal 

solution, it becomes essential to implement diversity-preserving strategies. 
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These approaches can include using a substantial level of crossover or 

incorporating a clustering operator to maintain diversity within the 

population. As a result, most metaheuristic optimization methods have been 

refined and enhanced (Mirjalili et al., 2017). In addition, several efficient 

methods have been presented and improved in several special types of 

research for improving novel optimizers based on gene crossing. 

Alternatively, the proposed algorithms are always considered, provided they 

offer novel enhancements or achieve results that are comparable to existing 

methods. 

One of the most well-known population-based algorithms is GA. John 

Holland devised and implemented this population-based search algorithm in 

the 1960s and 1970s. The GA mimics certain evolutionary processes based on 

Charles Darwin’s evolution theory: Selection, fitness, reproduction, 

crossover, and mutation are all factors to be considered (Sivanandam et al., 

2008). GAs have found applications in diverse optimization problems, 

ranging from function optimization to scheduling and machine learning. 

ACO, on the other hand, takes inspiration from ant foraging behavior, relying 

on the indirect communication between ants through chemical pheromone 

trails. A population of artificial ants is used in ACO, which deposits 

pheromones on paths to guide the search process effectively (Jalali et al., 

2005). ACO has been extensively employed in addressing combinatorial 

optimization problems such as the traveling salesman problem and vehicle 

routing challenges. On the other hand, DE is another population-based 

optimization algorithm that operates with real-valued vectors. It also evolved 

the population through a combination of mutation, crossover, and selection 

procedures. DE has proven to be useful in tackling continuous optimization, 

parameter estimation, and function approximation (Wong and Dong, 2005). 

Cultural Algorithm (CA) is a population-based algorithm that combines 
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genetic algorithms with cultural learning mechanisms. It incorporated cultural 

knowledge, such as beliefs, traditions, and norms, into the evolutionary 

process. This cultural knowledge guided the evolution and adaptation of 

individuals in the population (Kuo and Lin, 2013). CA has been utilized in 

diverse problem domains, encompassing applications in classification, data 

mining, and optimization. At last, a novel population algorithm, called the 

LPB algorithm, falls under the category of EAs. This algorithm employs a 

population of individuals, often referred to as solutions, and undergoes 

selection, crossover, and mutation operators stimulated by natural evolution 

(Rahman and Rashid, 2021). 

These examples are only a few examples of population-based algorithms 

proposed and discussed in the literature. Each algorithm has its own 

characteristics and is suitable for different types of problems. Researchers 

continue to propose and develop various population-based algorithms to 

address various real-world optimization challenges. In this basic, this study 

investigates the interplay between bio-inspired algorithms and EAs in the 

context of complex mathematical functions. Specifically, it explores the 

relationship between these two processes using population-based algorithms. 

The virus optimization algorithm was initially proposed by Liang and 

Cuevas-Juarez in 2016, and later, Liang et al. further improved it (Liang and 

Juarez, 2016). Similar to many other metaheuristics, the effectiveness of its 

application heavily depends on its initial configuration. 

2.2. Crossover Overview 

Combinatorial optimization stands out as a prominent research area within 

artificial intelligence, attracting multiple projects each year. To enhance 

strategic metaheuristic algorithms, these projects adopt a knowledge-based 

crossover mechanism that focuses on the solution structure rather than its 

coding (Osaba et al., 2014). Consequently, a group of optimization 
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algorithms, influenced by natural events and animal intelligence, is classified 

as evolutionary nature-inspired metaheuristic algorithms. Therefore, they can 

be considered as nature-inspired algorithms, and the examples discussed in 

the previous section represent instances of population-based algorithms. 

Nature-inspired computing, a prominent field in computer science, finds 

application and relevance in optimization algorithms, computational 

intelligence, data mining and machine learning (Yang, 2018). This section 

primarily centers on the creation and assessment of crossover operators and 

their impact on metaheuristic algorithms. Crossover, also referred to as 

recombination, represents a genetic operator in which the genetic codes of 

two parents are utilized to generate offspring (children). Furthermore, the 

crossover technique is seen as a vital means to stochastically generate novel 

solutions from the existing population. These crossover operators play a 

significant role in maintaining a balance between exploitation and 

exploration, allowing for feature extraction from both parent chromosomes or 

genes. The ultimate aim is to produce offspring with advantageous qualities 

inherited from both parent chromosomes (Hassanat and Alkafaween, 2017).  

Throughout the years, numerous forms of crossover have been developed, and 

comparisons between different types have been suggested. It all began with 

one-point crossover and has since evolved to encompass a variety of 

techniques catering to different conditions, including uniform crossover (Bäck 

et al., 2018). Various crossover operator standards have been established 

based on the mathematical distribution. These standards determine the forms 

of binary, real-coded, floating-point, and order-coded crossover. Similarly, 

different standards have been defined for permutation-based problems like the 

Traveling Salesman Problem (TSP). When using evolutionary algorithms to 

address the TSP, various representations such as binary, route, closeness, 

ordinal, and vector are considered. In an effort to reduce the overall distance, 
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researchers have proposed an enhanced crossover operator for the TSP 

(Hussain et al., 2017). In 2010, another research study demonstrated that 

sequential constructive crossover (SCX) was a successful method for solving 

the TSP. The core concept of this approach involves selecting a random 

crossover point and applying the SCX technique to enhance edges before this 

point. After the crossover site, the remaining chromosomes are exchanged 

between parents to generate two offspring. In the process, any duplicated 

chromosomes are replaced with unoccupied ones (Ahmed, 2010). Also, Ring 

Crossover (RC) emerged as an innovative solution to the recombination 

problem. In this unique approach, parents were brought together in a circular 

arrangement, and an element of randomness was introduced by selecting a cut 

point at random. The circular process was thoughtfully designed with the 

parents’ interactions in focus, and the slice point was chosen in a spontaneous 

manner (Kaya and Uyar, 2011). Nevertheless, when it comes to evolutionary 

algorithms striving to maximize the ordering of an extensive series, the need 

for specific crossover operators becomes evident to steer clear of erroneous 

outcomes. While it is impractical to enumerate all such operators, Table (2-1) 

presents several exemplary crossovers, each meticulously crafted to cater to 

distinct global solutions. 

During implementation, crossover strategies are frequently classified 

according to how the gene is represented; the genetic sequence is stored as 

either a bit matrix or an actual code on the chromosome, depending on the 

algorithm. Both conventional and illustrative examples of crossover methods, 

such as genetic recombination, are extensively explained in the following 

sections. Numerous contemporary techniques guarantee that these strategies 

can be employed to enhance global numerical optimization and address 

current practical problems, as demonstrated by recently proposed 

metaheuristics, likes moth search algorithm (MSA) (Wang, 2018),   
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Table 2-1 Standard Crossovers Generation Overview 

No. 
Standard Crossover Operator 

Name 

Initial 

Abbreviation 
Standard Category Related Work 

1 Order Crossover  OX1 exchanging segments (Hussain et al., 2017)(Dey, 2017)(Puljić and Manger, 2013) 

2 Sequential Constructive  SCX exchanging segments (Ahmed, 2010) 

3 Order-Based Crossover  OX2 - OBX exchanging segments (Dey, 2017) (Umbarkar and Sheth, 2015)  

4 Maximal Preservation Crossover  MPX exchanging segments (Umbarkar and Sheth, 2015)(Pongcharoen et al., 2001)  

5 Alternating Edges Crossover  AEX exchanging segments (Puljić and Manger, 2013)(Pongcharoen et al., 2001) 

6 Edge Recombination Crossover  ERX exchanging segments (Dey, 2017)(Puljić and Manger, 2013)  

7 Position-Based Crossover  POS mathematical segments  (Dey, 2017)(Umbarkar and Sheth, 2015)(Gain and Dey, 2020) 

8 Voting Recombination Crossover  VR mathematical segments (Dey, 2017)(Umbarkar and Sheth, 2015) 

9 Alternating Position Crossover  AP mathematical segments (Dey, 2017)(Larranaga et al., 1999) 

10 Automated Operator Selection  AOS mathematical segments (Hilding and Ward, 2005) 

11 Complete Sub-tour Exchange  CSEX exchanging segments (Umbarkar and Sheth, 2015)(Katayama et al., 2000) 

12 Double Masked Crossover  BMX exchanging segments (Umbarkar and Sheth, 2015)(Patel et al., 2001) 

13 Fuzzy Connectives Based  FCB fuzzy rule exchanging (Thapatsuwan et al., 2006)(Herrera et al., 1997) 

14 Unimodal Normal Distribution  UNDX mathematical segments (Ono, 1997)[(Kita et al., 1999) 

15 Discrete Crossover  DC mathematical segments (Bosch, 2007) 

16 Arithmetical Crossover  AC mathematical segments (Kaya and Uyar, 2011)(Herrera et al., 1997)(Tawhid and Ali, 2016) 

17 Average Bound Crossover  ABX mathematical segments (Ling and Leung, 2007) 

19 Heuristic Crossover  HC heuristic rule exchanging         (Hussain et al., 2017)(Ackora-Prah et al., 2014) 

20 Parent Centric Crossover  PCX mathematical segments (Umbarkar and Sheth, 2015)(García-Martínez et al., 2008) 
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slime mould algorithm (SMA) (Li et al., 2020), hunger games search (HGS) 

(Yang et al., 2021), harris hawks optimization (HHO) (Heidari et al., 2019), 

and colony predation algorithm (CPA) (Tu et al., 2021). Consequently, there 

is a need to introduce innovative criteria for advancing evolutionary 

algorithms. 

2.3. Optimization Problem Algorithms 

Optimizing an operation is reducing or maximizing an objective function by 

assigning suitable values to variables from a population of viable values. 

Optimization problems appear in more of our daily activities than they do in 

composite science concerns. For example, individuals travel to a location in 

several directions. Using an objective function for reducing fuel consumption, 

trip time, etc., the decision in the most logical direction may be obtained. As 

mentioned, the exploration of nature-inspired metaheuristic algorithms dates 

back to the 1960s when it was commenced at the University of Michigan 

(Gandomi and Yang, 2012) . 

Nevertheless, the field has seen numerous significant improvement signals 

during the last two decades. S. Kirkpatrick, C. D. Gellar, and M. P. Vecchi 

developed simulated annealing (SA), an algorithm inspired by metal 

annealing. Additionally, the significance of swarm intelligence approaches, 

which emulate the collective intelligence of natural swarms, groups, schools, 

or flocks of animals, has been well-established in the realm of optimization 

strategies. In 1989, Gerardo Benny and Joon Wang brought the concept of 

swarm intelligence to cellular robotics systems. This breakthrough paved the 

way for significant growth in the field, and the topic gained widespread 

popularity as a result (Shebin S and Mallikarjunaswamy S, n.d.). 

Accordingly, various instances of microbiological intelligence have been 

observed, including ant colonies, bee colonies, bird flocking, eagle hunting, 
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mammal herds, bacterial development, fish schooling, and microbial 

intelligence. These algorithms draw inspiration from the biological expertise 

or collective behaviors exhibited by organisms. Remarkably, some creatures 

can ensure the survival of their colony without the need for a centralized 

control system. In such cases, organisms forage for food individually, even 

when far from their nests or hives, without any external direction on where to 

begin or how to search efficiently. Both Swarm intelligence (Kennedy, 2006) 

and evolutionary sophistication (Jeong et al., 2015) incorporate meta-heuristic 

algorithms, with EAs emulating the principles of evolution found in nature. 

Among all the algorithms in this category, the GA is widely recognized as the 

most effective and highly regarded (Melanie, 1999), which rooted in 

simulating the Darwinian theory of evolution, draws inspiration from the 

concepts of natural selection and genetic variation (Fogel, 1994). 

Moreover, the algorithms most extensively utilized in this context are fitness 

dependent optimizer (FDO) (Abdullah and Ahmed, 2019), salp swarm 

algorithm (SSA) particle swarm optimization (PSO) (Kennedy and Eberhart, 

1995), the cuckoo search (CS) (Yang and Deb, 2009), and FOX-inspired 

optimization algorithm (Mohammed and Rashid, 2023). To find the shortest 

route from a food source to the nest or hive, the ACO and FDO algorithms 

mimic the interactions of ants and bees. The PSO algorithm, on the other 

hand, models the navigation and hunting behavior of bird groups. Other 

swarm intelligence methods described in the literature include: artificial bee 

colony (Karaboga et al., 2014), cat swarm optimization (Chu et al., 2006), 

grey wolf optimizer (Mirjalili et al., 2014), and moth-flame optimization 

(Mirjalili, 2015). As a result, swarm intelligence finds applications in various 

fields such as anthropology, industry, technology, and basic research. 

In a vector-based approach, several algorithms outperform GA in various 

applications. Later on, in 2001, Zong WooGeem et al. introduced the 



23 
 

harmony search (HS) algorithm, which has been effectively utilized to solve 

various optimization problems, including transport models and water 

distribution (Geem et al., 2001). The honey bee algorithm was created in 2004 

by C. Tovey and S. Nakrani. They utilized it to optimize Internet hosting 

centers (Nakrani and Tovey, 2004). A year later, in 2005, D. Karaboga et al. 

introduced the ABC algorithm. Subsequently, in 2010, Xin-She Yang 

proposed a bat-inspired algorithm (Yang, 2010). The dragonfly algorithm 

(DA) (Meraihi et al., 2020) was proposed in 2015 by Mirjalili A. S., which is 

PSO-based algorithm inspired by the dragonfly swarm behavior of attraction 

to food and adversary distraction. Later, in 2016, the whale optimization 

algorithm (WOA) was also announced (Mirjalili and Lewis, 2016).  

Also, Lagrange multipliers, named in honor of Joseph-Louis Lagrange, offer a 

solution to constrained optimization problems. These problems entail seeking 

the maximum or minimum value of a function while satisfying one or more 

constraints. By using the method of Lagrange multipliers, the constraints can 

be integrated into the objective function, ultimately leading to the discovery 

of the optimal solution (Naidu, 2002). The Lagrangian dual approach is a 

widely used technique for resolving optimization problems, and its 

applicability has been extended to address Bilinear Matrix Inequalities 

(BMIs) (Tuan et al., 2000). 

According to medical-based, vaccination optimization algorithms are 

computer approaches used in bio-inspired situations to improve the efficiency 

and efficacy of vaccination programs. These algorithms seek to enhance the 

overall effect and advantages of vaccination programs by optimizing different 

parts of the vaccination process (Matrajt et al., 2021). These parts include 

vaccine allocation, distribution, scheduling, and prioritizing. They can help 

policymakers, healthcare providers, and public health authorities create and 

implement efficient and targeted vaccination regimens, contributing to 
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infectious disease control and prevention. Healthcare optimization algorithms 

are computational methods used to improve healthcare delivery efficiency, 

quality, and cost-effectiveness. These algorithms seek to improve overall 

healthcare system performance by optimizing many areas of healthcare 

operations. These areas include medical resource allocation, decision-making, 

immune system care, and patient care. The bed management model based on 

GA has been generated which is a good example of algorithm (Belciug and 

Gorunescu, 2016). 

The domain of nature-inspired metaheuristics presents numerous intricate 

challenges and applications that are beyond the scope of conventional 

solutions in terms of time and processing cost (Dhal et al., 2019). When 

dealing with problems that involve space complexity or a large number of 

variables, traditional methods or direct search techniques are often employed. 

However, in such situations, fundamental algorithmic modifications may be 

necessary to effectively address the challenges at hand (Arcuri and Briand, 

2011). To tackle noisy objectives effectively, the application of efficient 

stochastic optimization techniques is essential. In this context, the focus is on 

stochastic single-objective optimization in high-dimensional parameter 

spaces. For such cases, using higher-order optimization techniques is not 

appropriate; hence, our discussion will be limited to first-order optimization 

methods. Over time, numerous researchers have explored and refined these 

algorithms, seeking to enhance their performance and leverage them to 

address a wide array of problems across different domains (Xu et al., 2021).  

In addition, there are problems with only one objective, known as single-

objective problems. MOO problems refer to situations where there are 

multiple objective functions to be optimized simultaneously. In such cases, a 

set of conflicting objectives exists, making it challenging to achieve optimal 

solutions that satisfy all objectives simultaneously. However, this work did 
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not focus on multi-objective optimization. The objective functions are subject 

to several minimization or maximization constraints, or both.  To solve SOO 

problems, various algorithms and techniques can be employed, including 

gradient-based methods as discussed. The objective function can take various 

forms, such as linear, non-linear, continuous, or discrete, depending on the 

problem at hand. The constraints, if present, impose additional conditions on 

feasible solutions. The selection of the appropriate optimization algorithm 

relies on various factors, including the nature of the problem (e.g., 

smoothness and convexity of the objective function), the complexity and 

dimensionality of the search space, the existence of constraints, and the 

available computational resources. These considerations help in determining 

the most suitable algorithm to efficiently and effectively address the 

optimization task at hand. This approach represents an unbiased method for 

discovering the best possible solution that meets the prerequisites of the 

problem while maximizing the value of the objective function to its fullest 

potential. Besides, in the realm of bio-inspired algorithms, not all are strictly 

derived from biological systems; some are rooted in principles of physics and 

chemistry. Many of these bio-inspired algorithms do not directly rely on 

swarming behavior. Due to this distinction, the term "bio-inspired" is favored 

over "swarm intelligence-based." For example, genetic algorithms draw their 

inspiration from nature but are not inherently related to swarm intelligence. 

Differential search algorithm (DSA) (Civicioglu, 2012) and differential 

evolution (DE) algorithm  (Qin and Suganthan, 2005) are two algorithms that 

present a challenge in terms of classification. DE, in particular, cannot be 

considered biologically inspired in the true sense of the word, as it lacks an 

obvious connection to any biological function.  
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2.4. Vaccination-Induced Immune System 

The immune system serves as the body’s defense against infections. When 

viruses or bacteria enter the body, they start to infect and multiply, causing an 

invasion known as an infection. However, the immune system counters this 

invasion by deploying white blood cells to attack and neutralize the infectious 

agents (Abbas, 2020). As indicated in Figure 2-1 (Eli Benjamini et al., 2000), 

the majority of white blood cells in the immune system are comprised of 

macrophages, B-lymphocytes, and T-lymphocytes. B-cells are responsible for 

attacking intruders from outside the cells, while T-cells target infected cells. 

Macrophages play a crucial role in the immune system by absorbing foreign 

objects and activating an immune response, aiding in the elimination of 

invaders from the body (Abbas, 2020).  

When assessing the effectiveness of the immune system, it is crucial to take 

into account the albumin quotient in human blood serum. To demonstrate that 

the immune system is functioning well, Immunoglobulin G (𝐼𝑔𝐺) levels 

should be within the restricted range and show an increasing trend. If the 

albumin quotient ( 𝑄𝐴𝑙𝑏) is declining rapidly while serum albumin 

( 𝐴𝑙𝑏serum ) is rising significantly, it indicates that the blood level of 𝐼𝑔𝐺 is 

increasing and falls within the normal range, while the presence of albumin in 

cerebrospinal fluid (𝐴𝑙𝑏𝐶𝑆𝐹) influences the albumin quotient ( 𝑄𝐴𝑙𝑏). (Reiber, 

2003). In such cases, individuals demonstrate a high albumin quotient ( 𝑄𝐴𝑙𝑏), 

which suggests that humans have developed a modality-immunity system 

according to the function equation (2.1) proposed by (Andersson et al., 1994). 

 𝑄𝐴𝑙𝑏 =  
 𝐴𝑙𝑏𝐶𝑆𝐹

𝐴𝑙𝑏𝑠𝑒𝑟𝑢𝑚
                                                                                                                            2.1 
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i- Innate Response (After Hours) ii- Adaptive Response (After Date) 

Fig. 2-1 Response cells of the innate and adaptive immune systems. (Macrophages, B-lymphocytes 

and T-lymphocytes) (Eli Benjamini et al., 2000)  

Even when someone is still sick, behavioral traits and infectious diseases can 

spread through social interactions, especially during the rapid spread of the 

COVID-19 epidemic over the years. To curb this expansion, effective 

vaccinations have become necessary to maintain human immunity. 

Vaccinations work to naturally strengthen the immune system, helping it 

combat illnesses and reduce their effects. These technologies play a crucial 

role in preventing the spread of diseases among groups, as individuals often 

copy their social connections when forming vaccination preferences. This 

research involves investigating the relationship between these two processes 

by utilizing bio-inspired algorithms and evolutionary algorithms based on 

complex mathematical functions as a population-based approach. 

Existing models inadequately handle the clustering of vaccination practices 

within a group, assuming an even distribution of individuals, leading to 

inaccuracies. Consequently, the concentration of anti-vaccination attitudes 

can lead to disease outbreaks by compromising protective immunity 

(Nuwarda et al., 2022)(Ndeffo Mbah et al., 2012). To study the impact of 

imitation dynamics on vaccination rates and disease outbreaks, algorithms 
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create models that determine the optimal global decision by replicating 

individual behavior to create a highly effective immune system for human 

vaccination. However, it is essential to note that various vaccinations function 

in different ways to confer protection. For example, COVID-19 vaccines aid 

in disease prevention by helping our bodies develop immunity to the COVID-

19 virus. Different vaccine types, such as 𝑚𝑅𝑁𝐴𝑠, viral vectors, protein 

subunits, and inactivated vaccines provide protection in diverse ways 

(Lundstrom, 2020). Once administered, all vaccines are eventually eliminated 

from the body, but they leave behind a pool of "memory" T-lymphocytes and 

B-lymphocytes that have the ability to counter the virus in the future. This 

process strengthens the immune response by increasing antibody production 

and generating memory cells that can identify and respond to the actual virus 

if the body becomes infected. Figure 2-2 visually depicts the sequential steps 

involved in developing an immune defense system against spike proteins 

(Fang et al., 2022). 

 

Fig. 2-2 example of spike protein (mRNA) vaccine cycle life. (Fang et al., 2022) 
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CHAPTER THREE 

3. Research Methodology and Design          

This work concerns two linked issues, which are discussed in two sections in 

this chapter. The first section provides an innovative standard generated from 

several mathematical evaluation processes, which incorporates recently 

developed methods. This section focuses on the effect of real-coded standard 

operators on mathematical distribution, and population-based algorithms, 

exploring inspiration from genetic and biological properties and introducing 

LPX. These insights are then integrated into the algorithmic structure of the 

proposed approach, aligning both algorithmic and biological aspects. The 

second half of this work introduces Leo by offering a thorough mathematical 

explanation via a set of connected equations and various sequence operators. 

The practical implementation of Leo is then depicted via pseudocode, as well 

as extensive explanations. The degree of information in these sections is 

intended to aid other researchers in replicating our work. This is done by 

assuring clarity and accessibility in understanding and copying our strategy. 

3.1.  Inspiration and Exploration of Genetic Recombination  
 

Genetic recombination is the process of exchanging genetic material across 

distinct gene molecules or chromosomes. It is essential for biological 

diversity and evolution. In genetic recombination, gene segments (genomes) 

are swapped, resulting in novel genetic material combinations. As previously 

mentioned, several standard operators have been covered in earlier chapters, 

and these operators have emerged after John Holland’s proposal of the GA in 

the 1970s (Sivanandam et al., 2008). Subsequently, several population 

algorithms have been introduced, with a notable focus on achieving a 

balanced combination of exploitation and exploration phases to improve 

fitness and overall performance. Correspondingly, the DNA recombination 
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phenomena have long been a source of fascination and research in a variety of 

domains, including genetics, evolutionary biology, and biotechnology. These 

have been inspired by genetic recombination mechanics and effects, resulting 

in advances in a variety of fields. Plant and animal breeding, recombinant 

DNA technologies, evolutionary, genomic, and synthetic biology, and body 

systems are all areas of study (Nicholl, 2023). 

The exploration of optimal solutions in metaheuristic or inspiration 

algorithms revolves around generating novel members from existing ones. 

The crossover process facilitates the exchange of genetic codes between 

parent individuals, resulting in offspring that may possess exceptional genetic 

traits inherited from their parents. The study delves into a plethora of 

crossover techniques, urging researchers to delve into whether the most 

effective standard strategy has been refined and embraced or not. As 

highlighted, the crossover operator can be likened to a powerful combination 

of multiplication and biological recombination (Takahashi and Kita, 2001). 

According to the data, it is evident that the selection of more than one genome 

is essential, and children are generated using genetic codes represented by sky 

blue balls on the parents’ chromosomes. Additionally, two more children are 

produced using two derived offspring genes depicted as dusty pink balls. 

Figure 3-1 visually presents the probabilistic scale, illustrating the range of 

potential offspring in a two-dimensional constrained real space between x and 

y dimensions through the application of a box crossover between genes and 

new offspring. 

Fig. 3-1 Significant probability in the real-coded crossover 
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3.2 Crossover Operator Technique 

3.2.1. Mathematical Distribution Crossover  

Crossover is a widely used operation in metaheuristic algorithms, with a 

significant emphasis on its implementation in GA; especially in cases 

involving real-coded or binary-coded algorithms. Crossover plays a crucial 

role, making it challenging to achieve desirable results without its utilization 

(Herrera et al., 2005). Therefore, the introduction of crossover probability 

serves the purpose of preserving genes from the parents, even if the offspring 

may not outperform them. Crossover methods can be categorized into three 

groups. The first category encompasses binary crossover techniques, while 

the second category comprises real-coded or floating-point crossovers. 

Finally, the third category includes order-coded crossovers. 

The first category of crossover operators comprises a wide range of 

techniques used in binary representations for metaheuristic algorithms. 

Enhancements to previous results demonstrate the effectiveness of most of 

these crossovers in addressing current challenges. Some crossover standards 

are practically implemented, and interesting comparisons between them are 

also highlighted. In traditional genetic material storage, genes are represented 

as bit strings in various methods. Crossover procedures for bit-order are 

prominent, including examples like binary single-point crossover, double-

point or n-point crossover, uniform crossover or half-uniform crossover, 

uniform crossover with crossover mask (UCM), shuffle crossover (SHX) 

(Haldurai et al., 2016), and three-parent crossover (TPX) (Zhang et al., 2017) 

and qubit-crossover (Qubit-X) (Zamani et al., 2021).   

The UCM operator divides the matrices into several non-overlapping ones, 

and the logical operator generates a matrix known as the crossover mask 

(CM) based on this control. A binary crossover mask is derived from protocol 

rules using the UCM operator to determine which genes are transferred 
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between the parent individuals. Genes with mask bits set to (1) are copied 

from the first parent, while genes with mask bits set to (0) are copied from the 

second parent. This allows for a diverse mix of genetic material between the 

parents, promoting exploration of the search space by evolutionary 

algorithms. 

In the TPX (Three-Parent Crossover) (Zhang et al., 2017) operator, various 

probability rate algorithms are used to generate innovative offspring from 

three parent genes, as per the prior solution approach. The calculation of 

future generations involves deliberate offspring generated by swapping genes, 

and this process is illustrated in Figure 3-2, highlighting the problems 

encountered during this operation, as described in the general pseudocode. It 

describes a process to generate three offspring (Offspring1, Offspring2, and 

Offspring3) from a combination of three parents (Chromosome 1, 2, and 3). 

The goal is to create new individuals by selecting bits from the parent 

chromosomes based on specific conditions. The offspring are generated based 

on certain bit-wise conditions between the parents. The process continues for 

additional offspring following the specified conditions. Additionally, the 

specific conditions provided in the pseudo code can be extended or modified 

to suit the requirements of the genetic algorithm or evolutionary process being 

implemented. 

Furthermore, the second category of crossovers involves real-coded or 

floating-point structures. In these representations, the genes are real-valued 

without the need for encoding or decoding into binary form, which speeds up 

the process. Although less intuitive than binary representations, crossover 

with floating-point formats has shown to perform as well as, if not better than, 

regular binary strings. Therefore, there is no need to worry about algorithm 

efficiency when using floating-point encoding. 
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Fig. 3-2 Pseudocode and example to explain TPX deliberation 

Numerous real-coded crossover techniques have been developed. These 

methods involve effectively adjusted real-coded crossover operations that 

utilize the likelihood function to generate highly diverse sequences, offering 

potential alternatives to solutions. For instance, the real single-point crossover 

is analogous to a binary single-point crossover, where two chromosomes are 

combined, and a real number is assigned for each gene at the crossover point 

(Herrera et al., 2005). Also, two-point, three-point, and n-point crossovers can 

also be applied to real-coded representations. In these situations, two genes 

are crossed, and real numbers are swapped, producing two new offspring. 

Besides, various crossover techniques are mathematically described in the 

following sections, including single arithmetic crossover, whole arithmetic 

crossover, and linear crossover.  

Blended Crossover (BX) (Abido, 2006) is considered one of the highly 

effective crossovers that has shown improvements in various algorithms. If 

we have a pair of chromosomes with two parameter values, 𝐺1 as standard of  

𝑋1 and 𝐺2 as a standard of 𝑋2, where 𝐺1  as is smaller than 𝐺2, the blended 
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crossover method generates an offspring within a certain range 

[𝐺1 –  𝛼 (𝐺2 –  𝐺1), 𝐺2 +  𝛼 (𝐺2 –  𝐺1)].  

In cases where 𝛼 is a constant to be determined, the offspring solutions 

remain within the bounds of the non-variable. This concept is illustrated in 

Figure 3-3 using a mathematical example, indicating that the number is equal 

to 2, 𝐺1 = 0.13 < 𝐺2 = 0.94, so calculate the range by 

[𝐺1 –  𝛼 (𝐺2 –  𝐺1), 𝐺2 +  𝛼 (𝐺2 –  𝐺1)]; when 𝛼=0.5 the [−275, 1.345], 

indeed, 𝐺1 and 𝐺2 are randomly selected from within the given range. This 

random selection ensures variability in the offspring and allows for 

exploration in the solution space. Also, to maintain a balance between 

exploring and exploiting the search space (Hamid et al., 2011). 

 
Fig. 3- 3 BX for second Genes by the range calculation 

The method could not provide a global solution if applied to the preceding 

range, as demonstrated in numerous improvement algorithms. Researchers 

have proposed a novel approach to BX method, which involves computing 

the parameter using two random numbers, denoted integer as 𝑟 and the real 

line as α , within the range (0.0, 1.0). This random number 𝑟 is then used in 

the revised blend formula as the incomplete gamma (γ) type function in 

(equation 3.1) to determine the condition for the BX standard (Deep and 

Thakur, 2007). The incomplete gamma type function 

 γ =  (1 +  2α)   ∗ r −  α                                                                                                           (3.1)  

The offspring solutions 𝐺𝑒𝑛𝑒1 and 𝐺𝑒𝑛𝑒2 are determined by the parents 

according to equations (3.2) and (3.3) (Deep and Thakur, 2007).  

Gene1 = (1 − γ) ∗  𝐺1 + γ ∗  𝐺2                                                                                                (3.2) 

Gene2 = (1 − γ) ∗  𝐺2 + γ ∗  𝐺1                                                                                                (3.3) 

To apply a standard crossover operation uniformly across various algorithms, 

the simulated binary crossover (SBX) is commonly used and preferred. SBX 
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is specifically designed for real-coded parameters and does not involve a 

mutation operator. It is an extension of the single-point crossover and can also 

be utilized with multi-point crossover techniques. This approach centers on 

the probability distribution of potential offspring (genes) generated from the 

given parents (genes) as demonstrated in equations (3.4) or (3.5) (Carlos and 

Azevedo, 2011) and SBX first calculates the number of offspring using 

formulas (3.6) and (3.7) (Deb and Beyer, 2001). Nonetheless, equations (3.4) 

and (3.5) operate similarly to the evaluation of equation (3.6) and (3.7), with 

the subsequent example employs formulas (3.6) and (3.7), and enhance the 

last two formulas proposed by Azevedo (Carlos and Azevedo, 2011), which 

are widely employed in practice. To calculate the float number resulting from 

the crossover, the process begins by selecting a random number µ ~ (0, 1). 

Then, α is computed, and the offspring is generated using the calculated α.  

Gene1 = 0.5[(1 + α𝑖)𝐺1 + (1 − α𝑖)𝐺2]                                                                                  (3.4) 

Gene2 = 0.5[(1 − α𝑖)𝐺1 + (1 + α𝑖)𝐺2]                                                                                  (3.5) 

Gene1 = 0.5[(𝐺1 + 𝐺2) − α𝑖|𝐺2 − 𝐺1|]                                                                                   (3.6) 

Gene2 = 0.5[(𝐺1 + 𝐺2) + α𝑖|𝐺2 − 𝐺1|]                                                                                   (3.7) 

The calculation of (α𝑖) functions in equations (3.8) and (3.9) is dependent on 

the two-preceding offspring. Eta (𝜂) represents the index of a user-defined 

distribution, where 𝜂 is a positive value chosen by the user, indicating the 

number of parameters selected.  

α𝑖 = {
(2𝜇)

1

η+1, 𝑖𝑓 𝜇 < 0.5

(
1

2(1−𝜇)
)

1

η+1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                      (3.8)                                      

Utilize the probability distributions to compute the function of Alpha (α𝑖).  

α𝑖 = {
0.5(η + 1)𝛼η,           𝑖𝑓 𝛼 ≤ 1            (Contracting Crossover)     

0.5(η + 1)
1

𝛼η+2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        (Expanding Crossover) 

                         (3.9)                   

When selecting the second gene as a parent 1 and 2 from Figure 3-4 will 

produce two new offspring genes, we need to find (α𝑖) if  𝜇 = 0.4  from 
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formula (3.9) and the user chooses two parameters (𝐺1 and 𝐺2), the 

calculation is executed as follows:  

           α = (2 ∗ 0.4)
1

2+1 = 0.928 

𝐺𝑒𝑛𝑒1 = 0.5[(0.13 + 0.94) − 0.928|0.94 − 0.13|]  = 0.1592         

𝐺𝑒𝑛𝑒2 = 0.5[(0.13 + 0.94) + 0.928 ∗ |0.94 − 0.13|] = 0.9108  

The second offspring, with a value of 0.9108, falls outside the expected 

probability distribution range. This discrepancy indicates that occasionally the 

offspring gene results surpass the intended range due to the probabilistic 

nature. The issue arises when the updated gene's impact is intended to be 

larger than the original, but, in this instance, the updated gene is smaller.

 

Fig. 3- 4 SBX for the second Genes 

The third classification of problem techniques includes order-coded crossover 

methods. This category focuses on the fundamental types of order-coded 

crossovers. Partially mapped crossover (PMX) (Desjardins et al., 2017) and 

the cycle crossover operator (CX) (Hussain et al., 2017) are two method 

examples of this type of operator.  

The second parent chromosome determines the number of cycles between two 

parents. This method is suitable for numerical strings where each component 

occurs only once, ensuring that each index point in the offspring has a value 

from one of its parents. According to CX, Figure 3-5 proves the generation of 

the first offspring planet using the pseudocode when the random cycle 

contains the numbers (2, 5, 7, 6, 11).  Also, the pseudocode outlines a process 

for generating two offspring, Offspring1 and Offspring2, based on certain 

conditions involving two genomes, Genome1 and Genome2, within a cycle. It 

essentially decides which genome to select for each offspring based on 

whether the respective genome is part of the cycle or not. This selection 
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process helps generate diverse offspring by considering the presence or 

absence of each genome in the cycle. 

 

   Fig. 3-5 CX operator progressive 

3.2.2. Lagrangian Problem Crossover Operator  

Population-based algorithms have used binary and real code numbers 

crossover operators. However, Crossover standards generally have strengths 

and weaknesses. The main purpose of validating the crossover standards is to 

introduce and showcase a unique crossover technique. This section is devoted 

to providing a novel generated category to help enhance and generate novel 

algorithms. Crossover operators assume varying levels of responsibility in 

achieving global convergence rapidly. The recommended technique is based 

on LDF (Ouattara and Aswani, 2018) for gene crossings. Thus, several 

reasons are involved in generating a novel LPX operator. Similarly, the 

Lagrange dual problem is crucial because, under certain conditions (like 

convexity), it provides a lower bound on the optimal value of the primal 

(original) optimization problem. This relationship is established through the 

Lagrange duality theory. The LDF is a key concept in optimization theory that 

plays a fundamental role in establishing relationships between the primal and 

dual optimization problems, shedding light on the optimal solutions and 
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providing insights into the nature of the original constrained optimization 

problem. 

In cases where input values are constrained which can be equality or 

inequality conditions that the solution must adhere to, the Lagrange multiplier 

technique can be employed to determine the maximum or minimum of a 

multivariable function (Lin et al., 2010). Inspired by the Lagrange multiplier 

and LDF approaches, LPX endeavors to generate offspring that significantly 

deviate from each parent, setting it apart from other conventional operators. 

The primary objective of LPX is to identify regions where the contour lines of 

the multivariable function closely align with the input space. Besides,  

the Lagrange multiplier technique is employed to convert the constrained 

population-based optimization problem into an unconstrained one, allowing 

for the optimal solution to be obtained as a reference point in the crossover 

standard. Additionally, optimization with the Lagrangian method explores the 

application of Lagrange multiplier methods to achieve both local and global 

convergence in constrained minimization or maximization problems.  

The utilization of the Lagrange multiplier method is observed in identifying 

local maxima and minima of a function while considering equality constraints 

or requirements. The relationship between the function’s gradient and the 

gradients of the constraints naturally formulates the global problem, known as 

the Lagrangian Function. Points in proximity to these slopes may play a role 

in generating new genes within the specific chromosome. 

As indicated in the preceding discussion, Figure 3-6 depicts an objective 

function denoted as 𝑓(𝑥, 𝑦), which needs to be optimized while being subject 

to the constraint 𝑔(𝑥, 𝑦) = 𝑐. The Gradient 𝛻𝑓(𝑥, 𝑦) acts like a compass at 

each position (𝑥, 𝑦), guiding the way for the function 𝑓 to ascend most 

effectively. As long as the point keeps moving in this direction, 𝑓 will 

continue to climb along the steepest path. The gradient function calculated at 
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a specific location (𝑥, 𝑦) provides a vector that stands perpendicular to the 

contour line traversing through that point. As the exploring point ascends 

along the gradient vector’s peak, it must always stay on the constraint curve 

𝑔(𝑥, 𝑦) = 𝑐. In simpler terms, the solution can only move in directions that 

are tangents to this constraint curve. These tangent values remain consistent 

throughout the constraint curve 𝑔(𝑥, 𝑦) = 𝑐 since they are perpendicular to 

the gradient of the constraint function 𝑔.  

The Gradient Vector serves as the watchful guide to the optimizer’s journey 

on the surface of 𝑓 while following the constraint curve 𝑔(𝑥, 𝑦) = 𝑐. It 

ensures that the solution point keeps ascending in 𝑓 even when it ventures 

along a direction indicated by the non-trivial component of the Gradient 

𝛻𝑓(𝑥, 𝑦). However, if the gradient only flows in a direction perpendicular to 

the Gradient 𝛻𝑓(𝑥, 𝑦), the solution can be moved orthogonally to the gradient 

only once. In this scenario, the solution has reached a local maximum, where 

both gradients of 𝑓 and 𝑔 point in the same general direction. 

 

Fig. 3-6 The Lagrange multiplier shows the contour lines of the tangent function when gradient 

vectors are parallel. 

Furthermore, in both diagrams in Figure 3-6, the constraint 𝑔(𝑥, 𝑦) = 𝑐  is 

represented by a red curve, while the blue curves represent the characteristics 

of 𝑓(𝑥𝑖 , 𝑦𝑖). As 𝑆1  >  𝑆2,  the point where the red constraint tangentially 

contacts a blue curve corresponds to the maximum 𝑓(𝑥1, 𝑦2)  , which can be 

seen as being tangential to 𝑆1  in the lateral constraint. On uppermost, the 
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observation reveals that the assumption of line graphs being tangent does not 

affect the magnitude of any of these gradient vectors. We may retrieve the 

other vector by multiplying one by a constant when two vectors have the 

same orientation. The Lagrange multiplier is based on the assumption that the 

points of local minimum and maximum along the constraint occur when the 

constraint is tangential to the contours, as represented by 𝑆1, 𝑆2, 𝑆3. 

In the Figure 3-6, finding ourselves amidst a contour line, where the pursuit of 

computing ℒ at a particular point takes centre stage. It is a realm where the 

function 𝛻𝑓(𝑥, 𝑦) intertwines with 𝜆𝛻𝑔(𝑥, 𝑦), the enigmatic Lagrange 

multiplier 𝜆 adding a touch of intrigue. Herein lies the embodiment of a 

celebrated technique, the widely employed Lagrange multiplier approach, 

skilfully presented and scrutinized by (Ito and Kunisch, 2008), guiding us in 

unveiling the profound equation (12) that gracefully addresses the challenges 

of constrained optimization. 

ℒ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑐 

𝑔(𝑥, 𝑦) = 𝑐 If 𝑐 is a constant 

ℒ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦) 

By exploring these intricate points, a profound revelation emerges, 

showcasing the significance of the Lagrange multiplier λ in the improved 

form of equation (3.10) through maximization or minimization.  

ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆 𝑔(𝑥, 𝑦)                                                                                    (3.10)        

Using gradient vectors, we can determine the optimum point by computing 

many examples. For instance, in the realm of physical routing, the Lagrange 

multiplier proves to be invaluable. By selecting the smallest point, it aids in 

discovering the shortest and most efficient physical path. However, when it 

comes to unearthing multiple global solutions, the Lagrange dual function 

(LDF) emerges as a useful tool. The LDF theorem’s effectiveness hinges on 
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the utilization of real equation samples. Employing a novel crossover 

operator, this theorem can efficiently identify numerous local points. In this 

process, each station contributes to generating offspring genes from parent 

chromosomes, enabling a fruitful exploration of potential solutions. LDF 

theory implies the development of an alternative to the Conic Duality theory. 

The Lagrangian Duality Problem theory exhibits a significant influence in 

optimizing general nonlinear constraints (Mahmudov, 2011). Through the 

application of the Lagrange dual function (LDF) theorem, a remarkable 

outcome is achieved as an offspring emerges from the stationary point in the 

equation (3.11). 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  ℒ (𝑥1,, 𝑥2, 𝛼 ) =  𝑓(𝑥1, 𝑥2) −  𝛼 𝑔(𝑥1, 𝑥2) =  𝑓(𝑥1, 𝑥2) − ∑  𝛼 𝑔𝑖  (𝑥1, 𝑥2)  𝑛=2
𝑖=1            (3.11)         

For Offspring 1:             𝑓(𝑥1, 𝑥2) = (𝑥1 – 𝑥2) 2 +  (𝑥2 −  1) 2 

    Subject to                     g1(𝑥1, 𝑥2) = 𝑥1  +  2𝑥2  − 1 

                                         g2(𝑥1, 𝑥2) = 2𝑥1  +  𝑥2  − 1 

 For Offspring 2:           𝑓(x2, x1) = (x2 – x1) 2 +  (x1 −  1) 2 

     Subject to                    g1(𝑥2, 𝑥1) = 𝑥2  +  2𝑥1  − 1 

                                         g2(𝑥2, 𝑥1) = 2𝑥2  +  𝑥1  − 1 

Subsequently, it is possible to generate Offspring One (𝑂ţ1) and Offspring 

Two (𝑂ţ2) by including equation (3.11) at the stationary point when (ţ) is 

initialized step selection, when the Lagrange multiplier generates a random 

value (α) within the designated range based on the population-based 

generation crossover rate, it leads to the development of equations (3.12) and 

(3.13).  

𝑂ţ1 = (𝑥ţ1 – 𝑥ţ2) 2 +  (𝑥ţ2 −  1) 2 − (α (𝑥ţ1  +  2𝑥ţ2 –  1) + α (2𝑥ţ1  +  𝑥ţ2 –  1))   (3.12) 

𝑂ţ2 =  (𝑥ţ2  −  𝑥ţ1) 2 +  (𝑥ţ1 −  1) 2 − (α (𝑥ţ2  +  2𝑥ţ1 –  1) + α (2𝑥ţ2  +  𝑥ţ1  −  1))           
(3.13) 
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The proposed standard (LPX) shares similarities with the real-coded 

crossover. To create a modified sample crossover, we introduce a novel 

approach of inserting a sub-sequence from one of the genes into the parent. 

The sub-sequence is chosen to retain the initial order, encompassing as many 

point states as practical. This modified sample crossover is depicted in Figure 

3-7, presenting a unique and effective technique to explore new solutions and 

optimize gene combinations in the optimization process. When the stationary 

multiplier is specified arbitrarily as (α = 0.2), 𝑥1 is shown as Gene two 𝐺1 on 

chromosome one and 𝑥2 is reported as Gene two  𝐺2 on chromosome two. 

The comparison findings are enhanced heuristically and statistically in the 

next section. 

 
Fig. 3-7 Create two new offspring depending on LPX 

3.3. Lagrange Elementary for Optimization 

The Leo is the Lagrange elementary optimization algorithm which mimics the 

activities of a swarm of immune systems, drawing inspiration from a group of 

people during imitation. Generally, the Lagrange multiplier technique is 

employed to minimize a multivariate function, as discussed earlier. The input 

may consist of any number of dimensions for the function 𝑓(𝑥, 𝑦, 𝜆), often 

taking the form of another multivariate function 𝑔(𝑥, 𝑦) set equal to a 

constant (𝑐). By utilizing gradients (𝑔) as a two-variable function, this 

approach presents an effective method to find the optimal solution for 

reaching the top of the cliff side depicted in Figure 3-8 . 
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Fig. 3-8 Given that the solution can’t ascend significantly higher than the point where the 

restriction g=c crosses the top, the objective is to climb as high on the top as possible using the 

Lagrange theorem. 

Equation (3.14) introduces the Lagrange function 𝐹, where the numbers 

𝜆0, 𝜆1, … , 𝜆𝑚 are referred to as Lagrange multipliers. When 𝑔𝑖(𝑦) represents a 

regular value of the map g = 𝑔 = (𝑔1, 𝑔2, … , 𝑔𝑚), the statement assumes a 

more elegant form. This approach proves particularly advantageous for the 

first and second theorems of Lagrange multipliers since it often facilitates the 

solution of associated conditions without the need for explicit formulas 

expressing point set accumulation in terms of (𝑛 − 𝑚) independent variables. 

Generally, the necessary conditions lead to the formation of a private 

blockchain of relations or a system of (𝑛 + 𝑚)  equations in (𝑛 +

𝑚) variables when utilizing the Lagrange function.  

𝐹(𝜆, 𝑥) = 𝑓(𝑥) + ∑ 𝜆𝑖(𝑔𝑖(𝑦) − 𝑔𝑖(𝑥))           𝑚
𝑖=0                 (3.14) 

When      
𝜕𝐹

𝜕𝑥𝑗
(𝑥∗, 𝜆∗) = 0         ∀𝑗∈ {1, … , 𝑛} 

And    
𝜕𝐹

𝜕𝑥𝑖
(𝑥∗, 𝜆∗) = 0          ∀𝑖∈ {1, … , 𝑚} 

It may often summarize these criteria; it aims to look for constants 𝑥0

, 𝑦0 𝑎𝑛𝑑 𝜆0 that fulfill 𝑔(𝑥0, 𝑦0) = 𝑐. Depending on the requirements, 

equation (3.15) illustrates the tangency conditions. 
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𝑓(𝑥0, 𝑦0) = 𝜆0𝛻𝑔(𝑥0, 𝑦0)    (3.15) 

This can be broken into its components as equations (3.16) and (3.17): 

𝑓𝑥(𝑥0, 𝑦0) = 𝜆0𝛻𝑔𝑥(𝑥0, 𝑦0)           (3.16) 

𝑓𝑦(𝑥0, 𝑦0) = 𝜆0𝛻𝑔𝑦(𝑥0, 𝑦0)           (3.17) 

Lagrange equation (3.18) stands as a wholly independent function, separate 

from the broken tangency conditions. This equation takes all the same inputs 

as functions 𝑓 and 𝑔, along with the introduction of a new variable, the "new 

kid" in the action, now treated as a variable rather than a constant when 𝑐 =

0. The function, linked to the concept of Lagrange multipliers, serves as a 

powerful tool to establish conditions for finding conditional maxima or 

minima of functions with multiple variables, or more generally, of 

functionals. Its primary objective is to identify local minima (or maxima) 

within the specified problem domain. 

ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦) − 𝜆(𝑔(𝑥, 𝑦) − 𝑐)           (3.18) 

3.4. Algorithm Deterministic Process  

The deterministic process of Leo encompasses the stages of initialization, 

evaluation, selection, crossover, and mutation, working together to drive the 

search for optimal solutions. Understanding this process provides a 

foundation for exploring and implementing Leo’s in various domains, 

empowering researchers and practitioners to tackle challenging optimization 

problems with confidence. 

3.4.1. Leo Comprehensive Definition  

At the core of this method lies the inspiration drawn from parents’ endeavors 

to select an appropriate and compatible group of individuals from numerous 

candidate groups, with a specific focus on identifying  𝐴𝑙𝑏serum  in human 

blood. Moreover, the process of choosing the most effective immune system 
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(𝐼𝑔𝐺) from multiple positive systems is believed to converge towards 

optimality. Each genome that explores new groups of parents with a high 𝑄Alb 

offers a potential solution within this algorithm, providing a path to uncover 

latent solutions and optimize the search process. The algorithm commences 

with the random initialization of an  𝐴𝑙𝑏serum  population within the search 

space, denoted as Xţ,i(𝑖 =  1, 2, . . . 𝑁);   where ţ represents the initialization 

iteration selection step, and each genomic position signifies a newly 

discovered  𝑄Alb solution. By employing a population-based approach, this 

algorithm aims to identify the highest-quality parents from a stochastic space, 

thus beginning with the essential step of selecting individuals from the 

initialized population. 

In the initial section of the textual Leo algorithm pseudocode, depicted in 

Figure 3-9, all Leo parameter settings and symbols have been defined. If the 

termination condition is not satisfied, a specific parameter will be utilized to 

randomly select a percentage of individuals from the total population 𝑁. 

Initially, The algorithm standard and time computation complexity impose a 

limitation on the population size, confining it within the range of 30 to 80 

individuals. The Genetic Algorithm (GA) dictates that the best individuals 

must be selected even before being subjected to new operators to generate 

improved genomes. This step is of utmost importance, as it involves dividing 

the main population into two equal sub-populations after sorting the entire 

population in descending order, ensuring optimal selection of individuals for 

further processing. 

Next, the primary Half Group (ɦɠ) is further divided into two random 

subgroups: the First Group (𝑓ɠ) and Second Group (ʂɠ). Subsequently, 

individuals will be selected from these half-group populations based on the 

fitness function evaluation equation (3.19), which is derived from equation 

(2.1), to determine the most optimal  QAlb from  Albserum . The selection 
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process involves choosing the highest fitness obtained from the fitness 

function evaluation of individuals in the First Group (𝑓ɠ) and Second Group 

(ʂɠ) to complete the selection of individuals for the identified Half Group 

(ɦɠ) at the next time step, denoted as  (𝑋ţ,i+1 ). This strategic selection of 

individuals ensures that the algorithm progressively hones in on the most 

promising solutions as it iterates through the optimization process. 

𝑋ţ,i+1 𝑓𝑜𝑟 ɦɠ  
=

 𝑋ţ,i 

𝑋ţ,i+1 
                                                                                     (3.19) 

By allowing individuals to be selected from the initial section of the sub-

population, the issue of converging towards local optima is effectively 

mitigated (Kleinberg et al., 2018). The last two stages involve enhancing 

individuals by enabling gene interactions within groups. This necessitates 

collaboration among genes and the individuals chosen for parent selection, 

thereby facilitating the creation of appropriate subsequent steps. The optimal 

weight of metacognition typically influences how a genome explores 

problems through mutations.  

Indeed, during the process of crossover, individual genomes collaborate and 

collectively influence their behavior. This collaborative effort involves 

sharing genetic information and combining traits from different individuals, 

leading to the creation of new genomes with potentially improved 

characteristics. Once the genomes are accepted and evaluated based on 

 𝐴𝑙𝑏serum  from human blood to estimate 𝑄Alb, they may possess an effective 

ratio of the human immune system. 

Consequently, there can be advantages in increasing the 𝐼𝑔𝐺 rate through 

vaccinations, which involves providing support and fostering collaboration 

with others. Furthermore, as mentioned in (Saravanan et al., 2022), genomes 

can mutually influence their occurrence and partake in gene group 

interactions within the blood serum. They might also seek support when 
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vaccine doses impact the genome. As previously mentioned, the Leo 

algorithm is founded on GA, where GA operators simulate gene inheritance 

to create new individuals in each generation. In the subsequent stages, these 

operators are utilized to alter the structure of individuals. The primary genetic 

operators employed are selection, crossover, and mutation, which are 

commonly used in genetic algorithms. In Leo, genes function as selection 

operators, with a particular focus on group-based selection, contributing to the 

algorithm’s distinctive approach in optimizing solutions. Subsequently, this 

case delved into an explanation of how the Leo algorithm functions, 

incorporating the utilization of crossover and mutation operators. 

In the initial segment of the pseudocode illustrated in Figure 3-9, commence 

by initializing the generation: randomly creating an initial population. 

Subsequently, proceed to identify parameters, crossover rate, and mutation 

rate by recognizing genomes for all individuals, taking into account the 

albumin quotient to bolster the overall immunity system. The subsequent 

phase centers on the selection groups of genomes: randomly selecting a 

percentage based on a specified parameter, evaluating individual fitness using 

Equation 3.19, and sorting individuals (parents) in decreasing order, as 

elaborated in previous sections. Select ɦɠ as N/2, dividing N into two equal 

parts of populations. The computational process continues by incrementing k 

by 1 until the iteration's conclusion. The transition then advances to the 

Lagrangian Problem Crossover LPX stage, involving the implementation of 

equations 3.12 and 3.13. This includes swapping the first genome to derive 

new individuals' fitness functions. Following this, the Gaussian Mutation 

process is executed, iterating until the fitness of the fittest individual in the 

population attains a sufficiently high level. Finally, the best solution is 

selected from the created individuals. 
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Fig. 3-9 the proposed pseudocode for Leo Algorithm 

As a population-based method, individuals in Leo algorithm generate diverse 

offspring by modifying suggested self-adaptive systems at each stage of 
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development. The crossover parameter plays a vital role in enhancing global 

search capability and increasing variance in the differential vector. On the 

other hand, a rounding procedure reduces the second component of the 

weighted difference vector to the nearest integer value. After the selection 

process, crossover, and mutation are employed to generate updated genomes 

based on the selected parents. For further clarity, Figure 3-10 presents a 

flowchart illustrating the step-by-step process of the Leo algorithm. This 

flowchart visually explains the various stages involved in optimizing 

solutions and achieving convergence. 

 
Fig. 3-10 Leo algorithm flowchart process 
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3.4.2. Leo Crossover Process   

In the Leo algorithm, the GA-based crossover operator plays a crucial role in 

this stage. By employing the crossover operator, the exchange of genes 

between genomes is facilitated, leading to the development of an optimal 

immune system after vaccination. As a consequence, the genome becomes a 

complete set of genes distinct from the original genomes or genes of 

 𝐴𝑙𝑏serum . This results in a significant impact on the overall genome of both 

individuals, and the newly produced individuals exhibit variations from  

 𝐴𝑙𝑏serum . 

As Adam optimization pointed out (Kingma and Ba, 2014); stochastic 

gradient-based optimization plays a vital role in numerous fields of science 

and engineering. Various gradient theorems can be applied to ascertain the 

differentiability of a function using the Lagrange method. Gradient descent 

proves to be a quite effective optimization technique, particularly when its 

parameters are appropriately tuned or lagged. Consequently, Leo is utilized 

with the LPX standard to generate comprehensive individual structures by 

exploring alternative genes. The algorithm initiates with a crossover rate of 

0.6 multiplied by half of the population size. As previously mentioned, the 

LDF theorem draws inspiration from real-world equation examples within the 

LPX standard. Moreover, a novel crossover operator is proposed, capable of 

identifying multiple local points. The LDF theory represents a significant 

advancement in replacing the Conic Duality hypothesis, as highlighted earlier. 

Equations (3.12) and (3.13) serve as the key tools to discover novel structural 

individuals(Oţ,i). 

The Lagrangian dual function and the Leo problem optimization exhibit 

deterministic properties, confirming their well-defined characteristics and 

behaviors. In this algorithm, the values are sampled from a uniform 

distribution on the interval [0.2, 0.3]. During the creation of new individuals, 
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it is feasible to swap the first old gene for the second new gene. This 

exchange determines the updated fitness function, which is then evaluated 

using equation (2.1) to calculate the fitness. The Leo crossover is constructed 

using pseudocode, as illustrated in Figure 3-11, showcasing the step-by-step 

implementation of the crossover operation within the algorithm. 

 

Fig. 3-11 Leo Crossover Process Pseudocode 

3.4.3. Leo Mutation Process   

Although scientists can provide explanations for the immunological 

ambiguities resulting from genetic mutations, the precise nature of these 

ambiguities remains unidentified. Additionally, mutations can have random 

effects that influence behavioral changes in individuals. The most 

fundamental form of mutation involves the modification of one or more 

genes. As mentioned, metacognition can introduce a stochastic influence on 

the overall behavior of genes. As a result, individuals have the ability to 

adjust their behavior in specific directions by modulating the levels of 

immunity-related activities in their genes, guided by the mutation rate. The 

mutation operator, inherent in the GA-based algorithm, is effectively 

 , : are the two given Genes; 

, : are the two new Offspring; 

, : are the two highest fitness Genes 

 : is a random value between (0.2,0.3); 

: is counter; 

i: is additive by one gene number 

: number of parents (individuals) 

Leo_Crossover ( , , , ){ 

Required: Calculate  value   

While  smaller than  

Calculate the first offspring   from equation 3.12; 

Calculate the second offspring  from equation 3.13; 

Calculate the new first gene:   =   ; 

 =  

 
End while  

} the best individuals found during the evaluation  
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employed in the Leo algorithm to demonstrate this progressive adaptation. 

Through the mutation operator, individuals can explore and navigate the 

search space, allowing for diversity and exploration in the optimization 

process. 

The primary objective of EA mutation is to introduce diversity into the entire 

population sample. Mutation operators are employed to steer clear of local 

minima or local maxima by ensuring that the population of genomes does not 

become overly similar to each other. By introducing variations through 

mutations, individuals can be adapted to different situations or carry genes 

that were not originally present in the initial population. There are several 

methods to mutate individual representations, such as uniform mutation, 

replacement mutation, scramble mutation, inversion mutation, dynamic 

mutation, boundary mutation, and so on. These diverse mutation techniques 

help maintain genetic diversity and aid in exploring the solution space more 

effectively, leading to better optimization outcomes in evolutionary 

algorithms. Leo operates Gaussian Mutation (Bell, 2022) as the standard for 

EA. Self-adaptation enables a GA to modify its algorithm during problem-

solving (Smith, 2008). The Gaussian mutation operator has proven to be the 

most effective and popular choice for self-adaptation in GA. By assigning a 

random value between (-1, 1) to sigma (𝜎) and taking a random sample for 

(𝑗𝑖), equation (3.20) is employed to develop Leo mutation operator, denoted 

as 𝑀ţ,𝑖 . In Leo algorithm, the percentage mutation for individuals in the 

sample 𝑋ţ,𝑖 (𝑗𝑖  ) is set to 0.3.  

𝑀ţ,𝑖 =   𝑋ţ,𝑖 (𝑗𝑖 ) +  𝜎 ∗   𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒 (𝑗𝑖))                          (3.20) 
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CHAPTER FOUR 

4. Results and Discussion          

This chapter presents the implementation results, followed by direct analysis 

and discussion, aiming to enhance readability. Consequently, the results 

section is relatively extensive, allowing for a more straightforward 

mechanism by incorporating results analysis into each corresponding section. 

The main sections in this chapter focus on determining the results for 

validating the LPX and Leo algorithms. In this manner, the chapter offers 

substantiation and showcases the efficacy of the suggested standard and 

algorithm. 

The initial section focuses on gauging the exploitation level and convergence 

of standards in population algorithms. To assess these standard operators and 

the performance of population-based algorithms, various benchmark test 

functions are available. For this study, three specific test functions have been 

chosen to analyze the newly introduced operator. In this sub-section, three 

unimodal test functions, namely TF1, TF3, and TF7, are selected from the 

classical benchmark tests. The first part of this section involves a heuristic 

evaluation, where the LPX, BX, and SBX operators are compared. Moving on 

to the second part, the standard operator is compared with BX, SBX, and 

Qubit-X operators, all tested using LPB as a population-based algorithm to 

analyze exploitation and convergence results. Finally, the last part involves 

the statistical evaluation of all results using a Wilcoxon Rank Sum test. 

The second part of the study aims to validate the proposed algorithm’s 

functionality and assess its effectiveness.  The execution of the Leo algorithm 

results on Apple silicon Macs is enabled and supported by MATLAB 

R2019b. The generation of real applications is contingent on the utilization of 

this particular version. To achieve this, a set of widely recognized benchmark 

functions from existing literature are employed. Additionally, Leo algorithm’s 
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results are compared with five other well-known algorithms from the 

literature in 19 classical benchmark tests (Hussain et al., n.d.). Among these 

algorithms, one is a popular approach, such as DA, PSO, or GA, while the 

remaining two are novel methods, namely FDO and LPB. Besides, the results 

obtained from the proposed algorithm are compared to those achieved by Leo 

algorithm specifically on the CEC-2019 test functions (Brest et al., 2019) 

such as DA, WOA, SSA, FDO, LPB, and FOX. Subsequently, a statistical 

analysis is performed on these results using the Wilcoxon rank-sum test to 

determine the significance of the outcomes by IBM SPSS Statistics Version 

26. Finally, it is worth noting that Leo functions have demonstrated successful 

applications in solving real-world problems. 

4.1. Results and Discussion of Lagrangian Problem Crossover 

LPX is a novel crossover standard being proposed, which is evaluated by 

comparing it to the previous standard methods as described in the 

methodology chapter. The evaluation primarily centers around estimating the 

time required to discover the best optimal solution. It is important to note that 

the results are influenced by the value of a random number to determine the 

most suitable solution. Additionally, the study demonstrates the processing 

time for dynamic cost minimization. To accomplish this, gradient vectors 

have been employed to guide this model in computing numerous examples 

and identifying the optimal point. The significance of this methodology lies in 

its applicability to physical routing, where it streamlines the process of 

identifying the smallest point to reveal the shortest physical path.  

4.1.1. Heuristic Evaluation Results 

Through mathematical comparisons, this assessment sought to pinpoint 

significant usability and performance issues associated with the standard 

operators. The tests were conducted over a series of 100 stochastic 

generations (genes) involving various pairs of parents (chromosomes) and 
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crossover rate values (𝛼) set at 0.3, 0.5, and 0.7. The variation in random 

values plays a crucial role in assisting newly proposed algorithms to 

efficiently select the optimal range of values. In the previous chapter, various 

methods of standards have been provided, but the focus of the testing lies on 

the BX and SBX crossovers. Therefore, the outcomes of the two standard 

heuristics are contrasted with those obtained using the LPX method. 

Additionally, the performance can be assessed by examining the statistical 

values generated. A higher averaged value signifies a more favorable 

outcome. Regarding the crossovers, the outcomes of mathematical 

calculations performed on parent chromosomes are utilized to generate genes 

in the offspring chromosomes (Malik and Wadhwa, 2014). The arithmetic 

operations are determined by applying equations (3.2) and (3.3) for BX, 

equations (3.4) and (3.5) for SBX, and equations (3.12) and (3.13) for LPX. 

The test is conducted by choosing three unimodal functions from a collection 

of conventional benchmark functions. The purpose is to assess the 

appropriateness of each gene on a chromosome during the evaluation process. 

The benchmarks consist of three test functions: TF1, TF3, and TF7, which are 

listed in Table (4-5). Achieving the global optimum requires an algorithm to 

steer clear of local optimal solutions, and these selected sample test functions 

can aid in devising an effective exploration strategy. The individual results are 

statistically analysed by summing up the generations on the parent 

chromosome. After conducting the evaluation on the selected test functions, 

the next step involves calculating summation (Sum), the average (Mean) and 

standard deviation (STD) for each standard depend on 100 genes. The 

comparison between the different standards is based on the alpha value (𝛼), 

which is a randomly generated value during the algorithm’s execution.  

The Lagrangian functions are specifically designed to explore novel points in 

intricate applications by searching around the most prominent local optimum. 
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As previously discussed, the Lagrange multiplier method in mathematics is a 

mathematical technique utilized to ascertain the local maximum or minimum 

value of an action while adhering to equality constraints. In the context of 

LPX, Lagrangian functions are purposely crafted to explore new points in 

complex applications, focusing on searching for the most prominent local 

optimum. As mentioned earlier, in mathematics, the Lagrange multiplier 

method is a powerful technique used to determine the local maximum or 

minimum value of an action while satisfying equality constraints. LPX 

outperforms BX and SBX for all values of alpha (α). Whereas BX and SBX 

may have been reasonable choices in previous generations, at present, LPX 

emerges as a better choice. Additionally, the results suggest that TF7 

demonstrates strong convergence and exploitation characteristics across all 

alpha values. Moreover, LPX holds potential for ranking social classes and 

conducting stochastic analysis of metaheuristic algorithms as focused on 

Table 4-1. 

Table 4-1 The performance result test for selected crossover standards with LPX 

     Standards BX SBX LPX 

α Test Functions Sum Mean STD Sum Mean STD Sum Mean STD 

0.2 

TF1 42.36 0.42 0.30 31.37 0.31 0.32 1737.56 17.38 17.09 

TF3 60.00 0.60 0.66 60.00 0.60 0.66 3197.01 31.97 31.27 

TF7 779.24 7.79 10.78 487.58 4.88 9.52 1937510.53 19375.11 33631.08 

0.5 

TF1 30.00 0.30 0.30 38.58 0.39 0.30 2776.00 27.76 26.17 

TF3 60.00 0.60 0.66 60.00 0.60 0.66 5273.89 52.74 50.06 

TF7 461.88 4.62 9.41 661.72 6.62 10.21 4348187.50 43481.88 64658.48 

0.7 

TF1 35.49 0.35 0.31 46.82 0.47 0.30 3648.64 36.49 34.78 

TF3 60.00 0.60 0.66 60.00 0.60 0.66 7019.17 70.19 67.65 

TF7 579.02 5.79 9.88 941.45 9.41 11.81 7300002.73 73000.03 109185.64 

Despite that, all the standards of crossovers were considered reasonable in 

terms of the invincible algorithms of evolution. Nevertheless, we presented 

two instances exemplifying the maximum and minimum genes on parent 

chromosomes for TF1, while considering three different alpha values. The 

performance of BX and SBX in TF1 was straightforward, but LPX displayed 
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slightly better outcomes, as the average and standard deviation outputs 

increase, it indicates enhanced performance in algorithms and real application 

problems. Moreover, LPX demonstrated both the maximum and minimum 

gene expressions that exceeded the performance of both BX and SBX 

methods. Besides, the convergence process in LPX revealed significantly 

higher inter-generational relationships than the other two crossover standards 

for all alpha values in TF3. Additionally, it successfully illustrated the 

relationships between generations for both maximum and minimum gene 

values based on TF3. In the case of TF7 results for all alpha values, LPX 

demonstrated oddly high performance compared to BX and SBX, mainly due 

to its ability to define and obtain maximum and minimum genes effectively. 

The evaluation and highlighting of the chromosome comparative results for 

TF7 are depicted, showcasing the divergent maximum and minimum genes. 

Figures 4-1 to 4-9 illustrate the frequency of subsequent generations 

originating from the parent genes on the Y-axis. This representation is 

essential because it takes into account the presence of distinct maximum and 

minimum genes on each chromosome, which are used to assess and compare 

the results. The heuristic evaluation confirms that LPX frequencies rapidly 

reach their maximum for these three test functions. Therefore, these solutions 

according to LPX support obtaining the best optima in both stochastic and 

bio-inspired optimizations. 

 

Fig. 4- 2 Parents’ Generation for TF1(α=0.5) 

 

Fig. 4-1 Parents’ Generation for TF1(α=0.2) 

0.001

0.1

10

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN

0.0001

0.01

1

100

BX SBX LPX

Fr
eq

u
en

cy

MAX MIN



58 
 

 

Fig. 4-4 Parents’ Generation for TF3(α=0.2) 

 

Fig. 4-3 Parents’ Generation for TF1(α=0.7) 

 

Fig. 4-6 Parents’ Generation for TF3(α=0.7) 

 

Fig. 4-5 Parents’ Generation for TF3 (α=0.5) 

 

Fig. 4-8 Parents’ Generation for TF7 (α=0.5) 

 

Fig. 4-7 Parents’ Generation for TF7 (α=0.2) 

 

Fig. 4-9 Parents’ Generation for TF7 (α=0.7) 
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4.1.2.  Exploitation and Convergence Evaluation Results 

The prowess of LPX has undergone rigorous evaluation through a captivating 

array of experiments. These inventive designs delve into the intricacies of 

LPX, scrutinizing its qualitative and quantitative traits with keen interest. The 

qualitative analysis beautifully showcases LPX’s exceptional exploitation 

capabilities and convergence behavior in problem-solving, drawing insights 

from exploration and average fitness values. To accomplish this objective, 

LPB, the population algorithm mentioned earlier, is carefully chosen. 

Alongside, a quantitative analysis is conducted to compare LPX against other 

standard crossovers like BX, SBX, and Qubit-X. We have handpicked three 

classical test functions, presented in Table (4-5), to gauge LPX effectiveness. 

LPX’s performance evaluation involves two crucial aspects: its capacity to 

break free from local optima and its convergence speed, gauged by summing 

the elapsed time to reach the optimal fitness point. This study demonstrates 

the influence and efficacy of the random value factor. To establish this, three 

distinct random values are selected for each test function, illuminating the 

significance of the stochastic element in LPX’s outcomes.  

The experiment involved 500 iterations, testing each standard with different 

random values using the LPB algorithm. LPB was executed 30 times with 80 

search agents in each run. The evaluation included computing SUM, STD, 

and processing time. Remarkably, LPX showcased exceptional performance, 

consistently ranking first or second in SUM and STD depend on 30 rounds 

across almost all three test functions. The remarkable convergence speed and 

outstanding results are boldly highlighted in Table (4-2). In particular, when 

comparing the LPX standard with others on unimodal test functions, it was 

observed that LPX exhibited a higher rate of exploitation and convergence, 

specifically in TF7 for all random value approaches, and in TF1, LPX high 

time computation for all random values rather than compared other crossover 

standards. Also, LPX  
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Table 4- 2 The crossover operator’s comparison results of classical test functions 

TFs α 
LPX SBX BX Qubit-X 

Mean STD Time (s.) Mean STD Time (s.) Mean STD  Time (s.) Mean STD Time (s.) 

TF1 

0.2 0.0635 0.0184 141.740 0.01751 0.0236 161.423 0.04428 0.0446 150.384 0.1758 0.0926 144.474 

0.5 0.0680 0.0281 149.798 0.04161 0.0270 162.160 0.04178 0.0323 157.700 0.1411 0.0510 151.992 

0.7 0.0596 0.0279 151.112 0.02959 0.0172 188.501 0.04150 0.0294 163.809 0.1425 0.1045 157.042 

TF3 

0.2 43.5652 24.8093 159.289 83.37500 59.0221 178.260 41.60497 28.4041 169.970 120.7210 73.2963 164.986 

0.5 40.4260 26.2073 165.144 78.18210 52.1304 161.057 52.58699 37.7840 169.130 175.6268 119.6147 165.608 

0.7 66.7197 58.8220 164.711 85.92191 71.4473 180.216 50.67240 49.2447 167.669 81.3198 52.6167 164.450 

TF7 

0.2 0.0048 0.0031 143.005 0.01351 0.0188 153.884 0.00624 0.0045 156.457 0.0076 0.0043 160.718 

0.5 0.0049 0.0027 152.029 0.00770 0.0066 164.322 0.00616 0.0029 162.973 0.0094 0.0051 147.530 

0.7 0.0052 0.0033 157.893 0.00773 0.0056 164.504 0.00709 0.0042 163.520 0.0123 0.0064 155.061 
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 exhibited marginally faster execution times in comparison to the calculations 

for TF3 with the random value approaches 0.2.  Furthermore, during TF3, 

when the random value approaches 0.5, LPX demonstrated the optimal 

convergence and exploitation rates with second rank after for time 

commutation after SBX.   

4.1.3. Statistical Evaluation Results 

Stochastic optimization algorithms allow for the use of non-parametric 

statistical tests like Wilcoxon signed-rank sum and analysis of variance 

(ANOVA) to assess their overall performance. Another non-parametric test, 

the Wilcoxon rank-sum test (also known as Mann-Whitney U test), compares 

two independent groups or samples (Fay and Proschan, 2010). As it makes no 

assumptions about the data distribution, it is very useful when comparing 

optimization techniques. A considerable difference between the ranks of data 

from two different algorithms is also assessed. Optimization performance 

evaluates whether one approach consistently outperforms the other. 

Additionally, it offers an accurate technique for comparing algorithms or 

standards based on their rank-based performance metrics, without assuming 

anything about the distribution’s underlying properties . 

When using a standard to address optimization problems, it is essential to 

assess its statistical applicability. Table (4-3) presents a comparison using the 

Wilcoxon signed-rank sum test between LPX and SBX, as well as LPX and 

BX standards. The statistical tests conduct on LPX results show significant 

results, rejecting the null hypothesis. All p-values obtained for these three test 

functions, which are tested with random values (α), are smaller than 0.05 .
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The statistical analysis presented in Table (4-4) is conducted using the 

Wilcoxon rank-sum test to examine the results. The objective is to determine 

the significance of the crossover operators when compared to LPX  . Based on 

the results, Qubit-X demonstrated statistically significant outcomes for all 

three test functions, except for TF2 (α=0.7), where the significance was not 

observed. As a result, the null hypothesis was rejected for TF2 (α=0.7). 

Furthermore, SBX demonstrated statistically significant results for all test 

functions and values, except for TF3 and TF7 at α=0.7. On the other hand, 

LPX showed statistical significance compared to the BX standard for TF1 

across all alpha (α) values, indicating a (p-value) lower than 0.05. 

Table 4-3 The Wilcoxon rank-sum test (p-value) between crossovers operator for random generations 

TFs α 
Standards 

LPX vs SBX LPX vs BX 

TF1 

0.2 3.6746E-16 5.3124E-16 

0.5 4.7409E-17 4.0951E-17 

0.7 4.7409E-17 3.8618E-17 

TF3 

0.2 8.5768E-16 8.5768E-16 

0.5 9.5355E-17 9.5355E-17 

0.7 8.2482E-17 8.2482E-17 

TF7 

 

 

0.2 1.6983E-16 2.6103E-16 

0.5 4.0951E-17 3.2378E-17 

0.7 3.2378E-17 2.0802E-17 

Table 4-4 The Wilcoxon rank-sum test (p-value) between standards by the LPB algorithm 

TFs α 
Standards  

LPX vs SBX LPX vs BX LPX vs Qubit-X 

TF1 

0.2 0.000031 0.002415 0.000005 

0.5 0.000241 0.001965 0.000002 

0.7 0.00042 0.015658 0.000031 

TF3 

0.2 0.002765 0.517048 0.000002 

0.5 0.006836 0.318491 0.000002 

0.7 0.328571 0.393334 0.271155 

TF7 

0.2 0.000716 0.298944 0.009271 

0.5 0.044919 0.085896 0.000664 

0.7 0.071903 0.057096 0.000058 
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4.2. Results and Discussion of Single-Objective Lagrange Elementary 

for Optimization  

The performance evaluation of the single-objective Leo algorithm involves 

using various standard benchmark test functions from existing literature. 

Furthermore, we compare our results with five other well-known algorithms 

mentioned in the introduction. It is worth mentioning that the results of 19 

classical benchmark test functions are obtained from a prior study, while we 

conduct the CEC-C06 tests. To determine the statistical significance of the 

test outcomes, we use the Wilcoxon rank-sum test for comparison . 

Furthermore, four measurement metrics are utilized for additional analysis 

and observation. 

4.2.1. Classical Benchmark Test Functions 

The Leo algorithm underwent 30 tests, with each test utilizing 80 search 

agents. In each test, the algorithm searched for the most efficient optimum 

solution within 500 iterations, and subsequently, the Mean and STD values 

were calculated from 30 round tests. Detailed information about the parameter 

sets for DA, PSO, GA, FDO, and LPB can be found in Tables (9 and 10) of 

this work. In the context of the general convex learning problem, our results 

are comparable to the best-known bound.  

To evaluate the effectiveness of the Leo algorithm, we selected three sets of 

test functions, which are grouped into three distinct categories: unimodal, 

multimodal, and composite test functions (Arora et al., 2020). Each of these 

test functions evaluates different aspects of algorithm effectiveness and 

benchmarking specific characteristics. For instance, unimodal benchmark 

functions are used to assess the level of exploitation and convergence of 

algorithms or standard operator effect on the algorithm, as they have a single 

optimal solution. On the other hand, multimodal benchmark functions include 
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multiple optimal solutions, enabling the evaluation of the ability of algorithm 

to avoid local optima and explore the search space. 

 Indeed, the test functions encompass a variety of optimal solutions, including 

the global optimum and several individual optimal solutions. This 

characteristic resembles the scenarios often encountered in multimodal 

optimization problems, much like the scenarios encountered in multimodal 

optimization problems. To obtain a globally optimal solution, an algorithm 

must effectively avoid local optima. Composite benchmark functions, in 

particular, are constructed as a combination of blended, rotated, shifted, and 

biased versions of other test functions. These composite benchmarks contain a 

significant number of local optima and exhibit various shapes in different 

regions of the search landscape. Examples of such benchmark functions can 

be found in Tables (4-5, 4-6, and 4-7) (Hussain et al., n.d.). 

 Table 4-5 Unimodal benchmark functions (Hussain et al., n.d.) 

Functions Dimension Range Shift position 𝒇𝒎𝒊𝒏 

𝑻𝑭𝟏(𝒙) =  ∑ 𝑥𝑖
2

𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0 

𝑻𝑭𝟐(𝒙) =  ∑ |𝑥𝑖

𝑛

𝑖=1

| + ∏ |𝑥𝑖|

𝑛

𝑖=1

 10 [-10,10] [-3, -3, … -3] 0 

𝑻𝑭𝟑(𝒙) =  ∑ (∑ 𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 10 [-100, 100] [-30, -30, … -30] 0 

𝑻𝑭𝟒(𝒙) = max
𝑖

{|𝑥|, 1 ≤ 𝑖 ≤ 𝑛} 10 [-100, 100] [-30, -30, … -30] 0 

𝑻𝑭𝟓(𝒙) = ∑[100(𝑥𝑖+1 − 𝑥1
2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 10 [-30,30] [-15, -15, … -15] 0 

𝑻𝑭𝟔(𝒙) =  ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

 10 [-100, 100] [-750, … -750] 0 

𝑻𝑭𝟕(𝒙) = ∑ 𝑖𝑥𝑖
4 + random[0, 1]

𝑛

𝑖=1

 10 [-1.28,1.28] [-0.25, …-0.25] 0 
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Table 4-6 Multimodal benchmark functions (10 dimensional) (Hussain et al., n.d.) 

Functions  Range  Shift position 𝒇𝒎𝒊𝒏 

𝑻𝑭𝟖(𝒙) =  ∑ −𝒙𝒊

𝒏

𝒊=𝟏

𝐬𝐢𝐧 (√|𝒙𝒊|) 
 [-500, 500]  [-300, … -300] -418.9829* 𝑛 

When 𝑛 equals to 

dimensions 

𝑻𝑭𝟗(𝒙) =  ∑[𝒙𝒊
𝟐 − 𝟏𝟎 𝐜𝐨𝐬(𝟐𝝅𝒙𝒊) + 𝟏𝟎]

𝒏

𝒊=𝟏

 
 [-5.12,5.12]  [-2, -2, …-2] 

 

0 

𝑻𝑭𝟏𝟎(𝒙) =  −𝟐𝟎𝒆𝒙𝒑 (−𝟎. 𝟐√∑ 𝒙𝒊
𝟐

𝒏

𝒊=𝟏

) − 𝒆𝒙𝒑 (
𝟏

𝒏
∑ 𝒄𝒐𝒔(𝟐𝝅𝒙𝒊)

𝒏

𝒊=𝟏

) + 𝟐𝟎 + 𝒆 

 [-32, 32]   0 

𝑻𝑭𝟏𝟏(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝟏

− ∏ 𝐜𝐨𝐬 (
𝒙𝒊

√𝒊
)

𝒏

𝒊=𝟏

+ 𝟏 
 [-600, 600]  [-400, … -400] 0 

𝑻𝑭𝟏𝟐(𝒙) =
𝝅

𝒏
{𝟏𝟎 𝐬𝐢𝐧(𝝅𝒚𝟏) + ∑ (𝒚𝒊 − 𝟏)𝟐[𝟏 + 𝟏𝟎 𝐬𝐢𝐧𝟐(𝝅𝒚𝒊+𝟏)] + (𝒚𝒏 − 𝟏)𝟐𝒏−𝟏

𝒊=𝟏 } +

∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)𝒏
𝒊=𝟏. 

𝒚𝒊 = 𝟏 +
𝒙+𝟏

𝟒
.       𝒖(𝒙𝒊, 𝒂, 𝒌, 𝒎) = {

𝒌(𝒙𝒊 − 𝒂)𝒎 𝒙𝒊 > 𝒂
𝟎 − 𝒂 < 𝒙𝒊 < 𝒂

𝒌(−𝒙𝒊 − 𝒂)𝒎 𝒙𝒊 <  −𝒂
 

 [-50,50]  [-30, 30, … 30] 0 

𝐓𝐅𝟏𝟑(𝐱) =  𝟎. 𝟏{𝐬𝐢𝐧𝟐(𝟑𝝅𝒙𝟏) + ∑ (𝒙𝒊 − 𝟏)𝟐[𝟏 + 𝐬𝐢𝐧𝟐(𝟑𝝅𝒙𝒊 + 𝟏)] +𝒏
𝒊=𝟏

(𝒙𝒏 − 𝟏)𝟐[𝟏 + 𝐬𝐢𝐧𝟐(𝟐𝝅𝒙𝒏)]} + ∑ 𝒖(𝒙𝒊, 𝟓, 𝟏𝟎𝟎, 𝟒).𝒏
𝒊=𝟏  

 [-50,50]  [-100, … -100] 0 
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Table 4-7 Composite benchmark functions (Hussain et al., n.d.) 

 

 

Functions Dimension Range 𝒇𝒎𝒊𝒏 

TF14 (CF1) 𝑓1, 𝑓2, 𝑓3 … 𝑓10 = Sphere function 𝛿1, 𝛿2, 𝛿3 … 𝛿10 [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[
5

100
,

5

100,
,

5

100
, …

5

100
] 

10 [-5, 5] 0 

TF15 (CF2) 𝑓1, 𝑓2, 𝑓3 … 𝑓10 Griewank’s function 𝛿1, 𝛿2, 𝛿3 … 𝛿10, [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[
5

100
,

5

100,
,

5

100
, …

5

100
] 

10 [-5, 5] 0 

TF16 (CF3) 𝑓1, 𝑓2, 𝑓3 … 𝑓10 Griewank’s function 𝛿1, 𝛿2, 𝛿3 … 𝛿10, [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 = [1,1,1, … .1] 10 [-5, 5] 0 

TF17 (CF4) 𝑓1, 𝑓2 = Ackley’s function, 𝑓3, 𝑓4 = Rastrigin’s function, 𝑓5, 𝑓6 = Weierstrass functio, 𝑓7, 𝑓8 =
Griewank’s function, 𝑓9, 𝑓10 = Sphere function, 𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … =

[
5

32
,

5

32,
, 1,1,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

100
,

5

100
] 

10 [-5, 5] 0 

TF18 (CF5) 𝑓1, 𝑓2 = Rastrigin’s function, 𝑓3, 𝑓4 = Weierstrass function, 𝑓5, 𝑓6 = Griewank’s function, 𝑓7, 𝑓8 =
Ackley’s function 𝑓9, 𝑓10 = Sphere function, 𝛿1, 𝛿2, 𝛿3 … 𝛿10 = [1,1,1, … .1] 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[
1

5
,

1

5,
,

5

0.5
,

5

0.5
,

5

100
,

5

100
,

5

32
,

5

32
,

5

100
,

5

100
] 

10 [-5, 5] 0 

TF19 (CF6) 𝑓1, 𝑓2 = Rastrigin’s function, 𝑓3, 𝑓4 = Weierstrass function, 𝑓5, 𝑓6 = Griewank’s function, 𝑓7, 𝑓8 =
Ackley’s function, 𝑓9, 𝑓10Sphere function, 𝛿1, 𝛿2, 𝛿3 … 𝛿10 [0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9,1], 𝜆1, 𝜆2, 𝜆3 … 𝜆10 =

[0.1 ∗
1

5
, 0.2 ∗

1

5
, 0.3 ∗

5

0.5
, 0.4 ∗

5

0.5
, 0.5 ∗

5

100
 ,0.6 ∗

5

100
, 0.7 ∗

5

32
, 0.8 ∗

5

32
, 0.9 ∗

5

100
, 1 ∗

5

100
] 

10 [-5, 5] 0 
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The Leo algorithm is executed following the fundamental steps as indicated 

earlier. The obtained results are then compared to those of three well-known 

alternative algorithms, namely DA, PSO, and GA. The results of DA, PSO, 

and GA can be found in Table (4-8), reported in the papers by (Abdullah and 

Ahmed, 2019; Mirjalili, 2016; Rahman and Rashid, 2021). Thus, in the first 

unimodal function, the DA algorithm demonstrated optimal performance, 

while the PSO algorithm showed superior efficiency in the sixth test function. 

However, upon analyzing the results of tests TF2, TF3, TF4, TF5, and TF7, it 

becomes evident that the Leo algorithm consistently outperforms the other 

algorithms in terms of exploitation capacity and achieving optimal results. 

Furthermore, when compared to the FDO and LPB algorithms, whose results 

are reported in papers by (Abdullah and Ahmed, 2019 and Rahman and 

Rashid, 2021) respectively, the Leo algorithm consistently achieved superior 

outcomes. However, it should be noted that for TF1 and TF6, the Leo 

algorithm exhibited even better levels of exploitation and convergence. Leo is 

the only algorithm to do better than the others in TF12 and also outperforms 

them in TF11 and TF13, earning the second spot. Leo obtained the second 

rank in TF11 and TF13 when compared to all other methods in Table (4-9) 

except for these two functions. In multimodal functions, the Leo algorithm 

achieves the second rank, demonstrating an improved outcome in TF12 

compared to the other algorithms in TF11 and TF13. Additionally, in Table 

(4-9), Leo performs better than every other algorithm, except for TF9 and 

TF10, where it attains the runner-up position. Leo also outperforms DA, PSO, 

and GA in composite test functions for each test function. Furthermore, Leo 

algorithm consistently outperforms the LPB algorithms in all test functions. In 

comparison to FDO, Leo achieves the second rank with better performance in 

all test functions, as shown in Tables (4-8 and 4-9). 
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Table 4-8 Comparing the results of Leo with DA, PSO, and GA algorithms on classical test functions 

TF 
Leo DA PSO GA 

Mean STD Mean STD Mean STD Mean STD 

TF1 2.69874E-09 7.49992E-09 2.85E-18 7.16E-18 4.20E-18 1.31E-18 748.5972 324.9262 

TF2 3.7305E-06 3.95635E-06 1.49E-05 3.76E-05 0.003154 0.009811 5.971358 1.533102 

TF3 5.31468E-09 2.07901E-08 1.29E-06 2.10E-06 0.001891 0.003311 1949.003 994.2733 

TF4 3.60286E-05 3.22842E-05 0.000988 0.002776 0.001748 0.002515 21.16304 2.605406 

TF5 10.60296667 13.93285916 7.600558 6.786473 63.45331 80.12726 133307.1 85007.62 

TF6 4.31581E-10 5.51803E-10 4.17E-16 1.32E-15 4.36E-17 1.38E-16 563.8889 229.6997 

TF7 0.001449721 0.002690575 0.010293 0.010293 0.005973 0.003583 0.166872 0.072571 

TF8 -2989.147333 202.684514 -2857.58 383.6466 -7.10E+11 1.2E+12 -3407.25 164.478 

TF9 37.07867 12.2775166 16.01883 9.479113 10.44724 7.879807 25.51886 6.66936 

TF10 4.8836E-05 2.89869E-05 0.23103 0.487053 0.280137 0.601817 9.498785 1.271393 

TF11 2.7393E-08 5.51514E-08 0.193354 0.073495 0.083463 0.035067 7.719959 3.62607 

TF12 1.87667E-08 2.89749E-08 0.031101 0.098349 8.57E-11 2.71E-10 1858.502 5820.215 

TF13 8.90491E-09 1.88063E-08 0.002197 0.004633 0.002197 0.004633 68047.23 87736.76 

TF14 6.9979 5.833242622 103.742 91.24364 150 135.4006 130.0991 21.32037 

TF15 0.001673093 0.003539145 193.0171 80.6332 188.1951 157.2834 116.0554 19.19351 

TF16 -0.622100333 0.396782974 458.2962 165.3724 263.0948 187.1352 383.9184 36.60532 

TF17 1.788405333 2.237631581 596.6629 171.0631 466.5429 180.9493 503.0485 35.79406 

TF18 3.590623333 0.711917144 229.9515 184.6095 136.1759 160.0187 118.438 51.00183 

TF19 -2.670808 1.185307969 679.588 199.4014 741.6341 206.7296 544.1018 13.30161 
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Table 4-9 Comparing the results of Leo with FDO and LPB algorithms on classical test functions 

TF 
Leo FDO LPB 

Mean STD Mean STD Mean STD 

TF1 2.69874E-09 7.49992E-09 7.47E-21 7.26E-19 0.001877545 0.002093616 

TF2 3.7305E-06 3.95635E-06 9.39E-06 6.91E-06 0.005238111 0.003652512 

TF3 5.31468E-09 2.07901E-08 8.55E-07 4.40E-06 36.4748883 29.22415523 

TF4 3.60286E-05 3.22842E-05 6.69E-04 0.0024887 0.393866 0.135818 

TF5 10.60296667 13.93285916 23.501 59.7883701 16.76919 22.19251 

TF6 4.31581E-10 5.51803E-10 1.42E-18 4.75E-18 0.00203173 0.0027832 

TF7 0.001449721 0.002690575 0.544401 0.3151575 0.004975 0.002965 

TF8 -2989.147333 202.684514 -2285.207 206684.91 -3747.65 189.0206 

TF9 37.07867 12.2775166 14.56544 5.202232 0.001567 0.001842 

TF10 4.8836E-05 2.89869E-05 4.00E-15 6.38E-16 0.017933 0.013532 

TF11 2.7393E-08 5.51514E-08 0.568776 0.1042672 0.066355 0.030973 

TF12 1.87667E-08 2.89749E-08 19.83835 26.374228 2.79E-05 3.84E-05 

TF13 8.90491E-09 1.88063E-08 10.2783 7.42028 0.000309 0.000512 

TF14 6.9979 5.833242622 3.79E-07 6.32E-07 0.998004 1.26E-11 

TF15 0.001673093 0.003539145 0.001502 0.0012431 0.002358 0.003757 

TF16 -0.622100333 0.396782974 0.006375 0.0105688 -1.03163 2.46E-06 

TF17 1.788405333 2.237631581 23.82013 0.2149425 0.397888 3.16E-06 

TF18 3.590623333 0.711917144 222.9682 9.96E-06 3.000142 0.000283 

TF19 -2.670808 1.185307969 22.7801 0.0103584 -3.86278 9.61E-07 

4.2.2. CEC-C06 2019 Benchmark Test Functions 

In real-world scenarios, there are situations where obtaining an accurate 

solution is more crucial than quick results. Moreover, refining an algorithm 

and running it multiple times is possible for many individuals. Clients seek 

the most effective algorithm that suits their specific needs, regardless of the 

time it takes. As part of this modern benchmark collection, ten test functions 

were introduced at the CEC-2019 conference (Bacanin et al., 2022; Brest et 

al., 2019). These test functions have been evaluated using Leo algorithm to 

assess their performance. The test functions known as "The 100-Digit 

Challenge" are intended for use in annual optimization competitions, as 

shown in Table (4-10). These functions, introduced in CEC-2019, have 

become popular and are considered cutting-edge benchmarks for evaluating 

the performance of various algorithms in addressing real-world problems. In 

this evaluation, we have selected several highly competitive and widely 
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employed algorithms, including DA, WOA, SSA, FDO, LPB, and FOX. 

These algorithms were chosen due to their extensive citations in the literature 

background to determine exceptional performance on benchmark test 

functions and practical applications. The creators of these algorithms facilitate 

their accessibility to enhance algorithm credibility and research replicability.   

Table 4-10 CEC-2019 benchmarks “the 100-digit challenge”  (Brest et al., 2019) 

No. Functions Dimension Range 𝒇𝒎𝒊𝒏 

1 STORN’S CHEBYSHEV POLYNOMIAL FITTING 

PROBLEM  

9 [-8192, 8192]  1 

2 INVERSE HILBERT MATRIX PROBLEM  16 [-16384, 16384]  1 

3 LENNARD-JONES MINIMUM ENERGY CLUSTER  18 [-4,4]  1 

4 RASTRIGIN’S FUNCTION  10 [-100, 100] 1 

5 GRIEWANGK’S FUNCTION  10 [-100, 100] 1 

6 WEIERSTRASS FUNCTION  10 [-100, 100] 1 

7 MODIFIED SCHWEFEL’S FUNCTION  10 [-100, 100] 1 

8 EXPANDED SCHAFFER’S F6 FUNCTION  10 [-100, 100] 1 

9 HAPPY CAT FUNCTION  10 [-100, 100] 1 

10 ACKLEY FUNCTION  10 [-100, 100] 1 

CEC01 to CEC03 functions have varying dimensions, while the remaining 

functions share a common range between [-100, 100]. Thus, CEC01 to 

CEC03 functions are unaffected by shift and rotation, while CEC04 to CEC10 

functions undergo such transformations. This ensures that all test procedures 

remain scalable and flexible. The parameter set for the CEC benchmark 

allows algorithms to run 30 times with 30 or 80 agents according to basic of 

algorithms and conduct 500 iterations for landscape search. In Table (4-11), 

Leo outperforms widely cited algorithms in the literature, except for the 

CEC04 test function. Leo achieves comparable results to WOA in 

benchmarks like CEC02 and CEC05. However, as indicated in Table (4-12), 

Leo surpasses FOX, a recent algorithm. Markedly, Leo performs 

exceptionally well in just CEC02 but for CEC06, Leo better performance 

rather than FDO and LPB. 
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Table 4-11 Comparing the results of Leo with DA, WOA, and SSA algorithms on CEC-2019 test functions 

CEC 
Leo DA WOA SSA 

Mean STD Mean STD Mean STD Mean STD 

CEC01 7294147266 5767198154 5.43E+10 6.69E+10 4.11E+10 5.42E+10 6.05E+09 4.75E+09 

CEC02 17.47763 0.098108754 78.0368 87.7888 17.3495 0.0045 18.3434 0.0005 

CEC03 12.70311 0.000889537 13.7026 0.0007 13.7024 0 13.7025 0.0003 

CEC04 69.86527333 23.78089555 344.3561 414.0982 394.6754 248.5627 41.6936 22.2191 

CEC05 2.760246667 0.432754261 2.5572 0.3245 2.7342 0.2917 2.2084 0.1064 

CEC06 3.01982 0.755956506 9.8955 1.6404 10.7085 1.0325 6.0798 1.4873 

CEC07 195.5583033 236.5351502 578.9531 329.3983 490.6843 194.8318 410.3964 290.5562 

CEC08 5.062283333 0.459751941 6.8734 0.5015 6.909 0.4269 6.3723 0.5862 

CEC09 3.26147 0.744492954 6.0467 2.871 5.9371 1.6566 3.6704 0.2362 

CEC10 20.01238667 0.028550895 21.2604 0.1715 21.2761 0.1111 21.04 0.078 

Table 4-12 Comparing the results of Leo with FDO, LPB, and FOX algorithms on CEC-2019 test functions 

CEC 
Leo FDO LPB FOX 

Mean STD Mean STD Mean STD Mean STD 

CEC01 7294147266 5767198154 4585.27 20707.627 7494381364 8138223463 2.58E+04 22624.86 
CEC02 17.47763 0.098108754 4 3.22414E-09 17.63898 0.31898 18.3442 0.000529 
CEC03 12.70311 0.000889537 13.7024 1.649E-11 12.7024 0 13.7025 0.000449 
CEC04 69.86527333 23.78089555 34.0837 16.528865 77.90824 29.88519 1.06E+03 501.8163 
CEC05 2.760246667 0.432754261 2.13924 0.085751 1.18822 0.10945 6.295 1.27819 
CEC06 3.01982 0.755956506 12.1332 0.600237 3.73895 0.82305 5.0325 1.285264 
CEC07 195.5583033 236.5351502 120.4858 13.59369 145.28775 177.8949 456.3214 189.4313 
CEC08 5.062283333 0.459751941 6.1021 0.756997 4.88769 0.67942 5.6778 0.52774 
CEC09 3.26147 0.744492954 2 1.5916E-10 2.89429 0.23138 3.7959 0.339462 
CEC10 20.01238667 0.028550895 2.7182 8.8817E-16 20.00179 0.00233 20.9878 0.005376 
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4.2.3. Statistical Tests and Scalability Analysis  

As mentioned earlier, statistical tests for comparing multiple result groups use 

both parametric and non-parametric approaches. The two-sample T-test 

necessitates certain assumptions, while the Wilcoxon Rank-Sum Test serves 

as a non-parametric alternative Tables (4-13 and 4-14) present the statistical 

analysis results in these distributions, where the samples consist of 30 rounds 

of solution for Leo algorithm which are noted in appendix tables (Table 8-1 to 

8-6).  

Researchers should be confronted a noteworthy challenge when they applied a 

statistical model randomly to determine significance values (p-values), 

lacking prior studies to select a specific model for evaluating performance 

outcomes. The study employed rigorous statistical testing to illuminate 

substantial performance variations between pairs of algorithms, emphasizing 

the pivotal role of statistical significance in comparative analysis. 

Furthermore, it offers valuable insights into the suitability of algorithms for 

diverse optimization challenges, empowering professionals with information 

for informed decision-making. This is achieved through the identification of 

algorithm pairs with favourable statistical distributions, facilitating practical 

algorithm selection. The presumptions concerning near equality or symmetry 

are upheld, but the fulfilment of requirements regarding variance spread and 

normalcy is not entirely satisfactory. 

The research shows that DA results with Leo are statistically significant 

compared to PSO and GA. Additionally, DA was already evaluated against 

PSO, GA, FDO, and LPB algorithms in this research work. To further assess 

Leo’s performance, statistical comparisons between Leo and DA, FDO, and 

LPB algorithms are presented in Table (4-13).  
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In all statistical tests conducted on unimodal, multimodal, and composite test 

functions, Leo algorithm’s results are deemed significant, leading to the 

rejection of the null hypothesis, except for TF6 and TF12 when compared to 

DA, where the p-values are greater than 0.05. Additionally, Leo consistently 

outperforms the FDO and LPB algorithms, except for TF5 and TF15, where 

the results do not reject the null hypothesis. Furthermore, there are no 

significant differences between Leo and FDO in TF17. 

Table 4-13 P-value by the Wilcoxon rank-sum test overall runs for classical benchmark test functions. 

TF Leo VS DA Leo VS LPB Leo VS FDO 

TF1 0.000031 0.000031 0.000002 

TF2 0.000002 0.000002 0.047162 

TF3 0.000002 0.000002 0.002585 

TF4 0.000031 0.000002 0.000002 

TF5 0.000148 0.781264 0.557743 

TF6 0.057096 0.000002 0.000002 

TF7 0.000002 0.000097 0.000002 

TF8 0.031603 0.000002 0.000016 

TF9 0.000002 0.000002 0.000002 

TF10 0.000002 0.000002 0.000002 

TF11 0.000002 0.000002 0.000002 

TF12 0.328571 0.000002 0.000002 

TF13 0.517048 0.000002 0.000002 

TF14 0.000013 0.000013 0.002929 

TF15 0.000359 0.012453 0.781264 

TF16 0.000001 0.000002 0.000115 

TF17 0.000001 0.000002 0.120288 

TF18 0.00015 0.000393 0.00015 

TF19 0.000002 0.000002 0.000004 

Interestingly, in all composite test functions, the null hypothesis is not 

rejected for DA, FDO, and LPB algorithms across all 30 individual tests. 

Table (4-14) showcases the statistical comparisons of Leo with DA, SSA, 

WOA, FDO, and FOX algorithms, employing the Wilcoxon rank-sum test. 

The results for Leo are highly significant, as the p-values are significantly less 

than 0.05, leading to the rejection of the null hypothesis when compared to 

DA and FOX. Additionally, DA results for Leo are statistically significant 
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when compared to SSA, WOA, and FDO, except for CEC01 with SSA, 

CEC05 with WOA, and CEC07 with FDO. 

Table 4-14 P-value by the Wilcoxon rank-sum test overall runs for CEC-2019 test functions 

TF Leo VS DA Leo VS SSA Leo VS WOA Leo VS FDO Leo VS FOX 

CEC01 0.000012 0.360039 0.038723 0.000002 0.000002 

CEC02 0.000002 0.000002 0.000002 0.000002 0.000002 

CEC03 0.000001 0.000001 0.000001 0.000001 0.000001 

CEC04 0.000012 0.000125 0.000002 0.000005 0.000002 

CEC05 0.033264 0.000026 0.688359 0.000004 0.000002 

CEC06 0.000002 0.000002 0.000002 0.000002 0.000002 

CEC07 0.000359 0.011079 0.000115 0.171376 0.000148 

CEC08 0.000002 0.000002 0.000002 0.000008 0.000082 

CEC09 0.000003 0.002765 0.000002 0.000002 0.001593 

CEC10 0.000002 0.000002 0.000002 0.000002 0.000002 

4.2.4. Quantitative Measurement Metrics 

In this subsection, the proposed measurement metrics are used to observe and 

analyze Leo algorithm’s performance in more detail. This experiment 

evaluates convergence and assesses how well Leo algorithm tackles real-

world problems. The first metric measures convergence, drawing an analogy 

to how vaccinations enhance immune responses within the body landscape. 

For each experiment, benchmark functions are selected carefully, covering 

unimodal, multimodal, and composite benchmark functions, respectively. 

Figure 4-10 illustrates the agents’ rapid exploration of the entire region, 

gradually converging towards optimality, with the offspring finding the most 

optimal positions. This pattern is observed in each experiment for (FT2), 

(TF10), and (TF17). The experiment records the agents’ performance from 

the beginning to the end of the test, showing their progress over time. 

In Figure 4-11, the second experiment for each of (FT2), (TF9), and (TF17) 

demonstrates Leo starting with a high fitness value and gradually reducing it 

until reaching the desired optimum. In multimodal tests, functions undergo 

rapid development within a few iterations. The third test metric, displayed in 
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Figure 4-12 for each of (FT2), (TF9), and (TF17), shows the average fitness 

value of all Leo agents decreasing significantly throughout the iterations. The 

results indicate that the algorithm not only improves the global most effective 

agent but also enhances the optimal solution for all agents. The fourth 

measure records the convergence of the global most optimal agent throughout 

each iteration, showing that it becomes more accurate as the number of 

iterations increases. Figure 4-13, observed in each experiment of (FT2), 

(TF8), and (TF17), illustrates a significant shift due to the algorithm’s focus 

on local search and exploitation. This emphasizes the algorithm’s ability to 

fine-tune and improve the overall performance over time. 
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Fig. 4-10 Search history of the Leo algorithms on unimodal, multimodal, and composite test functions 

   

Fig. 4-11 The trajectory of Leo’s search agents on unimodal, multimodal, and composite test functions 
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Fig. 4-12 The average fitness of Leo’s search agents on unimodal, multimodal, and composite test function 

   

Fig. 4-13 Convergence curve of Leo algorithms on unimodal, multi-modal, and composite test function 
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4.2.5. Real-World Application   

As with any other metaheuristic algorithm, Leo is capable of addressing 

application-specific challenges in the real world. In this section, Leo is 

utilized in two distinct applications, offering customized enhancements that 

cater to their unique real-world contexts. 

4.2.5.1. The Pathological IgG Fraction in the Nervous System 

The determination method used is not influenced by variables that could 

potentially impact individuals, such as sex, blood-brain barrier condition, 

extraction volume of cerebrospinal fluid (CSF), and the specific protein 

measurement technique. This approach ensures optimal evaluation of 

pathogenic IgG values in CSF and outperforms other methods described in 

the existing literature, particularly in statistical analysis and biochemical 

considerations (Link and Huang, 2006). The core goal of this problem is to 

find the best solution that effectively evaluates pathological IgG values in 

CSF, considering the variations in the nervous system. Taking both statistical 

and functional aspects into account, the frequency of the regression line 

passing through the source, represented by equation (4.1), is considered 

reasonable and has been improved through the aggregation of statistical 

regression lines (LEFVERT and LINK, 1985; Su and Chiu, 1986). Most 

inquiries concentrate on establishing a connection between serum and fluid 

albumin concentrations. However, in this real-world application, a link 

between serum albumin levels and IgG levels in cerebrospinal fluid is 

demonstrated. To pinpoint the optimal correlation, Leo algorithm is 

employed. This method helps identify the most suitable point, ensuring a 

comprehensive examination of the correlation between serum albumin and 

IgG concentrations in CSF. 



79 
 

Equation (4.2) can be utilized to calculate the locally generated concentration 

of pathological 𝐼𝑔𝐺 (𝐼𝑔𝐺𝑝) in 𝐶𝑆𝐹 by evaluating the patient’s unique 

albumin ratio and 𝐼𝑔𝐺 quotient. Moreover, 𝑆𝑇𝐷(𝑥,𝑦) represents the standard 

deviation of the (𝑦) values from the regression line within the range of (-

0.001, +0.001). These two variables, along with the regression line, provide 

the confidence interval of the 𝐼𝑔𝐺 quotient (𝑦) for a given albumin quotient 

(𝑥). 

𝐼𝑔𝐺𝑝 =  𝐼𝑔𝐺(𝐶𝑆𝐹) − (0.43 𝐴𝑙𝑏(𝑆𝑒𝑟𝑢𝑚) − 𝐴𝑙𝑏(𝐶𝑆𝐹) +  0.001) ∗ 𝐼𝑔𝐺(𝑆𝑒𝑟𝑢𝑚)     (4.1) 

To prove that: 𝐼𝑔𝐺𝑝 =   𝑋𝑖    So,  IgG (IgGp) = Y (Xi) then: 

𝑌 (𝑋𝑖) = ∑(0.41 + 0.0014 𝑋𝑖)

𝑛

𝑖=1

                                       (4.2) 

The stained gel strip reveals a cutting sequence with twelve fractions, which 

are then employed to calculate the number of search agents. Stippled 

regression lines depict the level of each proportion. Neutralization is 

represented by the two antibody actions, which are displayed for statistical-

level results (Vandvik and Norrby, 1973). Considering the constraints of 

equation (4.2), the problem is addressed using Leo algorithm. The outcomes 

are depicted in Figure 4-14, demonstrating both the global average fitness and 

the average fitness value for each iteration. To optimize the problem, twelve 

search agents were employed over 150 iterations. The results indicate that the 

optimal solution was attained at iteration 61, with a value of 5.088. 
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Fig. 4-14 Global best with average fitness results from for150 Iteration with 12 search agents 

(dimensions) in (IgGp) fraction in the nervous system 

4.2.5.2. Integrated Cyber-Physical-Attack for Manufacturing System 

Computational analysis can be a valuable asset for the security community, as 

it aids in comprehending risks and analyzing attacker behavior in cyber-

physical attacks. This understanding allows for actual responses to adversarial 

behaviors at various stages of an attack. Despite its potential benefits, there is 

a notable gap in research concerning the evaluation and assessment of 

defensive systems, particularly from a security standpoint. Therefore, it 

becomes imperative to change a suitable theoretical model to identify optimal 

solutions and selecting the global one. 

One promising approach to address this challenge is by utilizing or integrating 

cyber-physical attacks on manufacturing systems (CPAMS). Such integration 

can enhance flexibility and responsiveness while maintaining product quality 

to meet clients’ demands. By doing so, manufacturers can strengthen their 

security measures and ensure a robust defence against potential threats. 

Through computational analysis and the implementation of an effective 

theoretical model, the security community can better protect cyber-physical 

systems and respond proactively to evolve cyber threats in manufacturing 
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environments (Tran et al., 2019). The presented model is an object-oriented 

Petri net-based formal model of a cyber-physical-attack manufacturing system 

to enhance system integrity during dynamic simulation (Yu et al., 2017). The 

verification and validation of this system can be achieved by optimizing Leo 

system using mathematical techniques and supportive tools, including Petri 

nets. 

Petri nets (Bordbar et al., 2000) have evolved into captivating artistic 

masterpieces for distributed systems, providing mesmerizing visualizations 

and profound evaluations for a diverse range of complex applications. These 

applications span from orchestrating communication networks and refining 

healthcare systems to harnessing the power of artificial intelligence and 

optimizing manufacturing engineering systems, creating an imaginative 

canvas of possibilities. Petri nets also serve as computational mathematical 

tools, facilitating the simulation and analysis of dynamic systems. These nets 

form a directed graph model, where arcs (𝐹) connect two sets of nodes: 

locations (𝑃) and transitions (𝑇). Tokens (or ‘marks’) are represented by dots 

inside the spots. Figure 4-15 illustrates this configuration, particularly when 

𝑅1 is explicitly defined in the net interpretation between transitions (𝑇) and 

locations (𝑃). 

 
Fig. 4-15 The network station is represented by a stochastic Petri net 
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Syntax:  A Petri net is a net of the form 𝑃𝑁 =  (𝑁, 𝑀, 𝑊), which extends the 

elementary net so that: 

Given a net 𝑁 =  (𝑃, 𝑇, 𝐹), a configuration is a set 𝐶 so that 𝐶 ⊆  𝑃.  

𝑀: 𝑃 →  𝑍 is a place multiset, where is a countable set, covers the concept 

of configuration, and is normally described concerning Petri net diagrams as 

a marking. 

𝑊: 𝐹 →  𝑍 is an arc multiset. The count (or weight) for each arc indicates the 

multiplicity of arcs that can be calculated. 

 Its transition relation can be described as a pair of |𝑃|by |𝑇| matrices: 

𝐹−, defined by ∀𝑠, 𝑡: 𝐹−  [𝑝, 𝑡] = 𝐹(𝑝, 𝑡) 

𝐹+, defined by ∀𝑠, 𝑡: 𝐹+ [𝑝, 𝑡] = 𝐹(𝑡, 𝑝) 

When the pre-set of a transition t is the set of its input places: *𝑡 =

{𝑝 𝜖 𝑃)| 𝐹(𝑝, 𝑡) > 0}; its posset is the set of its output places: 𝑡∗ =

{𝑝 𝜖 𝑃) | 𝐹(𝑝, 𝑡)  > 0};. Definitions of pre- and post-sets of places are 

analogous. 

Following the syntax of Petri nets, system evaluation entails examining 

numerous instances of CPAMS. In this context, various nodes, including 

machines, robots, sensors, and AGVs, are susceptible to becoming infected by 

malicious software and subsequently transmitting it to other vulnerable nodes. 

As time progresses, these vulnerable nodes transform into infected nodes. 

Once the malicious software is eliminated, the infected nodes can transition 

back to being recovered nodes. The susceptible nodes, infectious nodes, and 

recovered nodes are symbolized, respectively, as 𝑆, 𝐼, and 𝑅 (Singh et al., 

2018). When considering the attributes of Logistic, new nodes are categorized 

as susceptible nodes, and they exhibit a growth rate denoted by 𝑝. 

To combat harmful software bifurcation in CPAMS, a novel hybrid 

bifurcation law control strategy was introduced by (Zhou et al., 2018). This 
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strategy, defined by equation (4.3), is designed to alleviate the adverse effects 

of bifurcations and maintain the integrity of CPAMS. In the equation, 

𝐾1 denotes the variable parameter, while 𝐾2 represents the feedback 

parameter. 

𝑁(𝐼(𝑝, 𝑡)) =  𝑘1𝐹(𝐼(𝑝, 𝑡)) + 𝑘2(𝐼(𝑝, 𝑡) +  𝐼(𝑝, 𝑡)3)                                      (4.3) 

To evaluate the probabilistic complex system, the fitness function 𝐹(𝐼(𝑝, 𝑡) is 

derived from the Jacobian matrix at the equilibrium point (Jia, 2007). This 

process yields simulation results and the optimal point that regulates the 

probabilistic occurrence of harmful nodes, updated by the susceptible node. 

Consequently, the probabilistic equation (4.4) serves as a method to identify 

the node point where it equals zero. 

𝐹((𝐼(𝑝, 𝑡))  =  ∑ 𝑋3

𝑛

𝑖=1

 + 𝐴 ∑ 𝑋2

𝑛

𝑖=1

+  𝐵 ∑ 𝑋

𝑛

𝑖=1

+  𝐶                                       (4.4) 

When,  

𝐴 =  0.0283 (1 +  
1

𝑑
− 𝑘2) 

𝐵 =  
0.0283 − 1.0283𝑘2 

𝑑
 

𝐶 =  
0.0013 𝑘1 − 0.0283𝑘2  

𝑑
 

In this realistic scenario, let’s consider a set of parameters: the number of 

nodes (𝑑) ranges from 15 to 36, 𝑘1 varies from 0 to 1, and 𝑘2 varies from 0.1 

to 0.5. To identify the optimal method for updating infection nodes, the Leo 

algorithm is utilized. The algorithm produces valuable outcomes, including 

the average fitness value and the global average fitness for each iteration. 

These results offer valuable insights into the effectiveness of different 

updating strategies for infection nodes in the given complex system. In this 

training, a total of 300 iterations were conducted with 10 search agents. The 

findings indicate that the most successful result was achieved during iteration 
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209 of the globally optimized solution, which yielded a fitness value of 

0.072028. Figure 4-16 visually represents the progression of the process.  

 

Fig. 4-16 Fitness results in Leo process for 300 Iteration with 10 search agents depend on the 

Jacobian matrix for cyber-physical-attack in the manufacturing system 
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CHAPTER FIVE 

5. Conclusions, Future Works and Limitations 

In this chapter, we provide a comprehensive summary of the proposed 

technique and demonstrate its main findings. Furthermore, we offer valuable 

recommendations for potential modifications and approaches to enhance the 

effectiveness of the technique in the future. These suggestions aim to further 

improve the proposed approaches’ effectiveness and efficiency. 

5.1. Conclusions  

Optimization has been proposed for solving complex dependent problems. 

These multiple optimization algorithms draw inspiration from the search 

agent’s reproductive swarming process, which involves the birth of new 

search agents that explore optimal individuals and sites. Thus, metaheuristic 

population-based algorithms such as auto-self optimization were powerful 

optimization techniques widely used to solve complex problems across 

various domains. These algorithms were designed to mimic natural systems 

such as evolution, swarm intelligence, and social interactions to find near-

optimal or even optimal solutions. As a result, metaheuristic population-based 

algorithms offer a powerful and flexible approach to solve optimization 

problems in diverse domains. Their ability to perform global exploration, 

efficiency, and scalability make them attractive tools for tackling real-world 

challenges.  

Exploration refers to the process of searching the solution space broadly to 

discover new and diverse regions that may contain better solutions. The 

primary goal of exploration is to ensure that the algorithm explores a wide 

range of possibilities, avoiding premature convergence to suboptimal 

solutions. During exploration, the algorithm may focus on moving away from 

the current solutions and exploring uncharted regions of the search space. 

This helps in identifying novel solutions and understanding the overall 
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landscape of the problem such as algorithms based on GA and PSO. 

Exploitation involves intensively searching the local neighbourhood of 

promising solutions to find the best possible solutions in the vicinity. The 

main objective of exploitation is to refine and improve the quality of solutions 

by focusing on the most promising areas of the search space. Exploitation is 

often characterized by a focus on the best-known solutions, exploiting their 

local structure and making incremental improvements. This helps in refining 

the search around regions where good solutions are likely to be found.  

Thus, striking the right balance ensures that the algorithm is capable of both 

exploring diverse regions of the solution space and exploiting the local 

structure to refine solutions. This balance is often controlled through 

algorithm parameters, such as mutation rates, crossover probabilities, or 

particle velocities, depending on the specific optimization algorithm being 

used. Achieving an optimal balance is essential for effectively solving 

complex optimization problems. 

Nevertheless, users should be aware of their non-deterministic nature, the 

need for parameter tuning, and the possibility of varying convergence speeds 

based on the problem at hand. Optimization processes can be improved by 

suggesting, understanding, and selecting the most suitable algorithm tailored 

to a specific problem. By carefully considering the problem’s characteristics 

and requirements, one can make informed decisions regarding the choice of 

algorithm aiming at maximizing the chances of obtaining global solutions in a 

timely manner. 

In this dissertation, our goal was achieved through two pivotal works in the 

field of metaheuristic optimization. First part, the involvement included the 

creation of a standardized variant of the crossover operator, known as LPX.  

As well, a comprehensive overview of conventional types of crossover 

operators was undertaken. This novel operator presented a fresh perspective 
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on the amalgamation of genetic information and solution optimization. The 

integration of encoding techniques and standard operators, with a special 

emphasis on crossover operators, has been recognized as a pivotal factor in 

bolstering the capabilities of metaheuristic optimization and influencing its 

overall performance and results.  

In the second part, a groundbreaking algorithm titled "Leo" has been 

introduced. This innovative algorithm offered an effective and novel approach 

to tackle optimization challenges, demonstrating promising outcomes across 

various applications. These outcomes collectively have propelled 

optimization science and provided invaluable tools for solving complex 

problems. Furthermore, Leo was rigorously tested and validated through two 

real-life applications, showcasing its practical applicability and robustness . 

In the introductory phase, the primary objective was to aid researchers in 

identifying an efficient crossover operator that could lead to selecting a global 

solution for the problem under investigation. A significant proportion of these 

standards were notable for their computational simplicity, resulting in faster 

calculations, as demonstrated through heuristic, exploitation, and convergence 

evaluations of the selected methods. Additionally, these crossover operators 

facilitated the generation of a diverse set of offspring by combining attributes 

from two-parent solutions. Thus, this study led to the enhancement of novel 

mathematical evolutionary algorithms’ performance through the 

implementation of an improved standard option for the crossover operator. 

Typically, the standard crossover operators were classified into three types 

based on their mathematical definitions: binary-coded crossover, real-coded 

crossover (floating point), and order-coded problem crossover. With the 

introduction of LPX as a novel mathematical approach to crossover standards, 

its effectiveness on algorithms was examined and compared to other existing 

standards to assess its efficiency. Likewise, the selection of these random 
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values has played a crucial role in determining the appropriate range for 

generating newly developed population-based populations. Besides, the study 

performed a heuristic evaluation to assess the technique’s proficiency in 

generating parent chromosomes, comparing it with BX and SBX methods. 

Through a comparison involving three test functions from classical 

benchmark testing functions, LPX exhibited the most performance in terms of 

exploitation rate and convergence fitness for the chosen random values. LPX 

is built upon the stationary Lagrange multiplier (𝜆), derived from the LDF 

theorem, which proved to be a superior standard compared to BX and SBX in 

the obtained results. 

The first part of excremental evaluation in this study was concluded by 

evaluating the performance of LPX in conjunction with LPB algorithm. For 

the assessment, the performance of LPX was compared with that of SBX, BX, 

and Qubit-X, where all these algorithms were employed. The majority of test 

functions showed reasonable convergence during the exploitation evaluation, 

considering the chosen random values. LPX for random value (0.2) achieved 

a Mean value of 0.0048 with a STD of 0.0031 in TF7. Also, the 

corresponding execution time was 143.005 seconds. To compare, the mean 

and standard deviation for the other algorithm were Mean and STD, with an 

execution time of. LPX is better comparable based metrics then other 

crossover standards. The statistical findings for LPX, when compared to the 

other standards, provided substantial evidence, confirming that LPX achieved 

the optimal balance between effectiveness and exploitation. However, it 

should be noted that while LPX showed promising results, a comprehensive 

evaluation of the proposed standard with a few other population-based 

algorithms would be necessary to fully establish its superiority . 

The second part of the research centred on the primary objective of LEO, 

which aimed to achieve precise immunizations by leveraging the albumin 
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quotient of human blood. This novel algorithm was conceptualized by 

incorporating the transfer of genetic chromosomes and drew inspiration from 

genetic algorithms. Moreover, the study delved into explaining the two 

fundamental stages of metaheuristic algorithms: exploitation and exploration. 

Both of these factors were instrumental in influencing the effectiveness of 

LEO. The exploration phase was meticulously crafted to emulate the immune 

system’s improvement through effective vaccinations. During the process, 

these parameters efficiently divide the population into multiple groups. The 

Leo algorithm comprises crossover and mutation parameters that function 

separately from the exploitation of individuals. The process established a 

population distribution that depended on the level of success. Leo 

demonstrated auto-adaptivity by integrating these crossover and mutation 

techniques, particularly through the implementation of Lagrange orientation 

and Lagrange multiplier stationary point navigation. These mechanisms 

allowed Leo to dynamically adjust and optimize its performance as it 

progressed through the optimization process. 

Leo’s initialization, exploration, and exploitation stages all employ a 

randomization approach. To evaluate Leo’s performance, the study employed 

19 classical single-objective benchmark testing functions, which were 

categorized into three subgroups: unimodal, multimodal, and composite test 

functions. Leo was separately compared to other algorithms in each subgroup, 

where the first subgroup included DA, PSO, and GA. Remarkably, Leo’s 

efficiency and performance were consistently close to those of the comparison 

algorithms in each subgroup of test functions. In the comparison with FDO 

and LPB, Leo emerged as the superior choice in most cases, except for the 

composite benchmark functions sub-group. Dependently, Leo demonstrated 

commendable performance and effectiveness across various types of 

benchmark functions.  
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Moreover, Leo was tested on 10 current CEC-C06 benchmarks and 

consistently outperformed its competitors in the majority of scenarios when 

compared to two well-known algorithms (PSO and GA), three modern 

algorithms (DA, WOA, and SSA), and three recent algorithms (FDO, LPB, 

and FOX).  However, it should be noted that the results did not perfectly align 

with all recent algorithms, as well as the other algorithms utilizing Leo 

approach. This suggests that while Leo showed significant promise and 

superiority in many cases, further evaluations and refinements may be needed 

to achieve consistent success across all scenarios and with all algorithms. The 

Wilcoxon rank-sum test was used to determine the statistical significance of 

the results. Additionally, Leo was put to practical use in two newly proposed 

real-life applications to assess and validate its performance and suitability in 

tackling real-world scenarios . 

In sum, during the evaluation of various test functions and real-world 

applications, it was noticed that the algorithm’s performance is largely 

affected by the number of search agents used. The algorithm relies heavily on 

the Lagrange stationary point during gene crossover, which is a vital part of 

its search mechanism. Due to this characteristic, the algorithm is 

appropriately named Lagrange Elementary for Optimization. It was observed 

that using a small number of search agents (below seven, as the median for all 

benchmarks) significantly decreases the algorithm’s accuracy. Conversely, 

increasing the number of search agents improves the accuracy of the 

algorithm but comes with higher gene costs and more frequent offspring 

updates. The study results indicate that the proposed approach surpasses the 

performance of most algorithms in the field. Nevertheless, it is important to 

acknowledge that Leo faces challenges when dealing with some problem in 

inspired optimization and may not identify the best optimal solution for all 
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specific problems. Despite this limitation, Leo has remained focused, aligning 

with achieved results and optimizing methods across various domains. 

5.2. Recommendations for Future Works 

Future studies should pursue several of the following research trajectories: 

• The first suggestion includes an assessment of LPX’s performance 

through comparisons with established crossover techniques, covering 

binary, real-coded, and order-coded problem methods. Expanding the 

evaluation, LPX will undertake testing on a diverse set of test 

functions, which will include two-dimensional functions among others. 

The effectiveness of LPX will be demonstrated through functional tests 

involving multimodal and composite test functions. Furthermore, 

researchers have improved a novel evolutionary metaheuristic 

algorithm, designed to address both single-objective and multi-

objective optimization scenarios by operating on populations. 

• In the future, Leo’s major areas of focus will be twofold. First, the 

researchers aim to modify, implement, and test Leo for multi-objective 

and binary objective optimization tasks, expanding its capabilities to 

handle a broader range of optimization jobs. Secondly, researchers will 

explore incorporating evolutionary operators into Leo to enhance its 

performance and search abilities. Additionally, they will investigate 

combining Leo with other algorithms to create more powerful 

optimization approaches that leverage various techniques’ strengths. 

This hybridization could lead to improved optimization solutions and 

increased applicability across different problem domains. These 

explorations hold great potential to enhance and advance the 

capabilities of Leo as an optimization method, leading to significant 

improvements in its performance and applicability. 



92 
 

• A novel Lagrange mutation standard will be introduced to replace the 

current Leo parameters, aiming to enhance the optimization process 

significantly. This innovative approach will enable the application of 

the proposed technique to diverse problem domains, facilitating result 

comparisons with other heuristic techniques. Moreover, there is 

potential for identifying and incorporating new parameters into the 

genetic algorithm, leading to further improvements in the optimization 

performance. 

• The last one; however, it is challenging. Embarking on the 

development of a novel technique anchored in reinforcement learning 

or deep learning to identify non-dominated solutions represents a 

captivating and demanding trajectory in the realm of future research. 

This avenue also possesses the capability to introduce an innovative 

classification methodology. The advancements and refinements within 

this proposed approach hold substantial promise in broadening the 

scope of the optimization domain, thereby opening up new avenues for 

adeptly and efficiently tackling intricate problems. 

5.3. Limitations 

Every research endeavor encounters specific and general limitations, both 

during the identification of problem gaps and the subsequent efforts to 

address these gaps, particularly in the realm of solving independent 

optimization problems. Consequently, this study inevitably faced certain 

limitations, which are outlined below: 

• The primary limitation of stochastic methods lies in their inherent 

challenge to deliver high accuracy, often falling short of precision, 

although typically maintaining proximity to the actual solution. 
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•  A notable drawback is the requirement for extensive tuning, as these 

methods may not perform optimally without meticulous parameter 

adjustments.  

• Additionally, the lack of assured convergence poses a significant 

concern, making it unpredictable and, at times, necessitating careful 

consideration and monitoring during the optimization process. 
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6. APPENDIX 

Table 6-1Thirty turns result of the Leo Algorithm for solving the classical benchmark TF1 to TF5 

Turns TF1 TF2 TF3 TF4 TF5 

T1 5.7150E-11 5.6762E-07 1.2188E-09 1.0351E-04 7.3772E+00 

T2 9.7092E-09 1.4933E-06 1.8392E-09 3.3539E-05 8.5613E+00 

T3 1.5077E-11 8.2411E-06 3.9375E-10 1.4748E-05 8.1545E+00 

T4 1.4520E-08 2.0330E-05 6.6221E-09 8.9398E-05 1.0881E+01 

T5 2.4333E-09 4.5991E-06 3.1757E-09 3.6133E-05 1.1694E+01 

T6 3.1336E-09 7.2257E-07 3.5319E-10 3.3947E-05 1.1959E+01 

T7 3.8117E-08 2.8734E-06 5.6831E-10 1.3090E-05 7.4091E+00 

T8 1.0295E-09 2.9747E-07 5.6088E-09 1.9830E-06 7.5175E+00 

T9 2.0270E-09 9.1651E-06 1.1493E-07 3.7754E-05 5.8598E+00 

T10 4.2913E-11 4.0526E-06 2.3359E-10 1.5411E-05 7.7933E+00 

T11 1.1978E-09 1.2771E-06 1.5672E-10 3.7263E-05 4.8039E+00 

T12 8.7826E-13 1.8492E-06 4.2791E-10 2.9099E-05 1.1516E+01 

T13 1.8536E-09 3.3741E-06 1.8434E-09 3.5766E-05 8.4861E+00 

T14 1.2309E-10 3.9459E-06 1.6274E-09 2.4712E-06 9.5808E+00 

T15 8.7594E-11 4.5005E-07 5.0069E-09 1.0353E-05 7.6523E+00 

T16 1.1294E-10 4.4229E-06 4.6875E-10 4.0288E-05 3.7435E+00 

T17 2.3213E-10 2.9973E-06 4.4602E-09 4.7540E-05 8.0218E+00 

T18 8.4904E-13 1.8652E-06 1.9485E-11 2.7245E-06 8.2870E+01 

T19 5.7187E-10 6.6887E-06 3.4550E-10 8.7197E-05 5.0199E+00 

T20 1.4445E-10 3.7356E-06 1.8066E-09 1.1329E-04 7.6728E+00 

T21 1.9079E-12 2.4884E-07 4.8771E-11 9.7449E-06 6.5145E+00 

T22 1.4302E-10 7.2899E-06 9.7532E-12 3.0302E-05 7.6977E+00 

T23 2.8635E-10 4.1894E-06 3.3301E-10 1.0475E-05 3.4204E+00 

T24 5.6676E-11 1.8531E-06 1.2847E-10 1.7099E-06 5.6097E+00 

T25 7.1417E-10 3.1320E-06 6.3531E-13 8.5247E-06 1.0548E+01 

T26 7.7583E-10 3.5953E-06 4.7430E-09 2.2244E-05 1.7122E+01 

T27 2.7639e-11 4.8630E-08 6.9433E-12 2.7588E-05 9.1110E+00 

T28 8.2552E-12 5.3771E-06 7.0212E-12 9.4228E-05 8.8853E+00 

T29 8.5767E-10 2.8846E-06 1.5666E-09 1.8485E-05 7.8466E+00 

T30 9.5326E-12 3.4788E-07 1.4899E-09 7.2053E-05 4.7603E+00 

STD 7.49992E-09 3.956E-06 2.079E-08 3.228E-05 13.932859 

Average 2.6987E-09 3.7305E-06 5.3147E-09 3.6029E-05 1.0603E+01 
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Table 6-2 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF6 to TF10 

Turns TF6 TF7 TF8  TF9 TF10 

T1 7.0149E-11 2.5099E-03 -2.9856E+03  5.6712E+01 3.4618E-05 

T2 7.4016E-10 3.8098E-04 -2.5117E+03  2.5869E+01 8.6764E-05 

T3 6.8509E-10 3.0393E-03 -2.7092E+03  4.7758E+01 6.6370E-05 

T4 7.8929E-12 3.6169E-04 -2.8671E+03  4.5768E+01 8.1759E-05 

T5 4.3749E-11 1.0235E-03 -2.5301E+03  4.2783E+01 7.0249E-05 

T6 1.5629E-11 6.6818E-03 -3.2803E+03  4.9748E+01 9.9201E-05 

T7 2.4195E-12 8.0361E-04 -3.0251E+03  3.0844E+01 5.5008E-05 

T8 8.4324E-12 8.2193E-05 -2.7289E+03  4.5768E+01 3.4954E-06 

T9 1.6519E-12 5.6315E-04 -3.2408E+03  4.7758E+01 7.9909E-05 

T10 5.9208E-10 7.6974E-05 -3.2422E+03  4.2783E+01 3.4072E-05 

T11 8.5238E-11 4.6642E-05 -2.9856E+03  5.1738E+01 6.4573E-06 

T12 9.5523E-10 1.1847E-04 -3.1633E+03  1.1940E+01 7.4044E-05 

T13 9.0493E-12 2.0231E-05 -2.9460E+03  3.6813E+01 5.1958E-05 

T14 4.7900E-10 1.1363E-03 -3.0448E+03  1.7909E+01 6.2033E-06 

T15 2.4611E-09 1.9565E-04 -3.0843E+03  3.5818E+01 2.7682E-05 

T16 3.2176E-11 2.4935E-04 -3.0236E+03  3.7808E+01 5.7349E-05 

T17 6.4177E-10 8.8483E-05 -2.8277E+03  4.6763E+01 7.2002E-05 

T18 3.3274E-12 5.6389E-04 -3.0843E+03  2.6864E+01 8.4044E-05 

T19 1.5748E-09 3.0174E-04 -3.0236E+03  3.0844E+01 7.8349E-05 

T20 5.2737E-10 7.5564E-05 -3.0647E+03  6.4672E+01 5.2670E-05 

T21 1.6897E-10 1.1689E-02 -2.9066E+03  3.1839E+01 5.6411E-06 

T22 2.7896E-12 5.0307E-04 -3.1634E+03  2.3879E+01 6.4216E-06 

T23 3.1894E-10 2.5549E-04 -2.8078E+03  2.7859E+01 2.7110E-05 

T24 8.7873E-10 8.3372E-04 -2.9856E+03  3.2834E+01 3.0071E-05 

T25 6.8917E-12 9.1768E-04 -2.8474E+03  2.1889E+01 3.5876E-05 

T26 5.4885E-10 5.9488E-04 -2.9659E+03  5.1738E+01 1.5349E-05 

T27 4.4977E-11 3.5254E-04 -2.9066E+03  3.3829E+01 8.8663E-05 

T28 8.9078E-10 8.2515E-03 -3.2013E+03  3.7808E+01 4.8216E-05 

T29 5.2499E-10 1.0392E-03 -3.2818E+03  3.0844E+01 5.2336E-05 

T30 6.2519E-10 7.3514E-04 -3.2393E+03  2.2884E+01 3.3192E-05 

STD 5.51803E-10 0.002690575 202.684514  12.2775166 2.89869E-05 

Average 4.3158E-10 1.4497E-03 -2.9891E+03  3.7079E+01 4.8836E-05 
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Table 6-3 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF11 to TF15 

Turns TF11 TF12 TF13 TF14 TF15 

T1 5.2619E-09 8.8402E-10 9.1906E-08 4.9505E+00 1.2267E-03 

T2 2.6104E-09 5.9989E-08 1.5827E-10 9.8039E+00 1.2274E-03 

T3 3.6737E-09 4.0766E-08 5.8812E-10 9.9800E-01 9.4100E-04 

T4 2.5042E-07 1.1926E-10 1.9637E-09 1.2671E+01 7.0377E-04 

T5 1.4561E-07 4.1079E-08  9.4619e-11 9.9800E-01 1.2266E-03 

T6 1.5060E-09 7.8765E-09 2.5188E-09 9.9800E-01 7.1367E-04 

T7 8.7729E-08 2.5148E-11 4.0983E-09 1.0763E+01 7.0209E-04 

T8 4.2372E-08 4.9800E-08 8.5378E-09 2.9821E+00 2.0363E-02 

T9 4.2149E-11 3.2272E-08 5.8833E-12 5.9288E+00 1.2328E-03 

T10 2.3184E-09 2.3220E-08 2.7538E-09 1.0763E+01 7.4800E-04 

T11 2.8083E-10 1.9841E-09 1.2700E-08 9.9800E-01 1.2584E-03 

T12 1.2006E-09 1.4427E-10 6.9274E-10 4.9505E+00 1.2267E-03 

T13 4.6796E-10 1.5565E-08 2.9044E-08 5.9288E+00 5.7737E-04 

T14 7.0717E-10 1.1461E-10 4.1487E-08 1.2671E+01 1.2232E-03 

T15 6.2201E-10 8.0409E-08 6.0606E-10 4.9505E+00 1.2268E-03 

T16 1.6439E-08 1.3261E-10 2.3379E-08 9.9800E-01 1.2260E-03 

T17 3.7406E-09 2.4453E-08 6.2936E-11 3.9683E+00 1.2310E-03 

T18 9.0209E-08 2.1404E-08 4.1740E-11 1.9920E+00 8.6937E-04 

T19 2.9759E-10 1.2371E-08 8.0147E-09 1.0763E+01 1.2276E-03 

T20 3.2030E-10 1.1869E-09 1.5614E-08 2.9821E+00 1.2324E-03 

T21 7.5053E-09 1.2559E-07 2.5654E-10 2.1988E+01 9.8483E-04 

T22 5.4198E-09 3.1577E-10 2.4013E-12 1.0763E+01 1.2341E-03 

T23 8.1218E-08 3.7855E-10 2.3334E-09 5.9288E+00 1.4480E-03 

T24 3.8170E-08 4.5392E-11 1.6102E-10 2.0154E+01 7.5459E-04 

T25 4.5173E-10 8.4744E-09 2.9168E-10 1.3619E+01 7.4609E-04 

T26 7.6004E-11 9.0137E-10 1.7740E-11 1.9920E+00 6.6188E-04 

T27 6.3383E-11 1.0420E-09 2.8680E-09 1.5504E+01 6.8985E-04 

T28 2.5184E-08 4.2723E-09 7.2103E-09 2.9821E+00 1.2537E-03 

T29 2.4614E-13 9.3154E-10 8.5324E-10 9.9800E-01 1.2315E-03 

T30 7.8738E-09 7.2539E-09 7.5359E-11 4.9505E+00 8.0438E-04 

STD 5.51514E-08 2.89749E-08 1.88063E-08 5.833242622 0.003539145 

Average 2.7393E-08 1.8767E-08 8.9049E-09 6.9979E+00 1.6731E-03 
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Table 6-4 Thirty turns result of the Leo Algorithm for solving the classical benchmark TF16 to TF19 

Turns TF16 TF17 TF18 TF19 

T1 -2.1546E-01 3.9789E-01 3.0000E+00 -3.7807E+00 

T2 -1.0316E+00 4.9398E-01 3.9871E+00 -2.9525E+00 

T3 -2.1546E-01 4.9398E-01 5.0172E+00 -3.0832E+00 

T4 -1.0316E+00 3.9789E-01 5.0172E+00 -8.3916E-01 

T5 -1.0316E+00 3.9789E-01 3.0000E+00 -1.8881E+00 

T6 -2.1546E-01 2.4153E+00 3.9871E+00 -1.3441E+00 

T7 -2.1546E-01 4.9398E-01 3.0000E+00 -1.3781E+00 

T8 -2.1546E-01 3.9789E-01 3.0000E+00 -1.4012E+00 

T9 -1.0316E+00 2.7054E+00 3.0000E+00 -1.0008E+00 

T10 -4.1618E-01 2.7054E+00 3.0000E+00 -1.0008E+00 

T11 -1.0316E+00 5.8444E+00 3.0000E+00 -9.9928E-01 

T12 -2.1546E-01 5.8444E+00 3.0000E+00 -1.0008E+00 

T13 -1.0316E+00 2.7054E+00 3.9871E+00 -2.4215E+00 

T14 -2.1546E-01 3.9789E-01 3.9871E+00 -3.8160E+00 

T15 -2.1546E-01 3.9789E-01 3.9871E+00 -3.8628E+00 

T16 -1.0316E+00 2.4153E+00 3.9871E+00 -3.8305E+00 

T17 -2.1546E-01 3.9789E-01 3.9871E+00 -3.6584E+00 

T18 -1.0316E+00 2.7054E+00 5.0172E+00 -1.0924E+00 

T19 -2.1546E-01 3.9789E-01 5.0172E+00 -2.0298E+00 

T20 -1.0316E+00 3.9789E-01 3.9871E+00 -2.0298E+00 

T21 -2.1546E-01 4.9398E-01 3.0000E+00 -3.0014E+00 

T22 -2.1546E-01 4.9398E-01 3.9871E+00 -3.5176E+00 

T23 -4.1618E-01 3.9789E-01 3.0000E+00 -3.5707E+00 

T24 -1.0316E+00 3.9789E-01 3.0000E+00 -3.6177E+00 

T25 -1.0316E+00 7.7827E+00 3.0000E+00 -3.7767E+00 

T26 -1.0000E+00 7.7827E+00 3.1532E+00 -3.8160E+00 

T27 -7.6566E-01 3.9789E-01 3.1532E+00 -3.8425E+00 

T28 -1.0316E+00 3.9789E-01 3.1532E+00 -3.8628E+00 

T29 -1.5610E-01 2.7054E+00 3.1532E+00 -3.8624E+00 

T30 -9.4417E-01 3.9789E-01 3.1532E+00 -3.8465E+00 

STD 0.39678297 2.2376316 0.7119171 1.18530797 

Average -6.2210E-01 1.7884E+00 3.5906E+00 -2.6708E+00 
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Table 6-5 Thirty turns result of the Leo Algorithm for CECC06 2019 benchmark from CEC01 to CEC05 

Turns CEC01 CEC02 CEC03 CEC04 CEC05 

T1 5815932303 17.378 12.7039 39.1798 2.7937 

T2 5712129381 17.3807 12.7024 49.8577 2.6028 

T3 6216690442 17.6698 12.7024 39.1013 3.4027 

T4 1585174688 17.4542 12.7049 78.8027 2.4969 

T5 9220344881 17.6344 12.7024 83.2009 3.64 

T6 8418457844 17.5348 12.7039 52.0287 2.993 

T7 1567417025 17.667 12.7024 53.1781 3.066 

T8 1688209977 17.5919 12.7024 61.6233 3.0998 

T9 27536483350 17.6247 12.7038 44.9834 2.6969 

T10 6322536308 17.4901 12.7024 85.0411 3.2708 

T11 17143729506 17.3681 12.7047 103.1185 2.8597 

T12 9307644320 17.3956 12.7039 64.3646 2.4969 

T13 2545929820 17.3448 12.7024 62.0859 3.2391 

T14 9927465777 17.4605 12.7024 130.5873 2.729 

T15 4846304503 17.3664 12.7024 69.881 2.0278 

T16 4908828949 17.4189 12.7039 122.7165 3.0347 

T17 9708582167 17.41 12.7024 86.7732 2.8715 

T18 1694437894 17.4241 12.7044 80.3519 2.3543 

T19 15092830730 17.406 12.7024 40.8155 2.8656 

T20 6056256418 17.5058 12.7037 80.2602 2.5656 

T21 9461370318 17.4199 12.7049 76.094 2.4162 

T22 7274760836 17.4107 12.7035 42.2611 2.7223 

T23 2738732176 17.4562 12.7026 71.4022 1.8685 

T24 2203478766 17.4308 12.7027 67.0105 2.6082 

T25 8324911133 17.5325 12.7039 76.7896 2.3647 

T26 1470849386 17.4333 12.7024 93.1453 2.9336 

T27 8868821921 17.4984 12.7026 42.4095 3.4587 

T28 3427675957 17.6728 12.7024 78.893 2.9821 

T29 3257616112 17.4298 12.7024 38.9709 1.9253 

T30 16480815108 17.5187 12.7024 81.0305 2.421 

STD 7294147266 17.47763 12.70311 69.86527333 2.760246667 

Average 5767198154 0.098108754 0.000889537 23.78089555 0.432754261 



107 
 

Table 6-6 Thirty turns result of the Leo Algorithm for CECC06 2019 benchmark from CEC06 to CEC10 

Turns CEC06 CEC07 CEC08 CEC09 CEC10 

T1 2.4444 111.9963 4.6443 3.2709 19.9997 

T2 2.729 6.279 5.2963 2.8535 20.0002 

T3 3.7425 341.5468 5.2276 2.7229 19.9999 

T4 3.2169 90.4789 4.4763 2.766 20.0761 

T5 1.9316 514.6286 4.7009 2.7147 20.0001 

T6 2.8572 138.608 4.939 2.9986 20.0214 

T7 2.8216 48.3782 5.8893 2.8272 20.0002 

T8 2.7715 466.8038 5.2182 2.7412 20.0001 

T9 2.289 -215.6031 5.7596 2.6432 20.0683 

T10 3.532 607.4944 4.9719 2.9111 20 

T11 1.8078 86.8596 5.6254 3.1509 20 

T12 4.8188 1059.1107 5.1002 2.9682 20 

T13 3.1563 177.642 5.578 2.6983 20.0002 

T14 3.3149 99.4334 6.1724 2.7382 20.0001 

T15 3.129 256.9525 5.2011 3.0207 20.0005 

T16 2.5807 187.3906 4.3387 2.9384 20.0004 

T17 3.4561 60.3966 5.0964 2.6718 20.0001 

T18 3.3106 -13.6686 4.9131 2.9292 20.0001 

T19 4.0572 181.4768 4.7398 2.9802 20.0002 

T20 3.5707 182.4722 5.1698 2.632 20 

T21 3.8623 90.2608 5.3156 4.41 20 

T22 4.3316 214.1007 4.684 3.6393 20.0002 

T23 2.2843 97.8762 5.2246 3.6572 20.0992 

T24 2.3059 55.0337 4.8591 3.5732 20.0002 

T25 2.486 465.8648 4.7907 4.392 20.0195 

T26 2.5048 183.0413 4.5701 3.4268 20.0002 

T27 1.6545 107.7778 4.6682 4.1321 20.0843 

T28 2.6987 -20.8859 4.6043 6.0846 20.0001 

T29 3.9246 121.9088 4.4443 3.3914 20.0001 

T30 3.0041 163.0942 5.6493 3.9603 20.0002 

STD 3.01982 195.5583033 5.062283333 3.26147 20.01238667 

Average 0.755956506 236.5351502 0.459751941 0.744492954 0.028550895 
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7. Publications 

The initial crossover standard operator, LPX, has been published in the 

journal "Systems" by MDPI publisher. The paper titled "A New Lagrangian 

Problem Crossover: A Systematic Review and Meta-Analysis of Crossover 

Standards" has been published in a journal with an impact factor of 2.895 and 

is indexed by reputable databases like Clarivate Analytics and Scopus, among 

others. As for the second proposed algorithm, Leo, it is currently under 

consideration at (Expert Systems with Applications Journal-IF:8.5) for review 

and has not been published yet. 
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  یما ەبن رەسەلاگرانج ل ییتاەرەس یباشکردن یتمیرۆلگئە

 رۆڤەئ سۆکر ێی نو کارپیکەرێکی

 
 

 كى دكتؤرايةتيَزيَ

كراوة لة زانكؤي  ريَهةول ياريئةنداز يكينةكت ثيَشكةشى ئةنجومةنى كؤليَذى
ثؤليتةكنيكى هةوليَر  وةكو بةشيَك لة ثيَداويستيةكانى بةدةست هيَنانى ثلةى 

  سيستةمى زانياريي اريندازةئلة  دكتؤراى فةلسةفة
 
 
 

 لةلايةن 

 ئاسۆ محمد علاءالدین محمد

 ٢٠١٢زانکۆی شەفێڵد  - ئینتەرنێتلەپرۆگڕامسازی و تەکنەلۆجیای  ر ەماست 

 ٢٠١٠زانکۆی سلێمانی   -ئامارو کۆمپیوتەرلة  بەكالۆريۆس

 
 
 

 بةسةرثةرشتيارى 
 طارق احمد رشيدث.د. 

 

 ٢٠٢٣ کانونی دووەم
 

https://epu.edu.iq/ku/%DA%A9%DB%86%D9%84%DB%8E%DA%98%DB%8C-%D8%A6%DB%95%D9%86%D8%AF%D8%A7%D8%B2%DB%8C%D8%A7%D8%B1%DB%8C-%D8%AA%DB%95%DA%A9%D9%86%DB%8C%DA%A9%DB%8C-%D9%87%DB%95%D9%88%D9%84%DB%8E%D8%B1-2/
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 پوختە 

  مەڵ ب  ! کات ەد   رەس ەچار)ئۆپتیمایزەیشن(    باشکردن   ی کانەشێک   ندنە سەر ەپ  ی نی وردب  یواز ێش

.  کان ەشێک   ی زڵۆئا  ی ادبوونیز  ەڵ گ ەل  داەحەت ر ەب  ە ت ێبخر   ەی کەدانانەبارە وق  ی ر ەگیکار  ت ێتوانر ەد 

برۆز   شتوانیدان  ی ماەبن   ر ەسەل  ندن ەس ەرەپ  ی ستی وری تاهیم   یکان ەتمیر ۆلگەئ کارپێکەرەکان پشت    ە 

ئن ە کەد   یار ید   انۆیخ  یتگش  ی داەئ  ەک  ستن ەبەد   ( کانە رۆرات ەپۆ ئ  -)ستاندەرەکان     ەران ۆرات ەپۆ ئ  مە . 

لەسەر   ئ  انەڕگکاریگەری  ڕۆڵیکی ک  ،ەوە نەک ەد   رز ەب  ستغلالکردنیو    ۆ ب   دەگێرن   گرنگ  ر ۆز  ە 

باشکردن   ان ەڕگ تورەگی کار  ی و    ی رۆڤەئ   س ۆکر   بەناوی رۆڤەئ   س ۆ کر  کارپێکەری   ە ک ەوەن یژ ێ. 

  ەی وە رزکردنەب   ۆ ب   ت، ێنێ ناسەد  ( Lagrangian Problem Crossover  -LPX)  یلاگرانج   ەی شێک

  ی اەڕرەباشترکردن. س  ی کانێیەنو  ەشێ ک  ەی وە ووبوونەڕووب ڕ  ە ل  ندن ەسەر ەپ  ی کانەتمی رۆلگ ەئ  یداەئ

 ( Lagrange Elementary Optimization  -Leo)  لاگرانج  ییتاە رەس  یباشکردن   ش،ە وەئ

  ی ک ڕۆڵێ   LPX ەک،  (Single-Objective)یی  ئامانج   ەتاک   ی کێتم یر ۆلگەئ  وەک   ووڕ  ە خاتەد 

 .ت ێڕێگ ەد  رچاوەب

  ی بژاردنەڵه   ۆ ب   ەگرنگ  رۆز   شتوواندایدان   یما ەبن  ی کانەتمی رۆلگ ەئ  ە ل  ر ۆڤەئ  س ۆکرکارپێکەری  

  م ەک  کان ەڵەوه  کات ەکات د ی  وتەک ەپاش  ەیکییەباشترکردندا. کارا  ی کانەسۆ پر   ەگونجاو ل  ی رەسەچار

  ە ک ەوەن یژ ێتو  ییتاە رەس  ی ناغۆ. ق ە وەکاتەد   مەک   کانداییەار یندازەئ  ەرنام ەب  ەل  کان ەچوون ێ و ت  ە وەکاتەد 

پشتیپێدەبەسترێت ک   ووڕ  ەخات ەد   ستا ێئ  ی ر ۆڤەئ  سۆکر   یکان ەوازێ ش   ەل  ی گشت  یک ێنی وانێڕ ت   ەل  ە 

نو   یار یندازە ئ  ی کانەکار جگکانداەشێک  ی کردنیت یەرا ەنێو  ،   LPXیشکردنە شکێپ   ش،ەو ەل  ە. 

داه   ە تاز  یو ەڵکێت   یک ێکیکن ەت   ەی دووان  یکارکرد   یماکان ەبن  ەل  وەردەگیرێت   ە ک  ەیەرانەنێو 

  ەڵ گ ەل LPX کانییەکار یتاق  ە نگاندنە سەڵ. ه(LDF – Lagrangian  Dual Function)  ی لاگرانج

کر(SBX) کراوەوێ هاوش  ەییدووان  ی رۆڤەئ   س ۆکر  کو ەو  یتر  یکان ەستاندارد    ی رۆڤەس ۆ، 

کر(BX) کراوەڵکێت و    ە ر ۆڤەئ   سۆکر   ەل (Qubit-X) رۆڤەسۆکر-ت یکوب  ی رۆڤەئ   سۆ، 

ئن ەکەد   راورد ەب  دا ەنیق ەاستڕ  ی کان ەدکراوۆک   ە ل  ی گشتەب LPX ەک  ن ە کەد   ەوە ب  ە ئاماژ  کانەنجام ە . 

 ەل  ،یت ەبی تا   ە . بدات ەد   شانین   دا ەکید   ی کانەتڵەحا  ەل   یراوردکار ەب  یداەو ئ   ەتر باشتر  ی کانەوازێش

TF7بۆ  LPX  کات  یداەئ و  ل  ی سابکردنیح   ی باشتر    ی ها ەب   ێ س  ر ەه  ی ر ەرانسەس  ە کورتتر 

تر  راورد ەب  ەب   دات ەد   شان ین   دایک ەمەڕەه لەب  ستانداردەکانی  ناوەندی  بەهای  دەکاتە  (α=0.2) ۆ    دا 

دەکاتە    (α=0.2)د لەستاندار   ی کێن ، لادا0.0048  تی پێویست بۆکا  ەهەژمارکردنی ، و0.0031  دا 

(α=0.2)   شەکیە  143.005دەکاتە متمان  یگرنگ  یئامار   یکار ی.    راورد ەب   ەب LPX یکراوێپە و 

 .ەوکراوەتەاستڕپشت  ر ۆڤەئ  سۆکر  ی تر  ی کانەستاندارد  ەڵگەل
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ل ت ێنرێ ناسەد   یۆ ل  ی ناو  ەب  یمانس ڕۆ  یندنە سەرەپ  یک ێوازێ ش  داەکەوە ن یژ ێتو  ی مەدوو  یناغ ۆق  ەل   یۆ . 

هاوکێشەی  بە    ۆڤمر   ی نێخو   یکان ەنی لبومەئ  ە شەب  ە ک  ە ووبەست کوتان    ی ورد   ەی سۆ پر   پشتی 

لت ێن ێه ەکارد ەب   ە ل   کانەکەریز   ەکارۆه  یدان ێپە رەپبۆ    ت ێنێ هە کارد ەب   گونجاندن ۆخ   یکێ بازڕێ   یۆ . 

هاوکێشە دیاریکراوەکان و سیستەمی    یکارکرد   ی هاکانە ب  ی ما ەبن  رەسەل   ە وە کانەنیج   ی نڕی ب  ەی گڕێ

  ە کەتمی رۆلگ ەئ  ی نیو وردب   ی. ورد نوێی ستانداردی کرۆسئۆڤەر کە لە بەشی یەکەم باسی لێوە کراوە

  کان ەرەوێپ  ی کانەرۆ راوج ۆج ە رکەئ  رەس ەل ەوە توند  ەی وە کردنیتاق ەی گڕێ  ە ل رفراوانەب  یک ەیەو ێش  ەب

ئەد CECC06 2019 و  ید یقلەت   یکانەرەوێ پ  ردووەه  شە وان ەل   ،کراوەتەوەاستڕپشت   ەل  یۆ ل   یا. 

 Dragonfly  ،Genetic Algorithm  ،Practical  کەو  یناسراو   یکانەتمی رۆلگ ەئ  ر ەرامبەب

Swarm Optimization   ئ ل  ی وانەو  .  ت ێکرەد   ەوان ێ پ  رکدا ەئ  ن یند ەچ  ی رەرانسە س  ە تر 

  ر ەرامبەب   ەباشکردن ل  یکانەشێک   یرکردنەسەچار  ەل  یۆل  ییو کارا  یرەگی کار   ریگشتگ   یک ێراورد ەب

ل ت ێن ێنگ ەسەد ەڵه  زراون ەدام  ە ک  ەی تمانیر ۆلگەئ  م ەئ   ە فر  ەی وەکردنیتاق  ی کانەرکەئ  ی باشکردن  ە. 

تر    یکان ەتم یرۆلگە ئ  ەل  ەکەکراواریشنێپ   ئەلگۆریزمە،  TF11ی   تە بیتا   ە، ب (TF8-TF13) یواز ێش

ب  بوو،  جێی(2.7393E-08)ە  ک TF11 یهاەب   ی اڕکێت  ەباشتر    ی رەرانسەس  ەل  ،ەیە ئاماژ  . 

  ی رز ەب  ی داەئ وامە رد ەب ارکراویشنێپ   یواز ێ، ش(TF14-TF19) داەکهاتێ پ ەیو ەکردنیتاق   ی کانەرکەئ

ش شانی ن  ت ەڕەبن  ی کانەتمیر ۆلگەئ  ە ب  راورد ەب   یکان ەنجام ە ئ  ە ل  ی ر یپشتگ  ی ئامار   یکاری دا. 

بۆدۆزینەوەی    ن ێکرەد   شینما  ئەپلیکەیشنی نوێ  ی کانەنانێکاره ەبدوو    هاەرو ەو ه  کات ەد   ەکەو ەنی ژێتو 

نوێیەکان  سکێشە  و    ان ەڕگ  ۆ ب   کان ەستاندارد   ە رەوێپ   ی نان ێ کارهەب  ە ب   یۆ لئەلگۆریتمی    یر یقامگە. 

 .ەوەتکراوەاستڕپشت  ستغلالکردنیئ
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 اوفر-روسلك  جديدالخوارزمية التحسين الابتدائية لاغرانج تعتمد على مشغل 

 
 
 

 رسالة
جزء من كأربيل -فى الجامعة التقنية اربيل-ةيلهندساالتقنية  كليةالمقدمة الى مجلس 

 . علوماتم نظمهندسة  متطلبات نيل درجة الدكتوراه في اختصاص
 

 
 

 من قبل 
 ئاسو محمد علاءالدين محمد

  ٢٠١٢ جامعة شفيلد - برمجيات و تكنولوجيا الانترنت ةأنظم ماجستير

 ٢٠١٠ السليمانية جامعة - كومبيوترالأحصاء وال بكالوريوس في

 
 

 
 
 

 باشراف
 طارق احمد رشيد .د.أ

 
 ٢٠٢٣ ديسمبر
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 ختصرالم

فعالیتها وقابلیة التوسع  يمكن أن تتعرض    ومع ذلك  ،طريقة التطور الخوارزمیات تحل مشاكل التحسین

السكان بشكل كبیر على   المعتمدة على  التطورية  تعتمد خوارزمیات  المشكلة.  تعقید  للتحدي مع زيادة 

المشغلین الذين يحددون أدائهم العام. يعمل هؤلاء المشغلون على تعزيز الاستكشاف والاستغلال، وهو  

 Lagrangian Problemأمر بالغ الأهمیة للبحث والتحسین الفعالیات. يقدم البحث مشغل التقاطع ) 

Crossover -LPX .الجديدة التحسین  مشاكل  معالجة  في  التطورية  الخوارزمیات  أداء  لتعزيز   ،)

 ( خوارزمیة  يقدم  فإنە  ذلك،  إلى  (،  Lagrange Elementary Optimization - Leoبالإضافة 

 دورًا مهمًا. LPXوهي خوارزمیة ذات هدف واحد حیث يلعب 

يعد مشغل التقاطع في الخوارزمیات المعتمدة على السكان أمرًا بالغ الأهمیة لاختیار الحلول المناسبة 

التطبیقات  التكالیف في  الوقت وتقلیل الأخطاء وتقلیل  تعمل كفاءتها على توفیر  التحسین.  في عملیات 

في   المستخدمة  الحالیة  التقاطع  أسالیب  عن  عامة  لمحة  الدراسة  من  الأولیة  المرحلة  تقدم  الهندسیة. 

تقديم   فإن  ذلك  مع  المشكلة.  وتمثیل  الهندسیة  ومبتكرة   LPXالعملیات  جديدة  هجینة  تقنیة  عن  عبارة 

 ( المزدوجة  لاغراض  وظیفة  مبادئ  من  الإلهام  (.  Lagrangian Dual Function - LDFتستمد 

التجريبیة   التقییمات  )  LPXتقارن  مثل  الأخرى  المعايیر   SBX – Simulated Binaryمع 

Crossover( و   ،)BX – Blend Crossover( و   ،)Qubit-X – Qubit-Crossover  في  )

أن   إلى  النتائج  تشیر  الحقیقیة.  المشفرة  الانتقال  الطر  LPXعملیات  على  عمومًا  الأخرى ويتفوق  ق 

أداءً فائقًا ووقتاً حسابیًا    LPX، يظُهر TF7ويظهر أداءً مشابهة للحالات المتبقیة. على وجە التحديد في  

)  أقصرعبر بالمتوسط  مقارنةً  الثلاثة  العشوائیة  عند  α=0.2القیم  المعیاري  0.0048(  والانحراف   ،

(α=0.2  عند )0.0031( وحساب الوقت ،α=0.2  عند )وحدة. يتحقق التحلیل الإحصائي    143.005

 مقارنة بمعايیر التقاطع الأخرى. LPXمن أهمیة وموثقة 

من   الثانیة  المرحلة  الدراسةفي  خوارزمیة  هذا  تسمى  جديدة  تطورية  طريقة  تقديم  تم   ،Leo هذه  .

يستخدم   البشري.  الدم  زلال  في  تستخدم  التي  الدقیقة  التطعیم  عملیة  من  مستوحى   Leoالخوارزمیة 

.  ة یأسلوب التكیف الذاتي، حیث يقوم بتطوير عوامل ذكیة من خلال التقاطع الجیني بناءً على قیم وظیف

يتم التحقق من دقة الخوارزمیة وإحكامها على نطاق واسع من خلال اختبارات صارمة على وظائف  

  Leo. يتم قیاس أداء    CECC06 2019قیاس الأداء المتنوعة، بما في ذلك المعايیر التقلیدية ومعايیر  

مثل   معروفة  خوارزمیات   Dragonfly  ،Genetic Algorithm  ،Practical Swarmمقابل 

Optimization  وغیرها عبر وظائف متعددة. تقوم المقارنة الشاملة بتقییم فعالیة ،Leo   وكفاءتە في

متعدد  الاختبار  وظائف  تحسین  في  بها.  المعمول  الخوارزمیات  هذه  مقابل  التحسین  مشكلات  حل 
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، تفوق النهج المقترح على الخوارزمیات الأخرى، بمتوسط  TF11(، وخاصة  TF8-TF13الوسائط )

(2.7393E-08( المركبة   الاختبار  وظائف  عبر  أنە  بالذكر  والجدير   .)TF14-TF19 أظهرت  ،)

الإحصائي   التحلیل  ويدعم  الأساسیة.  بالخوارزمیات  مقارنة  باستمرار  عالیا  أداءً  المقترحة  الطريقة 

يتم  كما  البحث،  خوارزم   استنتاجات  لهذه  الحقیقي  العالم  تطبیقات  هةیعرض  استقرار  تأكید  يتم   ذه . 

 القیاسیة للاستكشاف والاستغلال. ر ايیعباستخدام الم  ةیخوارزم

 

 

 

 


