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ABSTRACT  

In agriculture farming, pests and diseases are the most imperative factor that 

affects cucumber leaves. Farmers around the globe are currently facing 

difficulty in recognizing various cucumber leaf diseases. Unfortunately, current 

manual techniques to diagnose and detect cucumber leaf diseases consumes a 

large amount of human resources, subjective, laborious and exhibits poor real-

time performance. Therefore, there is a demanding need for an effective 

algorithm that enables the diagnosis of cucumber leaf diseases and pests. This 

dissertation intends to propose and improve a model using deep learning 

techniques for the diagnosis and detection of cucumber leaf disease. 

Throughout the study, various challenges and issues have been identified, 

necessitating resolution. Foremost, reliable public dataset for real-world 

scenarios involving cucumber leaf disease images are currently lacking. 

Secondly, there is a need for an efficient convolutional neural network (CNN) 

algorithm to effectively balance the trade-off between classifying cucumber 

leaf diseases and performance. Thirdly, you only look once (YOLOv5) model 

has raised concerns related to time consumption, storage complexity, low 

detection accuracy, and limited ability to detect small symptom diseases. 

Thus, a new dataset of cucumber leaf disease and pest has been constructed 

that includes two pests (spider, and leaf miner), two fungal diseases (downy 

mildew, powdery mildew), one viral disease, and healthy class leaves in a real-

world scenario. The dataset has a total of 4868 images. Furthermore, this PhD 

dissertation focuses on proposing a new CNN algorithm with tuning of hyper-

parameters to optimize the model’s performance that comprises image 

enhancement, feature extraction, and classification. Data augmentation was 

used to enlarge the datasets and reduce overfitting, while CNN layers were 

employed to automatically extract features. Then, five cucumber leaf diseases 

and one healthy leaf are classified. Moreover, an improved YOLOv5 model for 
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precise detection of cucumber leaf disease and pest symptoms was developed. 

With the aim of reducing the model's size, modifications were applied to the 

model's hyper-parameters. Additionally, the BottleneckCSP module replaced 

the C3 module in both the backbone and neck network sections. The detection 

impact was notably enhanced through the reductions in parameters, number of 

layers, and computations; in addition to that, the improved model demonstrates 

the ability to detect even small leaf disease and pest spots. Furthermore, the 

integration of the convolutional block attention module (CBAM) into both the 

enhanced and standard YOLOv5l models further demonstrates the 

effectiveness of the proposed model. 

The study evaluated the effectiveness of the proposed CNN model by 

comparing it to pre-trained models (AlexNet, Inception-V3, and ResNet-50). 

The experimental results confirmed that the proposed CNN algorithm 

outperformed the other algorithms in recognizing cucumber disease and 

healthy leaves, based on both datasets with and without data augmentation. The 

proposed CNN achieves a recognition accuracy of 98.19% with the augmented 

self-made dataset and 100% with cucumber plant disease dataset. Furthermore, 

The experimental results of the detection system indicated that the improved 

YOLOv5 model achieved a mean average precision (mAP) of 80.10%, along 

with precision and recall rates of 73.8% and 73.9%, respectively. In a 

comparative analysis, the improved YOLOv5 model demonstrated superior 

performance to the original YOLOv5l, YOLOv5n, YOLOv5s, YOLOv5m, and 

YOLOv5x networks. It also achieved significant reductions in storage 

complexity, decreasing from 92.8 MB to 13.6 MB, and in training time, 

reducing from 4 hours and 41 minutes to 2 hours and 58 minutes. 
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1.1. Overview 

 

Plants are a crucial part of life on Earth as they provide humans with 

breathable oxygen, food, etc. Furthermore, they provide food for insects and 

other animals, facilitate weather change, provide clean air, balance the 

ecosystem, and regulate flooding. In most countries, agriculture crops have 

become the chief source of economic development. Agricultural productivity 

also plays a significant role in a country's economic development and the 

effects of climate on crops can have a major impact on yield and quality. The 

agriculture sector will provide employment opportunities to many employers 

in rural areas, contribute to producing food, and be used in medicine and 

industry. Agriculture plant or crop cultivation has quickly developed in terms 

of quantity and quality of food production. Due to several factors in the 

agriculture field, farmers cannot simply control the weather and other 

environmental conditions that are affecting agricultural crops. Plant diseases 

and pests are the principal serious and longstanding problem factors that have 

to be considered in the case of farming practices. It has a devastating effect on 

interrupting normal plant growth (Shruthi et al., 2019), production quality, 

quantity, and economic loss. Unfortunately, such diseases and pests are not 

always detected at an early stage (Faithpraise et al., 2013).  

Plants have been reported to have the following organs: leaf, stem, root, fruit, 

and flower. In agricultural plants, leaves are an important organ of plants for 

providing information about the amount and nature of gardening crop 

(Hammad Saleem et al., 2020). Numerous studies have been conducted on 

plant leaves as a comparative tool for different purposes such as classification 

and detection. This is attributed to the ease of perception of leaves, given their 

typically green coloration and flattened structure. Plant disease prevention and 

control have been broadly discussed because plants are susceptible to diseases 

and are affected by their outer environment. Normally, plant disease diagnoses 
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have a significant role in monitoring farming systems accurately (Sun et al., 

2018). Cucumber is one of the widely used plant species. The cucumber is a 

broadly cultivated plant in the gourd family, Cucurbitaceae, and the most 

globally nutritious and favorite vegetable in the world, which is quick and easy 

to grow within a short time  and easily grows in temperate regions.  

In recent years, a deep learning algorithms have been widely used in many 

different fields in terms of recognition and detection. Deep learning as an area 

of machine learning has become well known in plant disease recognition and 

detection. Deep learning algorithms have also been modified by some 

researchers to enhance the recognition performance of the disease in numerous 

plant types. CNN is one of the best-performing techniques of deep learning 

algorithms for image recognition. The significant advantage of deep learning 

over traditional machine learning methods lies in its capability to automatically 

extract features from input images during the learning process (Zhang et al., 

2021). Despite reducing complicated hand craft engineering process, CNN 

used to obtain a good performance of classification accuracy (Fujita et al., 

2018). CNN has a good performance in terms of cucumber disease diagnosis 

and leaf classification (Kawasaki et al., 2015), as well as in flower recognition 

(Omer et al., 2020). In (Zhang et al., 2021) realized that deep CNN in plant 

diseases recognition is remarkably higher than the traditional algorithms. It also 

performed better than other machine learning methods to classify normal and 

diseased cells (Iqbal et al., 2021).  

 

1.2. Problem Background 

 

A wide range of factors affect agriculture production such as occurrence of 

pests and diseases on crops, which in turn requires increasing food security. It 

also leads to an increased vulnerability to diseases and pests, which can reduce 

crop yields and affect food security. Plant diseases and pests are among the 
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problems that affect crop yields and usual plant growth. They may be even 

more devastating and appear on plant leaves, causing economic losses, 

production quality, and quantity (Yang et al., 2022)(Li, Ahmed, et al., 2022). 

Plant pathogens (bacteria, fungi, and virus diseases), deficiency, plant nutrition 

(lack of microelements), pests, and insect feeding (sucking insect pests) cause 

leaf batches (Berger, 1985). Climate change also affects the availability of 

water for agriculture, which can affect crop growth and productivity. Plants 

experience severe stress or damage, leading to loss of their leaves and eventual 

death. Researchers have been motivated by these works to apply technology 

from computer vision and artificial intelligence disciplines to the diagnosis, 

detection and management of plant diseases and pests. 

To respond to plant disease detection and identification problems, an 

efficient recognition and detection system for automatic symptom leaf disease 

identification is essential. Plant disease identification is an important 

mechanism for preventing plant diseases in a complicated environment. 

Farmers often recognize the symptoms of plant diseases using traditional 

means, for example, by making naked eye observations and referring to the 

information in books, internet, etc. (Shruthi et al., 2019). Furthermore, 

traditional methods like microscope and Deoxyribonucleic acid (DNA) 

sequencing-based approaches have been used to classify and detect various 

types of diseases. Such methods, however, necessitate experienced experts in 

farming; and many farmers are not even permitted to use advanced tools, 

though most of them own a smartphone for capturing images (Amara et al., 

2017)(Lu et al., 2017).  

Cucumbers are affected by diseases due to nonbiological factors, the impact 

of various factors, and a bad ecological environment. This has a major 

economic impact on farmers, yield production, and quality. It has a property to 

be suffered from high disease occurrence, frequent and fast infection. The leaf, 

fruit, stem, and root are parts of the cucumber plant that are affected by different 
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kinds of diseases. Leaves are considered the best part to be used for disease 

diagnosis because of the appropriate macro environment (El-Helly et al., 2003); 

the symptoms of disease affection are visually apparent on leaves due to size, 

shape, and color (Zhang et al., 2017) (Ganatra and Patel, 2020). 

Cucumber diseases are diagnosed through visual analysis by experts and 

biological inspection, this technique is time-consuming, inefficient, expensive 

(Shen et al., 2008), and not the best way to recognize diseases (Sannakki et al., 

2013). Expert diagnoses method is used which depends on highly expert 

experience but it has low accuracy, in addition to that, pathogen analyses 

method is used that involves the cultivation and microscopic observation of 

pathogens, it is time consuming. These methods are complicated and require a 

lot of effort to complete. Chemical methods (these methods can include using 

indicators or stains that react with particular substances, like pathogens or 

nutrients, leading to visible changes in the leaf tissue or color) are also used to 

diagnose leaf injuries, which are not real-time diagnoses because of 

necessitating a lot of experiments (Bai et al., 2017). Those lead to affect 

agricultural production in terms of increasing the danger of toxic residue levels 

and cost because of excessive use of pesticides for the treatment of plant disease 

in case of incorrect disease identification. In the meantime, early discovery of 

diseases, immediate attention, early diagnosis and detection, and avoiding 

infection are the most major efforts that have to be carried out by farmers to 

reduce damages and increase their income (Tani et al., 2018) (Ma et al., 2018). 

With the development of technology and artificial intelligence in agriculture, 

computer vision and machine learning algorithms have become significant 

tools in terms of diagnosis and detection of cucumber leaf diseases. 

Additionally, intelligent systems based on computer vision have been used in 

agriculture for the purpose of achieving efficiency and increasing productivity 

(Tian et al., 2020). Hence, in the agriculture field, computer vision technology 

with hardware development such as graphics processing units (GPUs) are 
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applied on the crop growth state monitoring, agricultural products quality 

examination and categorization, plant disease and insect pest identification 

(Shen et al., 2008) (Tian et al., 2020). In order to address the issues, this 

requires an efficient and accurate cucumber leaf disease diagnosis and detection 

model. Researchers are diligently working on developing computer-based 

algorithms to monitor vast crop fields and identify disease and pest symptoms. 

Their objective is to design a precise recognition system that can be accessible 

to a wide range of farmers. In this scenario, an accurate and timely computer-

based diagnosis algorithm for cucumber leaf diseases and pests is essential that 

would be capable of disease recognition in a better, more reliable, and faster 

way. 

 

1.3. Problem Statement  

 

The investigation problems in this dissertation can be summarized as 

follows:  

i. Despite the availability of public datasets for various plant species 

within the agricultural domain, there is a scarcity of reliable datasets 

dedicated to cucumber leaf diseases. Furthermore, one specific pest 

type, known as the spider, is notably non-existent from these datasets. 

ii. The misdiagnosis of diseases and pests has negative effects on 

cucumber crops. The use of deep learning methods introduces 

complexity due to the involvement of numerous hyper-parameters 

during network training, thus intensifying the challenge. Furthermore, 

these algorithms demand fine-tuning and updates. Proposing a new 

CNN is challenging due to the need to determine optimal hyper-

parameter values, such as learning rate, batch size, layer number, filter 

sizes, and dropout rates.  
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iii. Timely and the early detection of symptoms related with cucumber 

leaf diseases is challenging due to the presence of small disease spots. 

Improving a model to increase detection results while reducing 

training time and storage complexity is a particular manner to address 

this challenge in model development. 

 

During the investigation of this research, several questions have arisen. The 

research questions to be explored are as follows: 

• Is the availability of publicly available datasets adequate for cucumber 

leaf disease and pests? 

• How does the influence of hyperparameter tuning impact the 

generalization of CNN models to achieve improved accuracy in 

diagnosing cucumber leaf diseases in this research study? 

• How could a lightweight YOLOv5 model be enhanced to proficiently 

identify and precisely locate symptoms of cucumber leaf diseases and 

pests? 

• Is there any possibility to reduce training time consuming and model 

parameter weight size in the area of YOLOv5 model in deep learning? 

• Is it possible to enhance the accuracy in leaf disease detection by 

improving feature extraction and representation in the YOLOv5 model? 

  

1.4. Research Objectives  

 

The specific aims of this research are outlined below: 

I. To come up with a new cucumber leaf disease image dataset generated 

from farms in the Kurdistan region, Sulaymaniyah, Rania. It will be 

available as a standard public dataset for the research community. 
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II. To develop and fine-tuned a new CNN model capable of diagnosing 

cucumber leaf disease through the utilization of hyper-parameter 

tuning to overcome the misdiagnosis issues. 

III. To improve a lightweight YOLOv5 model to address training phase 

time consumption challenges and reduces storage requirements, with 

focus on overcoming the YOLOv5 limitation related to the detection 

of small leaf disease and pest symptoms. 

IV. The intended models is expected to possess the desired attributes: 

adaptability, efficacy, and precision. 

 

1.5. Research Contributions  

 

The key contributions of this research can be outlined as follows: 

➢ A new structured cucumber leaf disease image dataset is collected 

from farms in the Kurdistan region.  

➢ A new CNN algorithm has been proposed by utilizing model hyper-

parameters tuning, layer modifications. The proposed model yields 

faster and improved results. 

➢ A lightweight YOLOv5 model has been improved, with hyper-

parameters modifications to increase its detection accuracy. Firstly, 

this enhancement involves the replacement of the C3 module in the 

backbone and neck network sections with the BottleneckCSP module. 

This modification results in a reduction in the number of layers and 

parameters, ultimately leading to reduced time consumption and 

storage complexity. Secondly, the last backbone convolutional layer 

has been removed. Finally, the model efforts to overcome the 

challenge of enhancing feature representation through the 

incorporation of the CBAM into the improved YOLOv5 model. 
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1.6. Research Scope and Assumption  

 

The scope of the dissertation covers the following:  

I. In the constructed dataset, a total of five different types of diseases 

and pests were included, along with healthy cucumber leaves. 

Additionally, one publicly available dataset was used. 

II. A new CNN model has been utilized to classify five disease and pest 

types with one healthy leaf. Moreover, as an evidence for evaluation 

of the proposed CNN model from scratch, three representative pre-

trained deep learning recognition algorithms are used. 

III. YOLOv5 model has been improved for automatic cucumber leaf 

disease symptom detection. in addition, The CBAM module, serving 

as a channel attention mechanism, is incorporated into the improved 

YOLOv5l model. 

IV. MATLAB and Python environment have been used to conduct 

recognition and detection tasks, respectively. 

 

1.7. Organization of the Research  

 

This PhD dissertation is structured into six chapters as shown below: it 

begins with an introduction chapter, and the subsequent chapters are organized 

as follows: 

o Chapter 2: In this chapter, a theoretical background, literature review and 

various related research techniques are explored, along with their 

working procedures.  

o Chapter 3: The materials, methodology, collecting data and experimental 

setup are discussed in detail.  
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o Chapter 4: This chapter investigates into cucumber leaf disease and 

healthy recognition using deep learning algorithms. It presents the 

proposed new CNN algorithm, along with the analysis and presentation 

of performance evaluation results. Additionally, the examination of three 

pre-trained models is discussed. The chapter investigates the details of 

these approaches and their impact on improving the overall efficiency of 

the recognition system. 

o Chapter 5: This chapter is dedicated to enhancing the effectiveness of the 

detection and identification system. It entails the implementation of a 

cucumber leaf disease and pest detection system to identify, detect, and 

localize symptoms. The chapter also presents and analyzes the results of 

conducted experiments and result evaluation. Moreover, it explores the 

influence of integrating CBAM into the improved model and assesses the 

overall efficiency of the enhanced system. 

o In the final (chapter 6), the research conclusions are presented by 

summarizing the key contributions made throughout the research. It also 

offers suggestions for future work that can further advance the field. 
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2.1. Introduction  

 

This chapter starts with a state-of-the-art CNN algorithm in the process of 

diagnosing, identifying, and detecting of cucumber plant leaf pest and diseases. 

It also presents some issues that face the models performance, and also 

indicates gaps that should be addressed in the future. A focused review is 

closely related to the diagnosis plant leaf disease and pest systems, specifically 

cucumber leaves. Moreover, it discusses the commonly employed 

methodology steps for plant disease and pest recognition. It starts with data 

acquisition, pre-processing, feature extraction, and classification. It also 

discusses existing various deep learning architectures-based solutions for plant 

disease recognition. Then, this chapter discusses cucumber leaf disease 

recognition and detection system design and development. Finally, the chapter 

ends by highlighting the research issues. 

 

2.2.  Traditional Pattern Recognition Workflow Steps 

 

Many approaches have been used in agriculture domain for automatic plant 

disease recognition in various plant parts such as fruit, root, stem, and leaf. The 

system operates through four different stages, namely data acquisition, pre-

processing, and the combination of feature extraction and classification within 

the same model architecture. 

 

2.2.1. Data Acquisition 

 

The first step in plant leaf disease classification and detection system is 

image acquisition. A wide variety of devices such as digital camera and smart 

phone camera can be used to capture images of healthy and diseased plant 

leaves.  
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2.2.2. Data Pre-Processing 

 

The pre-processing step within machine learning and deep learning 

techniques plays a crucial role in constructing an effective dataset to develop 

generalizability of the model. In deep learning, a huge amount of data must be 

collected from different sources such as physical devices, tools, software 

programs like web crawlers, manual surveys, etc. The model performance may 

be affected during data collection because of hardware faults, software 

problems, tool failures, noise, and human errors. Data pre-processing might 

solve problems such as data not fitting into memory and local storage. It may 

also help visualize and accelerate the process. 

Data pre-processing has an important effect on the performance of a 

supervised machine learning model. It can solve several kinds of problems on 

data using transformation, cleaning, normalization, feature extraction, and 

feature selection before being fed as input to the machine learning or deep 

learning models (Kotsiantis et al., 2006). Removing background noise and 

suppressing undesired distortions have been shown as pre-processing to 

advance some image features and make the input suitable for further processing 

(Shruthi et al., 2019)(Oo and Htun, 2018). To boost the reliability of their 

model, Sladojevic et al. proposed a method to pre-process input images by 

cropping them manually, thereby highlighting region of interest by creating the 

square around the leaves (Sladojevic et al., 2016). 

In addition, Lu et al. resized an image from 5760×3840 into 512×512 RGB 

image to reduce the running time and dimension of training data (Lu et al., 

2017). In another work, Ashqar et al. pre-processed input images by resizing 

them to 128×128 pixels, normalizing the pixel values to a [0,1] range, and 

balancing dissimilar classes (Ashqar et al., 2019). In (Chen et al., 2020), 

photoshop tools have been used to equally process images into RGB model for 

computations, and then these images are resized to 224×224 pixels. Table 2.1 
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shows various approaches for image pre-processing. Furthermore, data 

augmentation is another technique in pre-processing step as explained in 

Section 3.6. 

 

 

Table 2. 1 Investigation of pre-processing techniques applied in plant identification 

 

 

2.2.3. Feature Extraction 

 

In pattern recognition, image features play a significant role and are part of 

an object in image to identify it. Features, generally, describe image properties 

such as corners, edges, regions of interest points, ridges, etc. In plant disease 

recognition, color, shape, and texture have been used as characteristic 

descriptors to discriminate between plant object (foreground), and other 

unrelated objects (background). Image texture feature defines how the patterns 

of color are dispersed in an image. Image color feature is used to discriminate 

one disease from another. Moreover, due to diseases that have different shape 

features which are area, axis, and angle, they are used to discriminate diseases 

(Panigrahi et al., 2020). 

While traditional pattern recognition approaches adopt handcrafted features, 

deep learning automatically adapts features in a better and modernized way 

Authors Pre-processing methods/Purposes  

(Amara et al., 2017) images were resized and converted into grayscale 

(Lu et al., 2017) 
Images were resized to smaller size to reduce a running time 

and dimensions 

(Sladojevic et al., 2016) 
cropping all images manually and draw a square around the 

region of interest leaves  

(Ashqar et al., 2019) Resized, normalized, and balance dissimilar class of image 

(Chen et al., 2020) 
Photoshop tool used to equally processed images and resized 

images 

(Nagasubramanian et al., 2019) RGB images transformed to HSV color spaces  
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from a huge dataset (Karthikayani and Arunachalam, 2020). The latter is 

categorized as a group of machine learning algorithms wherein input layers are 

basically mapped onto output layers (Mohanty et al., 2016). Such methods 

involve various layers of nonlinear processing units for extracting and adapting 

features. All sequential layers use the previous layer’s output as an input 

(Benuwa et al., 2016). Figure 2.1 illustrates a process of feature extraction 

comparison between traditional and deep learning models. 

In a CNN architecture, feature extraction and the classification process are 

combined in the same model. CNNs use multiple feature extraction stages and 

avoid the complicated feature extraction procedure, and to learn the specific 

features more efficiently.  

 

 

 
Figure 2. 1 Feature extraction procedure between a traditional Machine and deep Learning 

(Analytics Vidhya, 2020) 

 

 

2.2.4. Classification  

 

Classification is generally accomplished using fully connected layer with an 

activation function SoftMax, in which a computer program uses learned 
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features from input data to categorize the same into predefined classes (Amara 

et al., 2017) and uses various collections of features (Dara and Tumma, 2018). 

Many classification techniques have been used in agricultural domain for 

investigating plant diseases and pests. Traditional machine learning methods 

have been extensively implemented in agricultural domain. Additionally, the 

deep CNN techniques have been applied for object identification and plant 

disease categorization and have witnessed tremendous developments in past 

years. Deep learning has been extensively considered for computer vision tasks 

in recent years, and thus, a huge number of related techniques have been 

developed. Although it has been proven to be effective in different 

classification and detection problems, it is very challenging to grasp unknown 

objects because of the different shape and posture of objects (Jiang et al., 2021).  

For example, LeNet model as a CNN has been used in (Amara et al., 2017) 

to classify two banana leave diseases, namely banana speckle and sigatoka. The 

authors of (Liu et al., 2017) designed a novel deep CNN architecture for 

accurately classifying four different types of apple diseases such as mosaic, 

rust, brown spot, and Alternaria leaf spot. They used a dataset of 13,689 images 

of unhealthy apple leaves and obtained overall accuracy of 97.62%. Lu et al. 

developed an innovative CNN-based identification method to categorize 10 

common rice diseases. Using this model, they attained an accuracy of 95.48% 

on a dataset including 500 images of unhealthy and healthy rice leaves and 

stems (Lu et al., 2017). The authors of (Ashqar et al., 2019) selected a CNN ( 

ConvNet-based) approach for classifying plant seedlings with a dataset 

containing approximately 5,000 images belonging to 12 different species. 

Table 2.2, summarizes that several algorithms had been carried out for plant 

leaf disease classification.  
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Table 2. 2 Summarizing various studies for plant disease classification 

 

 

2.3. Challenges in Plant Disease Classification and Detection 

 

The domain of plant disease classification and detection faces some 

formidable challenges. Tackling these difficulties demands association among 

researchers, application of specialized models, and the continuous development 

Authors Methods dataset Accuracy(%) 

(Hammad Saleem et 

al., 2020) 

Faster R-CNN, R-FCN 

with ResNet ,and SSD 

with Inception  

PlantVillage 73.07 

(Amara et al., 2017) LeNet 
 PlantVillage (2 types of 

banana leaves diseases) 
97.57 

(Lu et al., 2017) CNN 
rice diseases (10 common 

diseases) 
95.48 

(Sladojevic et al., 

2016) 
CNN (CaffeNet ) 

PlantVillage (13 different 

diseases) 
96.3 

(Ashqar et al., 2019) CNN (ConvNet) plant seedling dataset 99.48 

(Chen et al., 2020) VGGNet and Inception rice plant images 92.00 

(Nagasubramanian 

et al., 2019) 
Supervised 3D-CNN 

4 soybean genotypes were 

selected from soybean stem 

samples  

95.73 

(Barbedo, 2018) CNN ( GoogLeNet) 

freely available dataset 

contains almost 50,000 

images 

94 from 

separate 

lesions and 

spots 

(Mohanty et al., 

2016) 
AlexNet and GoogLeNet PlantVillage 

99.35 from 

GoogLeNet 

(Durmus et al., 

2017) 

AlexNet and SqueezeNet   PlantVillage (tomato leaves 

) 

95.65 from 

AlexNet 

(Liu et al., 2017) CNN (Goo- gLeNet) 
Apple images ( 4 common 

types of apple disease ) 
97.62 

(Fuentes et al., 

2017) 

Faster R-CNN, R-FCN, 

and SSD with ResNet 
PlantVillage (tomato leaves 

) 

88.20 from 

RFCN with 

ResNet 50 

(Ferentinos, 2018) 

AlexNet , Overfeat , 

AlexNetOWTBn, 

GoogLeNet ,and  VGG 

openly available database 

contains  87,848 images 

99.53 from 

VGG 
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of advanced techniques to improve the accuracy and efficacy of plant disease 

identification systems. Issues and challenges that have been recognized in this 

study are hyper-parameter tuning, model overfitting, and plant organs, as 

shown in Figure 2.2. 

 

 

 

Figure 2. 2 Challenges in Plant Disease Classification and Detection 

 

 

2.3.1. Hyper-parameter Tuning  

 

Deep learning models automatically extract image characteristics or features 

and categorize objects based on these extracted features. Traditional machine 

learning models, on the other hand, manually extract features and tune them. 

Throughout the training and testing of the model, a set of parameters, for 

learning process, known as hyperparameters, are used. A large set of 

hyperparameters are used in various deep learning architectures (Hutter et al., 

2015).  

In every dataset, hyperparameter tuning has a significant effect on training 

the model to obtain a good performance and develops validation errors 

(Victoria and Maragatham, 2021). Hyperparameters include the parameters of 

(i) regularization, (ii) network architecture, such as layer numbers and sigmoid 

transfer function kinds, (iii) sample numbers and learning rates, (iv) 
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preprocessing, such as reducing dimensionality, and normalization, and (v) 

initialization weight parameters. Theoretically, several methods have been 

treated using hyper-prior and manually using optimization techniques.  

Some of these hyperparameters pose a greater challenge of grounded 

mathematical treatment (Hutter et al., 2015). In such instances, hyperparameter 

tuning of a deep learning architecture is an issue that must be addressed based 

on empirical data using improving theoretical background and evaluating the 

performance of the network (Angelov and Sperduti, 2016), such as shown in 

Figure 2.3 (Analytics vidhya, 2020). 

 

 

 
Figure 2. 3 Hyper-parameter tuning process (Analytics vidhya, 2020) 

 

 

For instance, a simplified system or improved technique would require less 

hyperparameters. On the other hand, a complex system can be customized 

automatically using hyperparameter optimization algorithms in a given 

application for optimal performance (Hutter et al., 2015). In (Angelov and 
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Sperduti, 2016) a Bayesian hyperparameter optimization technique proposed 

for improving model performance, where all hyperparameter values are 

optimized. 

2.3.2. Model Overfitting 

 

Overfitting is an issue facing machine learning algorithms, especially deep 

learning models, in which errors or random noise occur rather than the 

underlying relationship described in the model (Liu et al., 2017). Overfitting 

has been shown to have a negative effect on robust performance of the training 

set across multiple datasets such as ImageNet, CIFAR-10, CIFAR-100, and 

SVHN (Rice et al., 2020), as shown in Figure 2.4. Liu et al. employed several 

techniques to avoid overfitting. They used dataset augmentation operations 

such as mirror symmetry, image rotation, PCA jittering, and brightness 

adjustment to increase the diversity of training images and enhance the 

generalizability of their model (Liu et al., 2017). 

The authors of (Rice et al., 2020) studied data augmentation and 

regularization techniques to remedy overfitting. Their experimental testing 

showed that regularization methods do not robustly prevent overfitting and tend 

to make the model over-regularized. Also, the authors of (Arsenovic et al., 

2019) used two different augmentation algorithms to prevent overfitting, 

namely traditional augmentation methods, like pixel-wise changes or rotations, 

and training using generative adversarial network (GAN). In (Liu et al., 2017) 

convolution layers were utilized in place of certain fully connected layers, and 

they also used local normalization utilizing response-normalization layers. 

Furthermore, retraining the last few layers while freezing the first layer is 

another way to reduce overfitting through using transfer learning (Barbedo, 

2018). The authors of (Mohanty et al., 2016) changed the data ratio of train and 

test sets. In addition, two different methods such as training the network model 

using more examples and changing network complexity like changing structure 
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and parameters of the network have been used to reduce overfitting (Brownlee, 

2018). In neural network, dropout means removing units from the network 

temporarily along with outgoing and incoming connections during training 

process. Srivastava et al. used the dropout algorithm for resolving the 

overfitting problem. They noted that this technique can provide a significant 

development over regularization algorithms and markedly reduce overfitting 

(Srivastava et al., 2014). 

 

 

 
Figure 2. 4. Overfitting in machine learning (Mubasir, 2020) 

 

 

2.3.3. Plant Organs  

 

Plants have various organs that have been used as a characteristic to be 

studied by researchers in various fields, especially in disease recognition and 

detection task. Based on this review, leaf plant organ had been mostly used by 

researchers such as (Hammad Saleem et al., 2020) (Amara et al., 2017) (Ashqar 

et al., 2019) (Nagasubramanian et al., 2019) (Dara and Tumma, 2018) 

(FatihahSahidan et al., 2019)(Ferentinos, 2018)(Ramcharan et al., 

2017)(Victoria and Maragatham, 2021)(Angelov and Sperduti, 2016), for the 
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purpose of classifying and detecting plant diseases. In (Arnal Barbedo, 2019), 

instead of using entire leaf, separate spot and lesions have been used. 

However, many diseases have been better categorized in other organs using 

their symptoms. For instance, the stem has been used in (Lu et al., 

2017)(Barbedo, 2018). Also, in (Ashqar et al., 2019) seeding has been used for 

classification. Hence, a comprehensive plant image dataset must be constructed 

to incorporate images of other plant organs and better classify plant diseases. 

 

2.4.  Deep Learning Models for Object Classification and Detection 

 

In recent years, artificial intelligence (AI) and machine vision algorithms 

have advanced significantly, leading to the development of new processing 

methods and computer vision technologies. This has resulted in numerous 

applications such as healthcare, finance, agriculture, and other complex scene 

applications (Chen et al., 2022)(Yang et al., 2022). AI is used to improve 

efficiency, accuracy, and overall performance. With the popularization of 

intelligent agriculture, agricultural intellectualization is developing rapidly. 

The agriculture domain has witnessed massive developments with the aid of 

technology. Image processing and object detection methods have been used for 

detecting the infected region in the plant. In addition to their simplicity and 

accuracy, such techniques are fast (Shruthi et al., 2019) (Panigrahi et al., 2020). 

Hence, advancements in computer and internet technology can help addressing 

the problem of automatic plant disease and pest recognition. Such 

developments are essential in scientific research for classifying and detecting 

the symptoms of plant diseases and pests automatically by using innovative and 

intelligent techniques  (Bashish et al., 2011).  

In last decades, deep learning techniques have been emerged as highly 

effective machine learning methods for recognizing and detecting objects, 

particularly in plant disease diagnosing systems. Unlike traditional approaches 
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that rely on techniques such as scale-invariant feature transform (SIFT), HOG, 

and speeded up robust features (SURF), deep learning methods possess the 

ability to automatically and rapidly learn features directly from the raw pixel 

data of input images. Deep learning methods employ a layer-by-layer approach, 

where local receptive fields gradually expand. Fine features were extracted 

using the low level layers like lines, borders, and corners, while higher features 

were extracted using the higher-level layers such as specific parts of objects or 

the entire object itself. Essentially, deep learning makes it possible to represent 

objects at various levels of detail, providing a complete end to end picture. Deep 

learning architectures used to identify and detect diseases in plant leaves are 

shown in Figure 2.5. 

 

 

 
Figure 2. 5 Deep learning models for object classification and detection 

 

 

2.4.1. Classification Models  

 

In recent times, numerous techniques were used and developed by 

researchers in the field of agriculture with the goal of identifying plant diseases 
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based on image processing and pattern recognition methods. In agriculture 

field, inspection systems based on computer vision have play a significant role 

as a tool and its use has greatly increased. Tian et al. concluded that combining 

computer vision with artificial intelligence approaches would improve an 

agricultural automation systems in terms of general performance, economic 

performance, robust performance, and coordination performance (Tian et al., 

2020).  

 

A. Convolutional Neural Network (CNN)  

 

Over the past few years, CNNs have become highly effective in representing 

images for different category-level recognition tasks, including object 

classification, and object detection. Although the fundamental principles of 

CNNs were established in the 1980s, in the initial stages of the 1990s, CNNs 

began to appear with the drawback of a large and complicated computational 

loads. Nowadays, with the combination of enhanced GPUs and the availability 

of extensive labeled image datasets, CNNs have become increasingly favored 

as highly effective tools for extracting features and classifying data 

(Arandjelovic et al., 2018) (Uçar et al., 2017). In a relatively short period, 

CNNs have achieved notable success in numerous domains of computer vision, 

like autonomous vehicles, speech recognition, medical imaging, and plant 

disease diagnosing. 

A CNN is a stack of nonlinear transformation functions and can 

automatically learn representations from the data in order to use the numerous 

feature extraction steps (Khan, Sohail, et al., 2020)(Reyes et al., 2015). CNN 

is a particular kind of feed-forward neural network (information is fed from 

layer to layer without reversing) (Zbakh et al., 2019) and is motivated by 

biological processes that occur in the visual cortex in the living beings of mind. 

In the 1980s, CNNs were initially proposed for digit recognition (LeCun et al., 
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1989). Recently, CNN-based deep learning architectures have enabled huge-

scale object recognition tasks.  

CNNs are capable of extracting features hierarchically and classifying them 

(Khan, Sohail, et al., 2020). A CNN has several layers that hierarchically 

calculate features from images as an input. CNN architecture consists of 

multiple layers. CNNs can be formed through various combinations of 

convolution layers, a pooling layer, an activate function layer, and a fully 

connected layer at the end, as shown in Figure 2.6. Convolutional and pooling 

layers act as feature extractors (Amara et al., 2017). The layer specifications of 

CNNs are briefly outlined as follows: 

Input layer: The images are directly inputted into the network. 

Convolution layers: In CNN, the primary operation is carried out by the 

convolutional layer, which is responsible for learning feature representations 

from the inputs. Unlike conventional feed-forward neural networks that use 

matrix multiplication, CNNs utilize convolution to reduce the number of 

weights and overall network complexity (Uçar et al., 2017)(Gu et al., 2018). 

Additionally, convolution layers consist of multiple convolution kernels and 

produce a feature map by extracting features of an input image using a filter or 

kernel (Ibrahim et al., 2018). Specifically, each neuron in a feature map is 

connected to a neighboring region of neurons in the preceding layer. The input 

image convoluted convolution with the learnable filters or kernels, resulting in 

a feature map in the output image. Subsequently, an element-wise nonlinear 

activation function is applied to the convolved outcomes (Gu et al., 2018). 

The Convolutional layer keeps the outcomes of the convolution of filters or 

kernels of the preceding layer (Durmus et al., 2017). These filters or kernels to 

be learned contain weights and biases; all filters are restricted spatially but 

expand with comprehensive depth of input volume (Dara and Tumma, 2018). 

The kernel (window) slides over the entire image step by step. The result is 

taken from summation over the entire image (Zbakh et al., 2019). Different 
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feature maps are yielded from multiple convolutional layers and different filters 

to ensure complete extraction of various features. 

 

 

 
Figure 2. 6  CNN model architecture (Prabhu, 2018) 

 

 

Activation function: The activation function has a significant role in the 

learning process, and thus, selecting a proper activation function would affect 

the training dynamics and task performance (Ramachandran et al., 2017). An 

activation function in CNNs introduces nonlinearities that are essential for 

enabling multi-layer networks to detect nonlinear features effectively (Gu et 

al., 2018). Various activation functions have been used to inculcate nonlinear 

combination of features (Khan, Sohail, et al., 2020) and to increase nonlinearity 

of the network (Durmus et al., 2017). Commonly used activation functions 

include ReLU, sigmoid, and tanh. The most commonly used function is ReLU, 

which is a piecewise linear function in which all negative pixel values are 

replaced by zero, while positive pixel values are retained, as explained in 

equation (2.1)  (FatihahSahidan et al., 2019)(Gu et al., 2018) 

 

Relu(x) = {
  0    if   x < 0

x    if   x ≥ 0
                                (2.1) 
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Pooling layer: It has a significant concept after activation function to obtain 

a strong feature versus noise and distortion (Saufi et al., 2018). The purpose of 

the pooling layer is to attain shift-invariance by reducing the resolution of 

feature maps due to reducing the dimensionality of features. It is also used to 

decrease the connection numbers between convolutional layers, reduce the 

sampling size (Ibrahim et al., 2018)(Gu et al., 2018), reduce neuron size, and 

reduce overfitting (Durmus et al., 2017). The pooling layer works 

independently over the entire input depth to rescale it. Typically positioned 

between two convolutional layers, each feature map in the pooling layer is 

connected to the corresponding feature map from the preceding convolutional 

layer (Gu et al., 2018) (Dara and Tumma, 2018). This layer facilitates faster 

convergence, improved generalization, and a degree of invariance to translation 

and distortion. Commonly used pooling operations include max pooling and 

average pooling. The output dimension size of pooling calculated based on the 

formula defined in the following equation (2.2) (Layton, 2019): 

 

𝑃𝑜𝑢𝑡  = ((
𝐷𝑖𝑛−𝑃𝑓

𝑆
) + 1)              (2.2) 

 

Where Pout is the pooling output dimension, Din is the input image 

dimension, Pf is the pooling filter size dimension, and S is the pooling stride 

number. 

Fully connected layer: There is a possibility of the existence of one or 

multiple fully connected layers, after multiple convolutional layers, activation 

functions, and pooling layers, which serve the purpose of performing high-level 

reasoning. These layers exhibit similarities to the layers commonly seen in 

traditional feed-forward neural networks. They connect all neurons from the 

former layer to each individual neuron in the current layer to generate 

comprehensive semantic information. This layer acts as a final feature selector. 
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The outputs are computed using matrix multiplication and bias addition. 

Additionally, similar to conventional feed-forward neural networks, the 

weights of these layers are estimated by minimizing solely the training error 

(Uçar et al., 2017) (Gu et al., 2018). 

Output layer: The output layer of a CNN is the final layer. The SoftMax 

function is commonly used in classification duties.  

The training of a CNN involves solving a global optimization issue, aiming 

to reduce the loss function and attain the optimal set of parameters. The 

methods of stochastic gradient descent (SGD) and Adam are frequently 

employed for the improvement of CNN networks. The training process consists 

of several steps: First, the input data is fed forward through the network, passing 

through different layers. Second, the output values are computed by extracting 

meaningful features using digital filters at each layer. Lastly, the discrepancy 

between the network's predicted output and the actual output is computed as 

the error, which is subsequently reduced through backpropagation. This 

involves propagating the error backward through the network. By adjusting the 

weights of the CNN, the network's performance is fine-tuned and optimized 

(Uçar et al., 2017) (Gu et al., 2018). Generally, the learning process as end-to-

end in CNNs enables a direct mapping from raw input image data to the target 

class without requiring prior knowledge or human intervention and external 

guidance. 

 

B. Pre-trained Models 

 

Transfer learning is the process of reusing a pre-trained model for solving a 

new problem that is different from scratch, which involves learning or training 

data from basic. For instance, the authors of (Chen et al., 2020) studied transfer 

learning of deep CNN to classify diseased leaves. They chose VGGNet and 

Inception models for improving the learning capability of small lesion signs. 
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The authors of (Arnal Barbedo, 2019) used a pre-trained CNN that employed 

GoogLeNet architecture to study the use of separate spot and lesions, instead 

of using whole leaves and classified various plant infections. They concluded 

that the accuracy attained from separate lesions and spots was 94%.  

Mohanty et al. evaluated and focused on two famous deep CNN models, 

namely AlexNet and GoogLeNet, trained using scratch and transfer learning, 

to classify 14 crop classes and 26 diseases. They noted that GoogLeNet reliably 

performs better classification based on training transfer learning on images of 

unhealthy and healthy leaves, and attained an accuracy of 99.35% (Mohanty et 

al., 2016). In addition, Nagasubramanian et al. improved a technique named a 

supervised 3D-CNN for learning the spectral and spatial information of 

hyperspectral images of healthy leaves and charcoal rot disease categorization 

examples in soybean stems. They explained the significance of specific 

hyperspectral wavelengths in categorization using a saliency map-based 

visualization technique and obtained a 95.73% classification accuracy 

(Nagasubramanian et al., 2019). A state-of-the art CNN model from scratch 

proposed in (Omer et al., 2022) to diagnose five cucumber leaf diseases and 

one healthy leaf. Comparative experiments were conducted based on applying 

pre-trained models (AlexNet, Inception-V3, and ResNet-50) to prove the 

authenticity of the proposed CNN. The pre-trained models were trained 

utilizing transfer learning. All model weights initialization were obtained from 

ImageNet. 

 

a) AlexNet 

 

The AlexNet model was introduced by Krizhevsky. It is a deep CNN 

architecture that made significant advancements within the realm of computer 

vision, particularly in the domain of image classification tasks. This model 

gained recognition by winning the imageNet large scale visual recognition 
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challenge (ILSVRC) in 2012. To train the AlexNet model, a large dataset called 

ImageNet, consisting of 1000 different labeled classes, was used. The 

architecture of the AlexNet model comprises eight layers, including five 

convolutional layers with some following pooling layers, as well as three fully 

connected layers. It is composed of approximately 650,000 neurons and has 

around 60 million parameters (Krizhevsky et al., 2012). The AlexNet model 

structure has shown in Figure 2.7. By incorporating convolutional layers, the 

network gains the ability to directly learn hierarchical features from the row 

pixel data. Comparing compression on test data to previous state-of-the-art 

techniques as an evaluation, the AlexNet model worked better and achieved 

top-1 and top-5 error rates of 37.5% and 17.0%, respectively (Krizhevsky et 

al., 2017). 

 

 

 

Figure 2. 7 AlexNet architecture (Pujara, 2020) 
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b) Inception   

 

In 2014, Szegedy introduced the Inception concept model as an extension of 

the GoogleNet architecture (Szegedy et al., 2016). It has since become a widely 

used CNN architecture for tasks such as image recognition and classification. 

Different versions of the Inception model have been developed, denoted as 

Inception vN, where N represents the version number. The Inception model 

utilizes filters of different sizes to capture visual patterns of varying scales and 

achieve an optimal sparse structure using inception modules. These modules 

are composed of a pooling layer and three types of convolutional layers (1x1, 

3x3, and 5x5) arranged in a stacked manner. This configuration allows the 

model to effectively capture features at multiple scales and learn a hierarchical 

representation of features in order to enhance the depth and width of the CNN 

while minimizing the impact on computational complexity the Inception model 

incorporates 1x1 convolutional filters as dimension reduction modules 

preceding the 3x3 and 5x5 convolutions as shown in Figure 2.8. This approach 

efficiently decreases the quantity of parameters within the network, resulting in 

a significantly lower parameter count compared to earlier architectures like 

AlexNet (Gu et al., 2018). 

Over time, the Inception model has improved. Inception V3 introduced 

updates to the Inception module, leading to improved accuracy in ImageNet 

classification. As a result of improved model, spatial aggregation can be 

effectively achieved using lower dimensional embeddings without significant 

loss in representational power. Subsequently, Inception V4 model is introduced 

based on a combination of the residual connections with Inception architecture 

aiming to expedite the training process of Inception networks. In Inception V4, 

residual connections are used instead of the filter concatenation stage of the 

Inception architecture, which have shown effectiveness of the performance 

(Too et al., 2019) (Gu et al., 2018). 
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Figure 2. 8. Inception model block structure  (Gu et al., 2018) 

 

 

c) ResNet 

 

In 2015, deep residual network (ResNet) was introduced based on CNN 

model for image recognition (He, Zhang, et al., 2016). This model served as 

the foundation for the ILSVRC 2015 and COCO 2015 classification challenges. 

ResNet is a type of CNN model that employs a distinctive network architecture 

where the input from the former layer is concatenated into the output of the 

present layer as shown in Figure 2.9. CNN design organizes the architecture by 

sequentially combining fundamental units like convolution layers, activation 

functions, pooling, and batch normalization. ResNet is characterized as a 

network-in-network (NIN) architecture, relying on stacked residual units as its 

primary building blocks. These residual units are equipped with skip 

connections, allowing the network to learn more effectively and achieve 

superior performance. The residual units consist of convolutional and pooling 

layers. The pre-trained weights from ImageNet have been loaded into various 

ResNet models with 50, 101, and 152 layers. The ResNet architecture has 
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exhibited great success in various tasks, involving object detection, semantic 

segmentation, and image classification  (Wu et al., 2018) (Too et al., 2019). 

 

 

 
Figure 2. 9. Basic Structure of Residual learning block (He et al., 2016) 

 

 

2.4.2. Detection Models 

 

In general, most studies in the extant literature are dedicated to plant disease 

classification. However, plant disease identification (both localization and 

classification) is a complicated task. Some deep learning techniques have been 

developed for the purpose of plant disease detection. Deep learning meta-

architectures such as Faster Region-based CNN (Faster R-CNN), Region-based 

Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector 

(SSD) have been used as a detector for categorization and localization of plant 

leaves disease have been used in (Fuentes et al., 2017) for  detecting tomato 

diseases and pests, with suitable performance. 

The authors of (Durmus et al., 2017) used AlexNet and SqueezeNet  models 

to detect tomato diseases from leaf images and found that the former performed 

slightly better than the latter in terms of accuracy. Sladojevic et al. developed 
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an innovative technique based on deep CNN for detecting plant diseases 

automatically and classified 13 different kinds of plant diseases from the 

healthy leaf images using CaffeNet CNN architecture. The authors achieved an 

average accuracy of 96.3% (Sladojevic et al., 2016). Additionally, Hernández 

and López proposed a method for detecting plant diseases based on a 

probabilistic programming using Bayesian deep learning procedures 

(Hernández and López, 2020). Ferentinos used five CNN models, namely 

AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat, and VGG to detect plant 

illnesses using images of healthy and unhealthy leaves. They reported VGG to 

be a successful model with a 99.53% success rate on test dataset containing 

17,548 images (Ferentinos, 2018). In another study, Ramcharan et al. applied 

transfer learning for training a deep CNN Inception v3 to detect three cassava 

diseases and two kinds of pest damage (Ramcharan et al., 2017).   

 

• YOLOv5 Network Model  

 

Nowadays, the most popular approach for object detection tasks is YOLO. 

Jocher proposed a one-stage target recognition method known as YOLOv5 in 

2020 (Jocher et al., 2021). YOLOv5 is improved based on YOLOv4 to reduce 

processing cost and increase detection performance (Li, Ahmed, et al., 2022).  

YOLOv5 categorized into five distinct network model variants: YOLOv5n, 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, distinguished by 

differences in network depth and width. The YOLOv5s network demonstrates 

the fastest computation speed, although with the lowest average accuracy, 

whereas the YOLOv5x network exhibits opposite traits (Chen et al., 2022). The 

YOLOv5 network comprises four main parts: input, backbone, neck, and head. 

The original structure of YOLOv5 is shown in Figure 2.10. The calculation of 

the adaptive anchor box module can adjust to various datasets and 

automatically present the initial anchor box's size (Yang et al., 2022). The 
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backbone is a pre-trained network used to extract, aggregate, and form different 

levels of image feature representation based on various image granularities 

when the image is entered, after which the image features are stitched and sent 

to the prediction layer, which includes a path aggregation structure (PAN) and 

feature pyramid network (FPN). The backbone consists of three parts: 

convolutional layers, C3, and spatial pyramid pooling fusion (SPPF). Among 

them, the convolutional layer is responsible for transforming the input image 

into feature maps of varying scales. The C3 module enhances the network's 

capability to understand the context and relationships between features at 

various scales (He and Wei, 2023). The structure of the C3 module, as shown 

in Figure 2.11, C3 module consists of three convolutional modules and a 

Bottleneck as shown in Figure 2.11. The Bottleneck is a residual block that 

outperforms ResNet's residual block in terms of computational speed. 

 

 

 

 
Figure 2. 10 The original structure of YOLOv5L 
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The SPPF layer enables the model to capture context and information at 

various resolutions (Zhou et al., 2023). The neck section is an enhanced version 

of the FPN structure, designed to optimize the speed of feature fusion and 

information transmission throughout the network for improved performance. 

The neck section comprises of convolutional layer, concatenation, C3 and up 

sampling. Then, the head is the last detection part that predicts the image 

characteristics to provide bounding boxes and predicted target categories of 

various sizes (Chen et al., 2022) (Yang et al., 2022) (He and Wei, 2023).  

 

 

 
Figure 2. 11 The structure of C3 module (Zhou et al., 2023) 

 

 

2.5. Related Works  

 

Through an analysis of research conducted in the domain of deep learning 

models for recognizing and detecting cucumber leaf diseases and pests, we can 

categorize the relevant literature into two main sections: cucumber leaf disease 

recognition and cucumber leaf disease and pest detection. 
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2.5.1. Existing Plant Leaf Disease Classification Works  

 

Many image processing concepts have been applied for plant disease 

recognition by researchers. Research has begun to consider the use of CNN to 

solve the plant leaf disease recognition problem as a result of their dedication 

and outstanding success in large-scale picture classification competition (Liu 

and Wang, 2020). Segmentation and feature extraction in traditional machine 

learning have a vital role to have an accurate classification system. Image 

segmentation technique has an important role in analysing images and 

identifying disease region. Following the trend of existing solutions, deep 

learning algorithms have used in segmentation process. CNN model based on 

the U-net architecture proposed for semantic segmentation of powdery mildew 

disease on cucumber leaves, their model outperformed as compared with K-

means, random forest (RF), and GBDT segmentation techniques on 20 test 

image samples. The results show an accuracy of 72.11%, 83.45%, and 96.08% 

on intersection over union (IoU), dice and pixel respectively (Lin et al., 2019). 

In field of image processing, feature plays a vital role for classification 

process. Feature extraction is the essential step for getting the significant 

information. Color, shape, geometric features, and texture features that are 

extracted from image to determine diseases crops. Texture and color are the 

most important features that are considered in agricultural domain due to the 

range of differences in image samples (Khan, Akram, et al., 2020). 

Convolutional and pooling layers have been used in deep learning techniques 

to extract features, whereas the process of extracting features and classification 

have been done automatically. CNN architecture is used to extract features 

automatically from plant leaves that is applied on different leaf datasets. The 

results utilized that CNN performed better, more efficient and more accurate in 

extracting feature compared with traditional machine learning methods 

(Agrawal et al., 2021).  
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In the agriculture domain, a robust and accurate classification process is 

essential. Machine learning-based methods have been used for leaf diseases 

recognition in some studies. For instance, in (Krishnakumar and Narayanan, 

2019) cucumber leaf disease classification and severity measures had been 

focused on to help farmers in terms of early diagnosis detection and discovering 

stages of affected leaf diseases, SVM used as a classifier.  SVM used in (Zhang 

and Wang, 2016) for improving cucumber disease recognition, anthracnose, 

blight, and downy mildew leaf type diseases are used that each class includes 

100 images. SVM was also used in (Zhang and Zhang, 2010) to cucumber leaf 

diseases recognition, it is trained using various kinds of kernel function such as 

Sigmoid, polynomial, and radial basis function (RBF) on both leaf spot disease 

and leaf as a sample. The experimental results indicate that SVM based on RBF 

achieved higher accuracy than others on 336 leaf spots samples. Three disease 

types which are downy mildew, brown spot and angular leaf spot were used. 

In addition, an automated cucumber leaf diseases identification system 

proposed in (Kianat et al., 2021) based on fusion and selected best features, six 

cucumber diseases are blight, powdery mildew, conrnespora, angular leaf spot, 

anthracnose, and downy mildew that includes 1,010 image used, the highest 

result achieved is 93.5% with quadratic SVM (QSVM) classifier. Decision tree 

(DT), logistics regression (LR), multi-class SVM (M-SVM), cubic SVM (C-

SVM), Fine KNN, ensemble subspace discriminant analysis (ESDA), and 

neural network (NN) algorithms were used for detecting and identifying five 

cucumber leaf disease. The experimental results indicate that M-SVM obtained 

a higher result compared with other methods which is 98.08% (Khan, Akram, 

et al., 2020). Additionally, direct feeding input and not scaling with data are 

the drawbacks of traditional machine learning algorithms, these lead to 

decrease the accuracy of the results. 

Other methods such as, artificial neural network (ANN) used to classify 

cucumber crop disease in (Pawar et al., 2016), it also give preventive measures 
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and remedies as a treatment, the result accuracy obtained is 80.45% on three 

classes like healthy, downy mildew, and powdery mildew. In (Zhang et al., 

2017), sparse representation (SR) method was used to recognize seven different 

kinds of cucumber leaf diseases. The recognition accuracy result obtained was 

85.7% on 420 leaf images, which is higher than K-Means-based segmentation 

followed by neural-network-based classification (KMSNN), SVM, plant leaf 

image (PLI), and texture feature (TF) classifiers. Despite disease diagnosis, 

cucumber chilling injury had been detected using hyperspectral imaging system 

with feature selection methods such as mutual information feature selection 

(MIFS), max-relevance min-redundancy (MRMR), and sequential forward 

selection (SFS). SVM, naïve bayes (NB), and KNN as a classifier were used 

for identifying three-classes (normal, lightly chilling, and severely chilling) and 

two-classes (normal and chilling). The best accuracy result obtained using SFS 

with SVM are 100% and 90.5% for two and three classes respectively (Cen et 

al., 2016). 

In recent years, CNN have made significant progress in image recognition. 

For example, Mia et al. presented traditional ML and CNN-based algorithm for 

identifying cucumber diseases. As a result, RF provides the accuracy of 

89.93%, and MobileNetV2 attains the highest accuracy rate of 93.23% 

compared with InceptionV3 and VGG16 (Mia et al., 2021). Omer et al. (Omer 

et al., 2023) presented a literature survey on the use of deep-learning algorithms 

for plant disease diagnosis. In (Agarwal et al., 2021) CNN model  proposed for 

identifying eight types of cucumber diseases. They used data augmentation and 

modification of Relu activation function to elevate accuracy result to 93.75%.  

Further, the cucumber leaf diseases recognition system under the condition 

of small sample size and IoTs were proposed. The lesion of leave disease 

images acquired using one two-stage segmentation, by extracting the leaf 

disease spots such as color, texture, and border features. Data augmentation 

using activation reconstruction GAN (AR-GAN) applied to lesion leaf images. 
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Dilated and Inception CNN (DICNN) was used for classification. In their study, 

the obtained accuracy on raw diseased leaf and lesion images were 90.67% and 

96.11% respectively (Zhang et al., 2021).  

In another attempt, symptom-wise of cucumber diseases recognition system 

proposed by (Ma et al., 2018) on anthracnose, downy mildew, powdery 

mildew, and target leaf spots. In their study, disease symptom segmentation 

was used to segment symptom images by combining a comprehensive color 

feature with region growing. Augmentation methods such as flip horizontally, 

vertically, and rotate were used. The best accuracy result 93.4% was obtained 

using DCNN compared with RF and SVM classifiers on the unbalanced 

augmented data. A practical cucumber diseases diagnosis system proposed in 

(Fujita et al., 2018), a new dataset has been made that includes seven viral 

diseases, healthy and downy mildew. They build CNN model from scratch and 

pre-trained VGG-net with fine-tuned and then they applied on 9000 images. 

The experimental results showed that VGG-net attained higher result accuracy 

than CNN, which are 93.6% and 86.6% respectively. Fujita et al. proposed a 

CNN system for diagnosing seven viral diseases and healthy cucumber leaf 

images. The obtained accuracy is 82.3% on 7520 cucumber leaf images, which 

is collected on good and bad conditions (Fujita et al., 2016). 

In addition, in terms of classifying multi-diseases on cucumber leaf, Tani et 

al. developed a CNN architecture based on a tunable threshold with sigmoid 

activation function on each output layer nodes instead of SoftMax function. An 

on-site cucumber leaf dataset constructed that included 11 single and 13 multi-

diseases, the accuracy result obtained was 85.9% and 95.5% on multi-diseases 

and entire dataset respectively (Tani et al., 2018). Furthermore, bases on wide-

angle images, CNNdetect architecture designed to localize each leaf from the 

wide-angle then CNNdiag was improved from VGG-16 to classify diseased 

and healthy extracted leaf areas known as full leaf. Achieved accuracy result 

was 73.9% from leaf detection and 68.1% from detection and diagnosis on 
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13,601 images (Cap et al., 2018). The literature review, as shown in Table 2.3, 

indicates that several algorithms had been carried out for cucumber leaf disease 

diagnosis. Some researchers worked on segmentation, extracting features and 

classification using traditional machine learning and deep learning algorithms.  

 

 

Table 2. 3 Previous studies for plant leaf disease classification 
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(Kianat 

et al., 

2021) 
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augmentation 
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2.5.2. Existing Plant Leaf Disease and Pest Detection Works 

 

Image processing and pattern recognition techniques have been increasingly 

applied in the field of agriculture for plant disease recognition and detection. In 

particular, the use of computer vision systems has been instrumental in the 

development of systems that can accurately diagnose and detect various 

symptoms of plant diseases. In recent years, researchers have made significant 

progress based on deep learning to recognize and detect plant leaf disease and 

pests from images. This has helped farmers to detect and address the diseases 

at an early stage, leading to reduced crop losses and increased productivity. 

Previous studies have demonstrated that deep learning techniques are 

successful for real-life object identification, recognition, and classification 

(Jiao et al., 2019). Currently, visible-light image recognition has been 

successfully used in the field of plant disease detection because of the 
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requirement for real-time monitoring and exchange of crop growth information 

(Chen et al., 2022). Plant disease and pest detection is a challenging task, to 

overcome this challenge deep learning techniques have been developed. In 

addition to that, deep learning networks have become the backbone of most 

state-of-the-art object detectors (Omer et al., 2023). A crucial task in computer 

vision is object detection, which involves identifying objects in an image or 

video and determining their location and extent (Jiao et al., 2019). Landmark 

detection algorithms, including YOLO, YOLOv3, YOLOv4, Faster R-CNN, 

SSD, and Mask R-CNN, have been effectively applied in crop disease and pest 

detection. 

For example, the goal of (Barbedo, 2019) study was to provide a thorough 

literature review of the methods proposed to detect plant nutrient deficiencies 

based on proximal images. Faster region-based CNN (Faster R-CNN), region-

based fully convolutional network (R-FCN), and SSD as DL meta-architectures 

used to detect diseases in different plant species (Hammad Saleem et al., 2020). 

All these DL meta-architectures are also combined with “deep feature 

extractors” such as VGG net and ResNet in (Fuentes et al., 2017) for tomato 

plant leaf diseases and pest detection. In another study, YueJu et al. developed 

and proposed a tiny YOLOv2 model for detecting immature mangoes (YueJu 

et al., 2018). YOLOv3 was improved by the authors of (Tian et al., 2019) to 

detect images of immature bloated apples, apples, and mature apples. The 

experimental results proved that the YOLOv3-dense algorithm can effectively 

detect apple fruit targets in various states. Furthermore, in (Liu and Wang, 

2020) the YoloV3 algorithm was improved by using multi-scale feature 

detection to detect tomato insect pests and diseases based on object bounding 

box dimension clustering, image pyramid, and multi-scale training. From the 

experimental results, they attained a higher detection accuracy of 92.39% and 

improved detection speed compared to the original YoloV3, Faster R-CNN, 

and SSD algorithms. Li et al. proposed a cucumber leaf disease detection 
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algorithm based on an improved YOLOv4 model, in which CSPDarknet53 was 

replaced with MobileNetv3 in the backbone network (Li, Yue, et al., 2022). 

They also constructed a small dataset of cucumber leaf diseases in real-world 

scenarios. They achieved superior recognition accuracy with 97.21% compared 

with Faster-RCNN and the original YOLOv4. In (Song et al., 2023) the DF-

YOLO algorithm was proposed, which is based on the YOLOv4 network and 

used to identify pest species. With a self-made dataset of pests, the algorithm 

was evaluated. According to the data, the method's mAP is 94.89%. 

Owing to the problem of slow detection speed in previous YOLO versions 

and high requests for detection conditions in other algorithms. Yang et al. used 

a lightweight Yolov5s network as a basic model and proposed a BCo-YOLOv5 

model to enhance the ability of the model to improve the accuracy rates (Yang 

et al., 2022). As a result, they achieved better detection of the target fruits 

(citrus, apple, and grape). Chen et al. improved the YOLOv5 network for 

identifying plant leaf diseases accurately under complex natural conditions. 

The number of parameters and calculations was reduced on the model 

backbone using the InvolutionBottleneck module (Chen et al., 2022). The 

author of (Wang, Shang, et al., 2022) study proposed a method based on an 

optimized lightweight YOLOv5 network to improve the accuracy and speed of 

plant disease classification and detection. In their system, the model weight was 

reduced through the WBF structure and Ghostnet. The experimental results 

showed that the accuracy of the developed model was higher than those of the 

original model by 3.98%.  

In addition, the author of (Wang, Cheng, et al., 2022) study constructed a 

CNN model YOLO-CBAM that incorporates the attention mechanism and 

YOLOv5 to detect Solanum rostratum  dunal seeding. A method was developed 

for slicing high-resolution images by estimating the overlap rate to create 

datasets that reduce the possibility of detail loss owing to high-resolution 

photos being compressed during the training phase. The results proved that 



 

 
 

45 

YOLO-CBAM outperformed in terms of both precision and recall recognition 

rates of 0.9465 and 0.9017, respectively. In (Mathew and Mahesh, 2022) a 

YOLOv5 model was used to detect bacterial spot leaf disease in bell pepper 

plants. In (Lou et al., 2021) a one-stage detection model called YOLOv5 

algorithm proposed for detecting cucumber leaf diseases. Their model obtained 

84.6% with mAP accuracy result on the constructed cucumber leaf image 

dataset after labelling. Furthermore, an efficient detection model (EFDet) was 

proposed in (Liu et al., 2021) to detect a constructed cucumber leaf dataset that 

included bacterial angular spots, downy mildew, and healthy individuals. For 

comparison, the EfficientDet-D1, YOLO V3-ASFF, and YOLO V3-V5 models 

were applied. The results indicated that, when compared to the other models, 

the EFDet model performed better in terms of calculations, fewer model 

parameters, and model size. Based on the literature review, a deficiency in 

cucumber leaf disease detection using YOLOv5 is evident. 

 

2.6. Research Challenges  

 

Nowadays, deep learning models have attained good performance and 

shown encouraging outcomes in a variety of  domains, including image 

classification and detection, speech recognition, and object detection. Different 

architectural models have been used in deep learning recently to obtain 

significant performance and efficiency. Despite the developments and 

improvements that have been applied to deep learning models in various 

research studies, especially in plant disease classification and detection, 

numerous significant research gaps and challenges still need to be addressed 

before implementing different deep learning architectures for plant disease 

recognition and detection. Addressing these challenges will contribute 

significantly to the sustainable management of plant health, agricultural 

productivity, and food security on a global scale. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/downy-mildew
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2.6.1. Challenges Associated with Constructing Large Datasets 

 

In deep learning, a huge dataset with a wide variety is required. Several 

challenges and issues came up during the process of seeking the dataset that 

may have affected the process of detection and recognition. For instance, the 

PlantVillage dataset was collected from different fields, and it may contain 

some class diversity. So, it leads to how data could be shown. Converting data 

into graphical representation is another problem because some sensitive 

information has been shown in graphical form, and it also will be clear to 

understand. Another issue is that the dataset has not shown the entire data, and 

some classes were missed. However, constructing such a dataset involves 

challenges. The author Barbedo realized that plant species, disease variety, 

variety of conditions in capturing image, and sample numbers in each class of 

the dataset affect and prevent deep learning models more widely to be used in 

practice (Barbedo, 2018). Data annotation is a critical task that necessitates 

expert involvement for precise labeling of input images. (Kamilaris and 

Prenafeta-Boldú, 2018). 

In previous studies, researchers have used different datasets to train deep 

learning models for plant disease classification and detection tasks. For 

example, PlantVillage dataset is mostly used to calculate the accuracy and 

performance, which contains healthy and diseased images of five crops with 

simple plain background, namely apple (Liu et al., 2017), corn, grape, potato, 

and tomato (FatihahSahidan et al., 2019)(Ramcharan et al., 2017). Yet, most 

researchers have used similar architectural design and obtained a quite 

redundant result from their experiments on the dataset such as (Amara et al., 

2017)(Dara and Tumma, 2018) (Victoria and Maragatham, 2021) (Brahimi et 

al., 2017)(Cruz et al., 2017). Though they have used several aspects of the 

model for training and testing the system for plant disease recognition, they 

have not still gained enough new information. Additionally, the authors of 
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(Amara et al., 2017) used a real banana disease dataset, which they derived 

from the PlantVillage dataset. The authors of (Ramcharan et al., 2017) used 

cassava disease dataset. Some researchers have also constructed a synthetic 

dataset (Sladojevic et al., 2016). According to the research findings in this 

domain, one of the primary and significant research gap is the lack of 

comprehensive datasets designed specifically for training and evaluating plant 

cucumber leaf disease and pest diagnosis. Although datasets exist for other 

crops, there is a limited availability of extensive and diverse datasets which 

specifically focuses on cucumber leaf diseases and pests. Constructing such 

datasets is crucial for training recognition models that are accurate, reliable, 

and capable of effectively handling the distinct characteristics and variations 

associated with cucumber leaf diseases and pests. 

 

2.6.2. Challenges of Plant Diseases  

 

Plant disease management and pathology are faced with ever-growing 

challenges. Plant diseases present a range of intricate challenges that impact 

agriculture and ecosystems. Navigating these challenges requires a 

comprehensive understanding of the various factors at play, as well as the 

development of innovative strategies to mitigate their effects. Accurate 

identification and classification are difficult due to varying symptoms across 

species and conditions. 

On the one hand, agricultural productivity has reduced due to depleting 

natural resources and diminishing arable lands. On the other hand, due to 

increasing global population, requests for high quality and varied food have 

increased. Additionally, the evolution and epidemics of plant diseases have 

globally increased because of intensification, resources such as water, fertilizer, 

pesticides, globalization, and climate change (He, Zhan, et al., 2016). Plant 

diseases and pests are the major reason that lead to substantial economic losses 
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and reduced plant yields. Pathogen resistance to conventional methods 

necessitates innovative controls. 

In technological advancements, the theories of plant diseases and pest 

diagnoses such as detection and classification have been developed from 

symptoms and signs of the diseases (Balodi et al., 2017). Complex interactions 

between pathogens and hosts complicate management. Reliable disease data 

access and sharing remain critical. Solving these challenges demands 

interdisciplinary efforts to safeguard agriculture, and ecosystems worldwide. In 

the field of plant pathology advancements, some new avenues  for specific and 

sensitive plant diagnosis procedures have been developed that are coupled with 

molecular biology, bioinformatics, and biotechnology (He, Zhan, et al., 

2016)(Balodi et al., 2017). In the future, plant disease management plans, such 

as an accurate plant disease recognition, are important and must be emphasized 

more for societal development, food security globalization, climate change, and 

disease prevention.  

 

2.7.  Problem Formulation on the Existing Diagnosis Systems 

 

The literature review presents a comprehensive studies in the field of plant 

disease recognition as well as detection systems. This broad literature review 

serves as a roadmap to uncover the limitations of current approaches and leads 

to the improvement of a well-defined research problem. After such broad 

review, it was found that in past decades, deep learning-based CNN algorithms 

have been highlighted as one of the significant methods being researched in 

agriculture domains. Despite the fact that various deep learning algorithms 

were applied and developed to the application of cucumber leaf disease 

diagnosis and detection, this is still a fertile area of research and should result 

in improvements for better diagnosing of cucumber leaf diseases.  
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From this literature review, it is found that there is a lack of a reliable 

publicly cucumber leaf disease datasets for researchers. Besides, they did not 

consider an important type of pest named Spider that affect the whole cucumber 

surface leaf. Therefore, it is necessary to improve and construct a new dataset 

that includes various plant organs and different leaf diseases. As a result, 

constructing a reliable cucumber leaf disease types and healthy dataset becomes 

an essential task. 

Furthermore, this literature review reveals several issues and challenges 

regarding the CNN algorithm's use in agriculture sectors, specifically, in 

classifying cucumber leaf disease. The issues revolve around model 

hyperparameters and overfitting. It can be concluded from this review, that the 

existing systems have not provided pre-trained models such as AlexNet, 

Resnet-50 and Inception-v3 for cucumber leaf diseases diagnosis. Further, they 

did not use two combined CNN models in parallel. A compelling demand arises 

for an effective CNN algorithm to address the intricate trade-off between 

efficiency and performance in terms of classifying cucumber leaf diseases. 

Therefore, the development of new CNN algorithm is crucial to further identify 

and classify cucumber leaf disease. It would has an ability to reduce the time 

consumed by farmers in recognizing leaf diseases. To tackle potential 

challenges, the algorithm incorporates techniques for model hyperparameter 

tuning and data augmentation. The review also emphasizes the problem of low 

accuracy results, indicating the necessity for continuous improvement and 

refinement in the algorithm's performance. By considering and addressing 

these factors, the new CNN algorithm shows promising potential in improving 

the diagnosis of cucumber leaf disease and supporting farmers in achieving 

efficient crop management.  

Another finding based on the literature review, it is observed that even 

though the application and advancement of the YOLOv5 model based on deep 

learning in plant leaf disease detection, there are still several existing issues and 
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limitations despite its widespread use and development. For example, one such 

limitation is the scarcity research on cucumber leaf disease and pest detection 

via YOLOv5. Additionally,  significant concerns have been noted regarding the 

YOLOv5 model, including time consumption, storage complexity, low 

detection accuracy, and small symptom disease detection. It has also a struggles 

with implementing multi-disease and pest detection on a single leaf surface 

because of various disease symptoms and varying appearances. Therefore, a 

lightweight improved YOLOv5 model has become essential to improve 

detection accuracy, reduce model parameters and weight sizes. In addition, 

addressing these improvements will contribute to reduce time consumption and 

storage complexity.  

 

2.8.  Summary    

 

This chapter provides a review of the improvement in plant leaf disease and 

healthy recognition and detection systems; it also highlights challenges and 

issues concerning CNN based deep learning algorithms in the agriculture 

domain. In summary, there is still a need for an accurate and efficient model to 

diagnosis cucumber leaf disease and pests. The literature review further 

underscores the demand for developing a new cucumber leaf disease and 

healthy dataset, proposing and improving recognition and detection models to 

address the challenges faced by farmers in the agriculture farming environment. 
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3.1. Overview  

 

This chapter introduces the research framework employed in this study, 

discussing material and research methods for the cucumber leaf disease and 

pest diagnosis system. The existing models require enhancements to more 

accurately identify diseases, necessitating retraining. This enhancement is 

crucial for improving both detection and recognition accuracy. The roadmap of 

this chapter has been organized as the following: it begins by highlighting a 

problem that needs to be addressed, followed by an overview of the research 

methodology. Additionally, the chapter investigates into background 

information concerning the dataset constructed for cucumber leaf disease, 

including data acquisition, data pre-processing techniques such as data 

augmentation and labelling. Experiment setup, the metrics for evaluating the 

performance of the models together with the methodology for results analysis 

and validation are also described. 

 

3.2. Research Framework Overview 

 

The study framework implementation process is divided into three different 

phases: phase 1, constructing a new cucumber leaf disease and pest dataset; 

phase 2, design a recognition system for cucumber leaf diseases and pests, and 

phase 3, improve a detection system for cucumber leaf diseases and pests 

symptoms. The output of the first phase is a fundamental input for the second 

and third phases. Each phase is structured into different steps, with each step 

generating a crucial output that serves as an essential input for the subsequent 

steps. Overall dissertation framework for the design and improvement of the 

proposed model for cucumber leaf disease diagnosing and detection is 

presented in Figure 3.1. 
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3.2.1. Phase 1: Constructing A New Dataset 

 

Phase 1 of the research framework focused on constructing and collecting a 

structured dataset including cucumber leaf disease, pest and healthy images. 

Phase 1, as described in Section 3.3, generated image leaf samples as output 

that are essential for diagnosing cucumber leaf health and disease types in phase 

2. Simultaneously, the output of phase 1 serves as input to phase 3, where the 

detection and localization of leaf disease and pest symptoms take place.  

 

Detection 

System 

Recognition 

System 

Output 

Figure 3. 1 Overall dissertation framework 
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3.2.2. Phase 2: Cucumber Leaf Disease and Healthy Recognition 

 

Phase 2 discussed the design and improvement of diagnosing cucumber leaf 

disease and health. This phase includes the development of a CNN model 

utilizing deep learning techniques. This phase is divided into three different 

steps as described below and shown in Figure 3.2. Step 1 is named data 

preparation, which focuses on preparing leaf sample images including five 

infected and one healthy. In the second step of the pre-processing. Firstly, a 

white background was manually added to some healthy images, highlighting 

the leaf disease by attaching a white paper to the cucumber leaf background. 

Secondly, images are resized into 227x227x3 to be fitted into the model. 

Thirdly, five different augmentation methods have been applied on each 

training image samples. Finally, step 3 focuses on determining the approach to 

design and enhance the feature extraction and classification methods. Phase 2 

yielded the development of an intelligent, fine-tuned CNN algorithm for the 

diagnosis of cucumber leaf health and disease types. 

 

 

 
Figure 3. 2. Research flow framework of the recognition task 

 

 

3.2.3. Phase 3: Cucumber Leaf Disease and Pest Detection 

 

Phase 3 of the research framework focuses on the further enhancing  ability 

of YOLOv5 model to detect cucumber leaf disease and pest symptoms. This 
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was achieved by detecting, localizing, and identifying disease and pest types in 

cucumber leaves. Phase 3 is divided into various steps. Starting with data 

preparation step, second step focuses on data pre-processing including image 

resizing, labelling and bounding box of each disease and pest symptom regions. 

Finally, in the third step, YOLOv5 model was improved and parameters were 

set to design a lightweight network model including feature extraction, 

classification and detection process. Phase 3 led to the improvement of the 

YOLOv5 detection model. The research detection framework task is shown in 

Figure 3.3. 

 

 

 
Figure 3. 3 Research flow framework of the detection task 

 

 

3.3. Dataset Description (Data Acquisition) 

 

In previous studies, various datasets have been used for plant disease 

classification and detection tasks. Most of the experimental studies are 

experimented on the PlantVillage dataset which include 38 classes of healthy 

and diseases of 14 different crop spices that contain 54323 images in total. This 
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section underscores the continued necessity for the creation of a new and 

diverse leaf image dataset for cucumber plant disease and health diagnosis. 

Existing datasets, in addition to not mentioning the cucumber Spider leaf pest, 

may not adequately represent various real-world conditions, such as different 

lighting situations and real backgrounds. It is also concluded that leaf is the 

most commonly used plant organ for classifying plant diseases as its image can 

be easily collected, and it is green and smooth during all four seasons. However, 

the actual environmental needs to be taken into account for a realistic scenario. 

The datasets used in this dissertation include the descriptions of the leaves 

before and after the diseases affect them. The data comprises tables and images 

of the leaves that are taken in the fields. The data are analysed and classified in 

a way that is easy for readers to understand. There are a few publicly available 

datasets that are used by researchers in terms of the plant disease diagnosis 

system. In the cucumber disease recognition area, there is a lack of large public 

datasets that causes a major drop in the performance of classification and 

detection task. An accurate disease diagnosis system is in need for good 

training that depends on data collection. To address those issues, in this study, 

two different cucumber leaf diseases and pest datasets (local and publicly 

available) datasets are used for experimental setup. 

 

3.3.1. Dataset-1 (Self-Made Dataset) 

 

a) Introduction  

 

In this study, a new structured dataset was constructed that includes healthy 

and infected cucumber leaves with single and multi-infections. The data are 

collected from natural scenes in Kurdistan region, Sulaymaniyah, Rania. It 

contains five cucumber leaf diseases and pest classes that comprise two pest 

diseases (spider, and leaf miner), two diseases (downy mildew and powdery 
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mildew), one viral disease cucumber yellow stunting disorder virus (CYSDV), 

and one healthy leaves. Total images of the dataset are 4868 images, each class 

having a sample image number in the range of 350–1500. The name and the 

number of images in each class are shown in Table 3.1.  Sample images 

of Dataset-1 are also shown in Figure 3.4.  

 

 

Table 3. 1 Sample dataset image number 

Class No. Disease and pest class Sample image number 

1 Spider 610 

2 Leaf Miner 886 

3 Downy mildew 349 

4 Powdery mildew 1493 

5 CYSDV 693 

6 Healthy 837 

                          Total 4868 

 

 

 

Figure 3. 4 Images of the five cucumber diseases and healthy leaves of constructed Dataset 
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Furthermore, it is important to acknowledge that the existing dataset includes 

supplementary information regarding leaf pests such as spider that affect 

cucumber leaves. This type of pests is commonly observed in agricultural 

environments and have a significant impact on the overall health and vitality of 

cucumber leaves. Spider mites, being small arachnids, infest the underside of 

leaves and puncture plant cells to extract their contents result in noticeable signs 

like stippling, yellowing, and eventual leaf death. By incorporating data related 

to these specific leaf pest, the dataset provides a more comprehensive 

understanding of the diverse factors influencing the health and vulnerability of 

cucumber plants to diseases. Figure 3.5 shows the spider mites that will have 

an impact on the cucumber leaves. 

 

b) The Process of Collecting Leaf Image Samples 

 

The dataset created in this study includes leaf image samples which were 

taken under specific field conditions at the green house of cucumber farms. A 

total of six different farms were used to collect and create the dataset in order 

to encompass a broad spectrum of environmental and cultivation 

circumstances, thus ensuring the inclusiveness and diversity of the dataset.  

  

 

Figure 3. 5 Spider mites leaf affects (a) At early stage (b) At Nearly final stage 
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The name and the number of images in each class are shown in Table 3.1. 

Images have been taken from different weather conditions inside the green 

house (morning, middays, and evening), and angles (top and level angles). The 

images exhibit a various aspect ratios, orientations, and sizes (3024 × 4032, 

1968 × 4160, 1801 × 1762, 1280 × 1280, 960 × 1280, and 606 × 1280) with 

pixel spatial resolution and intensities throughout different times of the day. 

Some images have a misshapen and shadows due to an order of magnitude, 

illumination, and distance changes.  

In certain healthy class images, a manual effort was made to create a white 

background, with the intent of highlighting leaf diseases and pests. This was 

achieved by attaching a white paper to the cucumber leaf background, with the 

leaf positioned at the center of the image, as shown in Figure 3.6. All other 

healthy and unhealthy leaf images have a complex and an inconsistent 

background. They contain more than one leaf, stem, cucumber fruits, etc.. 

Finally, images are resized to 227 × 227 × 3 for the purpose of reducing 

computational time, and improving efficiency processing. 

 

c) Device Equipment and Time Period   

 

All sample images have been captured using the smartphone devices (iPhone 

XS-Max, full HD, 12MP) and (Xiaomi Pocophone F1, full HD,12MP), optical 

and digital zoom are not used, and flash is always off. Over the course of a 

period spanning 10 months, data collection was conducted within the time 

frame of 7:00 AM to 6:00 PM. Specifically, the data collection period 

commenced on (March 15, 2021), and extended until (November 30, 2021), 

and then it resumed again up to (June 17, 2022). Throughout this extensive 

duration which takes 2 years, all samples were systematically collected and 

captured, adhering to the specified time constraints. 
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d) Dataset Disease List Names 

 

The dataset construction involved labeling disease types based on guidance 

from pathologists, agricultural experts, farmers' experiences, and online 

references. Careful attention was given to the symptoms appearing on both the 

front and back sides of cucumber leaves during the collection of disease and 

pest image samples. This comprehensive approach improved the reliability and 

accuracy of the dataset. In the sample collection process, some disease and pest 

types were initially identified and labeled based on the front side of cucumber 

leaves. However, for other disease types, confirmation was necessary by 

considering both sides of the leaves. Figure 3.6 illustrates the process of 

considering both cucumber leaf sides in CYSDV. 

 

 

 
Figure 3. 6 The process of considering both leaf sides of CYSDV 

 

 

In the process of dataset collection, valuable insights and contributions were 

obtained from a team of experts with diverse backgrounds. This team included 

three agriculture academic experts affiliated with the agriculture department of 

the University of Raparin and Salahadin University, two pathologists 
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responsible for overseeing farmer farms. In addition, two professionals 

specializing in agriculture medicine, and four experienced farmer experts have 

collaborated. Their collective expertise and their contributions played a 

significant role in ensuring the quality and comprehensiveness of the dataset. 

In Table 3.2, a detailed description of the dataset is provided along with relevant 

information. The table offers a comprehensive information and characteristics 

that contribute to the constructed dataset. Various aspects of the dataset image 

samples were highlighted. The first column provides a class name, second 

column includes a description of disease causes that affect the cucumber leaves. 

Also, third column provides cucumber leaf disease types. 

 

 

Table 3. 2. Detailed description of the dataset with relative information 

Class 

No. 
Disease Name Disease Causes 

Disease 

types 

1 Healthy               - - 

2 Spider 

• Spider mites 

• Excessive nitrogen fertilization 

• Environmental factors such as extreme 

temperatures, high humidity 

Pest 

3 CYSDV 

• Transmission through the feeding 

activity of infected silverleaf whiteflies 

(Bemisia tabaci) 

• Environmental factors such as high 

temperatures, low humidity, and dry 

conditions 

Viral 

disease 

 

4 Leaf Miner 
• The larvae of some moths, flies, 

sawflies, or beetles Pest 

5 Powdery Mildew 

• Fungus Podosphaera xanthii 

• Environmental factors such warm and 

humid environments 
Fungal 

6 Downy Mildew • Oomycete Pseudoperonospora cubensis Fungal 
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3.3.2. Dataset-2 (Cucumber Plant Disease Dataset)  

 

In the conducted experiments, the dataset used for analysis and evaluation 

was a publicly available dataset obtained from the Kaggle website. It is a 

platform renowned for hosting various datasets and machine learning 

competitions. This particular dataset, known as the "Cucumber Plant Disease 

Dataset" specifically focuses on cucumber plants and the various diseases they 

may encounter (Negm, 2020). The dataset comprises images and related 

information pertaining to the diseases that affect cucumber plants. Researchers, 

data scientists, and enthusiasts can access and download this dataset for 

analysis, study, and development of machine learning models aimed at 

detecting, diagnosing, and mitigating cucumber leaf diseases. Cucumber plant 

disease dataset contains two different cucumber classes: healthy and diseased, 

as shown in Figure 3.7. 

 

 

 
Figure 3. 7 Images of leaves of cucumber plant disease dataset 
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Table 3.3 illustrates the dataset class name and image numbers. Total images 

of the dataset were 695 images, each class having a small number of samples, 

which are 343 and 352 images for healthy and diseased classes respectively. 

 

 

Table 3. 3. Sample dataset-2 image numbers 

Class No. Class Name Sample image number 

1 Good Cucumber 343 

2 Ill cucumber 352 

                                    Total 695 

 

 

3.4. Dataset Enhancement Methods 

 

It is common knowledge that machine learning algorithms become more 

powerful as they gain access to larger amounts of data. Despite the lower 

quality of the data, the algorithms can still exhibit improved performance by 

extracting valuable information from the original dataset (Mikołajczyk and 

Grochowski, 2018). The efficacy of deep learning models is significantly 

dependent on the availability of large volumes of training data to avoid 

overfitting. Overfitting is a common problem that arises when the model is 

trained using a limited dataset, resulting in subpar performance when applied 

to new validation and testing data due to a lack of generalization (Chlap et al., 

2021). Another challenge associated with small datasets is that models trained 

on them tend to struggle in effectively generalized well data from the validation 

and testing sets (Perez and Wang, 2017). Various approaches have been 

proposed to address this problem, with one of the methods being the use of data 

augmentation. This technique is essential and powerful in expanding the size, 

improving the quality, and diversifying the training dataset. It can be viewed as 
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a form of regularization technique that helps decrease the model's 

generalization error. 

Data augmentation procedure takes images from the dataset and introduces 

alterations to create additional representative variation samples in the dataset. 

By augmenting the data, the model becomes less likely to learn overly specific 

features tied to the original training data, resulting in enhanced generalization 

and improved performance on the test set. Another issue that often arises during 

model training is class imbalance, wherein certain classes have insufficient 

representation in the dataset. The imbalance issue can cause the model to 

exhibit a bias towards the over-represented classes (Chlap et al., 2021). 

Augmentation methods involve applying transformations to an image, such as 

relocating its points or manipulating its intensity values. This process generates 

an augmented image. By performing this operation on a single image from the 

original dataset, the dataset's overall size is expanded. Although these 

techniques can significantly enhance the performance of the trained model 

(Chlap et al., 2021). 

Numerous research studies evaluating the effectiveness of data augmentation 

rely on widely recognized academic image datasets to establish benchmarks 

and evaluate outcomes. These datasets include various collections such as 

MNIST (handwritten digit recognition), CIFAR-10/100, ImageNet, tiny-

imagenet-200, SVHN (street view house numbers), Caltech-101/256, MIT 

places, MIT-Adobe 5K dataset, Pascal VOC, and Stanford Cars. The 

availability of open-source datasets has provided researchers with a diverse 

range of scenarios to compare the performance outcomes of data augmentation 

techniques (Shorten and Khoshgoftaar, 2019). This PhD dissertation applies 

five different image data augmentation techniques to dataset-1 and dataset-2. 

The increase in image samples is determined by the maximum number of 

samples for each class. In this circumstance, the sample number of powdery 

mildew has been chosen that contains 1493 images. The overall sample image 
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number of a new augmented dataset-1 increased to 9927 images. The data 

augmentation techniques utilized in the study are outlined as follows: 

Rotation: The image rotation augmentations method involves rotating the 

image either to the right or left along an axis within the range of 1° to 359°. 

The purpose of image rotation is to adjust the image's orientation by a specific 

angle 𝜃. The safety of rotation augmentations relies significantly on the chosen 

rotation degree parameter (Shorten and Khoshgoftaar, 2019)(Umer et al., 

2022). In this study, the image rotation is carried out at an angle 𝜃 = 40°, as 

shown in Figure 3.8. 

 

 

 
Figure 3. 8 Illustrates the effects of rotate data augmentation technique on one image of the 

dataset 

 

 

Shear: The shearing mapping technique is a linear transformation that shifts 

the position of each pixel in the image in a fixed direction relative to a line 

parallel to that direction, passing through the origin (Umer et al., 2022). By 

applying a shear transformation on the image, the transformation occurs along 

the horizontal or vertical axis. The magnitude rate for this transformation 
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ranges from -0.3 to 0.3. In this study, the image shearing is carried out with rate 

magnitude 0.20, as shown in Figure 3.9. 

Zoom: Image zooming refers to the process of enlarging a specific region at 

the center of the image. This process is employed to extract the region based 

on the edge pixels, utilizing the nearest neighbor interpolation method with 

pixel replication (Umer et al., 2022). In this study, the image zooming is carried 

out with degree of 0.20, as shown in Figure 3.10. 

 

 

 
Figure 3. 9 Illustrates the effects of shear data augmentation technique on one image of the 

dataset 

 

 

Horizontal flip: Horizontal axis flipping is a common technique in image 

processing, involving a special case of image rotation where the image is 

rotated 180 degrees. This is achieved by applying the rotation affine 

transformation to the image (Umer et al., 2022). Flipping along the horizontal 

axis is more prevalent than flipping along the vertical axis. It is also one of the 

simplest methods to implement (Shorten and Khoshgoftaar, 2019). The effect 

of horizontal flip data augmentation technique is shown in Figure 3.11. 
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Figure 3. 10 Illustrates the effects of zoom data augmentation technique on one image of 

the dataset 

 

 

 

 
Figure 3. 11 Illustrates the effects of horizontal flip data augmentation technique on one 

image of the dataset 

 

 

Brightness: Brightness augmentation is an approach employed to alter the 

brightness levels of an image by manipulating its pixel values. This adjustment 

can make the image appear brighter or darker, effectively modifying its overall 
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intensity and introducing changes in lighting conditions. The effect of 

brightness data augmentation technique has been shown in Figure 3.12. 

 

 

 
Figure 3. 12 Illustrates the effects of brightness data augmentation technique on one image 

of the dataset 

 

 

Furthermore, five different augmentation techniques have also been applied 

on each training set images on dataset-2. The training images are increased by 

6 times, the overall training image samples of a new augmented dataset-2 

increased to 3308 images.  

  

3.5. Image Data Annotations 

 

Data labelling involves the process of assigning meaningful and precise 

annotations or labels to the training data utilized for training a model. The 

labeling process requires attributing specific class or attributing information to 

individual data samples, enabling the model to learn and make predictions 

based on these labeled instances. In deep learning, data labeling is essential for 
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the model to comprehend the patterns and relationships within in the data. The 

labeled data serves as the ground truth, providing the model with the necessary 

information needs for learning and make predictions on new, unlabeled data. 

Data labeling process usually requires the involvement of human annotators 

or experts in the relevant field who carefully examine each data sample and 

assign appropriate labels according to the intended classification or detection 

tasks. Data labeling could be time consuming, especially when handling 

extensive datasets. It necessitates expertise and careful attention to ensure 

precise and consistent labeling. 

However, cucumber leaf images in the constructed dataset that were 

collected in the real scene were not marked and annotated. Symptoms of 

cucumber leaf diseases and pests were required to be assigned and labeled 

accurately in order for the model to work better. Various tools and platforms 

are available to facilitate the data labeling process, allowing annotators to 

efficiently label data and collaborate on labeling tasks.  

In this study, a labelling tool called ImageLabeler software was applied to 

annotate and mark the cucumber leaf diseases and pest symptoms. The 

ImageLabeler software facilitated the process of accurately identifying, 

localizing and highlighting the specific regions of the diseases and pest 

symptoms on the cucumber leaves. LabelImg is a software tool designed for 

the process of image annotation and labelling, specifically for object detection 

and computer vision tasks. The tool is free, open-source, and written in Python, 

utilizing quality threshold (QT) for its graphical user interface. We utilized the 

user-friendly LabelImg tool to load images of cucumber leaf diseases and pests. 

Within this tool, we marked specific symptoms or regions within the images by 

drawing bounding boxes around them. These bounding boxes functioned as 

annotations or labels, indicating the presence and location of the desired objects 

within the images, as shown in Figure 3.13.  
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Figure 3. 13 LabelImg tool window 

 

 

The images labeled using the LabelImg tool can be utilized to train deep 

learning techniques, particularly those designed for object detection tasks such 

as YOLO. The annotations derived from the labeled images serve as significant 

reference data, enabling the models to learn and detect cucumber leaf disease 

and pest symptoms. The LabelImg software supports image labeling in various 

formats, including VOC XML and YOLO text file. In our study, we utilized 

the VOC XML format, which offers the advantage of easy conversion to other 

formats as needed, as shown in Figure 3.14. Subsequently, the VOC XML file 

format is converted into a TXT file to ensure compatibility with the YOLO 

model. 

In general, LabelImg proves to be as a valuable tool for researchers, data 

scientists, and developers working on computer vision projects. It simplifies 

the image annotation process, making it easier to manage labeled image 

datasets for training and building a highly performant object detection models. 
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Figure 3. 14 Cucumber leaf disease symptom annotation using LabelImg tool 

 

 

The performance and generalization of the trained deep learning models are 

significantly influenced by the quality and accuracy of the data labels. A well-

defined and well-structured annotation process is crucial to ensure the 

dependability and high quality of labeled data. This, in turn, results in more 

robust and accurate predictions from the deep learning model. 

 

3.6. Evaluation Metrics  

 

Evaluation metrics are quantitative measurements used for evaluating a 

model's or algorithm's performance and efficacy in various fields, including 

deep learning. These performance metrics are widely recognized and 

considerably utilized in academic and professional studies. In Chapters 4 and 

5, these metrics are used to demonstrate how well the proposed model 

performed. In the process of evaluating a model's performance based on a 



 

 
 

72 

confusion matrix, several criteria can be derived. These criteria are derived 

from the values present in the matrix. A confusion matrix is a tabular 

representation that summarizes the performance of a classification model. It is 

a square matrix that provides a detailed analysis of the predicted and actual 

class labels for a test set data. Table 3.4 illustrates the general form of two 

classes for the proposed model using confusion matrix.  

 

 

Table 3. 4. Typical Cucumber leaf diagnosing evaluation metrics 

 Predicted Class  

Healthy Unhealthy 

Actual class 

Healthy 
A  

(TP) 

B  

(FN) 

Unhealthy 
C  

(FP) 

D  

(TN) 

 

 

Accuracy, precision, recall, and F1-score are the commonly used evaluation 

criteria based on the confusion matrix for identifying cucumber leaf diseases 

and pests. From Table 3.4, A represents the count of healthy leaves that are 

accurately predicted, which is also referred to as true positive (TP), and B 

represents the count of healthy leaves that were wrongly predicted as unhealthy 

leaves; it is also referred to as false positive (FP). Meanwhile, C represents the 

count number of unhealthy leaves that were wrongly predicted as healthy; it is 

also referred to as false negative (FN). Finally D is the count of unhealthy 

leaves that were correctly predicted, it is also referred to as true negative (TN).  

Accuracy is a metric used to evaluate the model classification rate; it is the 

rate at which the model correctly predicted. Accuracy is computed by dividing 

the count of accurate predictions by the total count of predictions. The 

following formula is the definition of accuracy (Agarwal et al., 2021): 
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Accuracy =  
TP + TN

TN + TP + FN + FP
                          (3.1) 

 

While precision quantifies the number of positive class predictions of the 

model that actually belongs to the positive class, it is a true positive rate divided 

by the total true positive and false positive, as defined in the equations (3.2) 

(Ma et al., 2018). Meanwhile, recall quantifies the number of positive class 

predictions made out of all positive classes in the dataset (all instances that have 

been classified as positive). Recall becomes crucial in situations where the 

impact of false negatives is high and there is a need to capture all positive 

instances, as defined in the equations (3.3) (Agarwal et al., 2021). F1-score is 

also a measure of model’s accuracy on a dataset. It combines the precision and 

recall metrics into one metric. The formula of F1-score is shown by the 

following equation (3.4) (Ma et al., 2018): 

 

     Precision =
TP

TP + FP
                                                (3.2) 

 

      Recall =
TP

TP + FN
                                                      (3.3) 

 

 F1 − score = 2 ∗
Precision ∗   Recall

Precision +   Recall 
               (3.4) 

 

In this dissertation, recall, precision, and mAP@0.5 were the three measures 

used to assess the improved YOLOv5 model's detection ability. Precision is the 

ability of a model to identify only the relevant objects, and the percentage of 

all detection results that are accurately detected is referred to as the precision, 

which is defined in equation (3.2). Where TP denotes the number of 

successfully recognized positive samples, FP  indicates that the number of 
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negative samples that are falsely detected, and 𝐹𝑁 indicates the number of 

positive samples that are not detected, in another word, it means an object that 

should have been detected but not detected. Recall is a measurement of how 

accurately a positive prediction is made in the presence of a positive input. That 

simply refers to how well the model can detect it which is defined in the 

equation (3.3). 

In object detection tasks, intersection over union (IoU) is a widely used 

metric for assessing bounding box accuracy evaluation predictions. The 

estimated bounding box overlap with the ground truth bounding box was 

evaluated in IoU by calculating the ratio of their shared area to their union area, 

as defined in the equation (3.5) (Li and Fang, 2023). Typically, the mAP value 

is determined at an IoU of 0.5, denoted as mAP@0.5. IoU plays a crucial role 

in computing mAP. The average precision (AP) is a common evaluation metric 

used to assess the model's accuracy and in detecting objects. It measures the 

precision-recall trade-off, indicating how well the model balances precision and 

recall, as defined in equation (3.6) (Zhou et al., 2023). The mAP was calculated 

by determining the average precision (AP) of each class and then averaging 

over a number of classes, as defined in equation (3.7) (Zhou et al., 2023). 

mAP@0.5 is the mean precision when the IoU is equal to 0.5.  

 

IoU =
Area of Overlap

Area of Union  
 =  

X ∩ Y

X ∪ Y
                  (3.5) 

 

AP = ∑ [Recall(i) − Recall(i + 1)] ∗ 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛(𝑖)

i=n−1

i=0

         (3.6) 

 

 mAP =
1

N
∑ AP(i)

N

i=1

                             (3.7) 
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As shown in equation (3.5), X represents the prediction box and Y represents 

the ground-truth box, while the area of overlap (intersection of the two boxes) 

is shown in denominator and the area of union (set of the two boxes) represents 

the numerator. While, in equation (3.6) recall(i) indicates current recall value 

and recall(i+1) indicates next recall value. Where, In equation (3.7) N 

represents all number of disease classes, AP(i) stands for the average precision 

of each diseased class. 

 

3.7. Experimental Equipment   

 

In this study, two different environment programming platform tools, and 

two desktop computers with different properties have been used to conduct the 

experiments and evaluation of the models, for cucumber leaf disease and pest 

diagnosing and detection. 

In cucumber leaf disease and pest recognition system, MATLAB, a widely 

used and powerful programming language for scientific computing, was chosen 

as the primary tool to implement the models. MATLAB offers a rich set of 

functions and libraries, making it suitable for various computational tasks, 

including machine learning and deep learning. To conduct the experiments and 

evaluate the models, a high-performance computer system was employed. The 

computer was running on the Windows 10 operating system, and it was 

equipped with an Intel Core i7 CPU, which operated at a speed of 3.20 GHz. 

The Intel Core i7 series is known for its robust performance and multitasking 

capabilities, making it ideal for handling complex computational tasks 

efficiently. The computer was equipped with an NVIDIA GeForce GTX 1160 

GPU. The GPU, with its 6 GB dedicated memory, with 32 GB of RAM. 

Furthermore, in cucumber leaf disease and pest detection system, the 

PyTorch framework and the YOLOv5 environment were utilized for 

conducting the experiments. The implementation was done in Python, 
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specifically using version 3.8 of the language. The experiment was conducted 

on a desktop computer, running on the Windows 10 operating system. The 

computer used for the experiment was equipped with an Intel Core i7-8700K 

CPU, operating at a speed of 3.70 GHz. In terms of graphics card processing, 

the computer has an NVIDIA GeForce GTX 1080 Ti GPU. This GPU had a 

dedicated memory capacity of 2 × 6 GB, with 48 GB of RAM.  

 

3.8.  Analysis and Validation of Results  

 

A statistical significance test, specifically the chi-square test, was carried out 

to evaluate the improvements obtained from the proposed and designed CNN 

model. Pre-trained models termed as baseline was developed and used to 

benchmark against the proposed CNN model. The effectiveness of the CNN's 

performance was verified through experimental evaluations, which were 

statistically analyzed using the chi-square test using a local dataset and public 

available dataset. This test is commonly employed to compare observed 

outcomes with expected results. 

 

3.9.  Summary  

 

 In this chapter, a research framework has been presented employed in this 

study, which serves as a comprehensive guide for the detailed investigations 

outlined in Chapters 4 and 5.  It begins by providing background information 

on the datasets constructed and used in this study, followed by the focus on the 

design considerations and process involved in developing the proposed models 

for cucumber leaf disease and pest diagnosis systems. This includes important 

steps including data collection, data augmentation as a pre-processing 

approach. Furthermore, the proposed model design considerations were 

evaluated and examined using the commonly recognized performance metrics 
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which were employed in the relevant field. The modular structure of the 

research plan enables specific attention to be given to each aspect of the 

investigation. In conclusion, the research materials and methodology were 

discussed in this chapter which has been thoughtfully developed to effectively 

unify the investigation, aiming to achieve an enhanced model for an adaptive 

and automated recognition and detection cucumber leaf diseases and pests 

system. 
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CHAPTER FOUR 

 

 

4. CUCUMBER LEAF DISEASE AND PEST 

RECOGNITION SYSTEM BASED ON TUNED CNN 

ALGORITHM 
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4.1. Overview of the Proposed System  

 

In this study, the state-of-the-art based deep learning algorithms have been 

applied for cucumber disease and pest recognition using leaf disease symptoms. 

The first objective of this chapter is to examine our proposed system for 

diagnosing cucumber leaf diseases and pests by fine-tuning the CNN algorithm 

from scratch. The system takes an image as input, which includes symptoms of 

cucumber leaf diseases and pests, based on a constructed leaf image. The 

second objective in this chapter is, two combined CNNs from scratch with three 

pretrained models such as AlexNet, ResNet-50 and Inception-V3 have been 

used. The purpose of the developed system is diagnosing diseases accurately 

and will help farmers to timely control the spreading of cucumber diseases. 

Additionally, the influence of data augmentation techniques examines the 

accuracy of recognition within the study. Figure 4.1 gives an overview of the 

experimental diagnosing procedure for cucumber leaf diseases and pests. 

 

4.2. Data Preparation 

 

In this chapter, two different datasets are used to conduct the model 

experiments. Foremost, a locally created dataset named dataset-1 that includes 

five unhealthy leaf classes, i.e. two pest diseases (spider and leaf miner), two 

fungal diseases (downy mildew and powdery mildew), one viral disease 

CYSDV, and one healthy leaf class. The total images of the dataset are 4868 

images, each class having a sample image number in the range of 350–1493. 

Class  diseases’ names and sample numbers were described in Table 3.1. The 

dataset were divided into two different sets: training and testing set. The total 

images are split into 80% for training and 20% for testing set. A total of 3895 

images and 973 images were used for training and testing sets respectively. 

Secondly, publicly available dataset named dataset-2 (Cucumber Plant Disease 
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Dataset), which contains two different cucumber classes healthy and diseased. 

The total images of the dataset are 695 images (Negm, 2020). Class names and 

sample numbers were described in Table 3.3. 

 

 

 

Figure 4. 1 An overview of the procedure of diagnosing cucumber leaf diseases and pests 

 

 

 

 

Image Acquisition From Real Field  ( Healthy and Disease )  

Image Enhancement Pre-processing 

Splitting Image Dataset 

Testing Set Training Set 
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Feature Learning using CNN 

Classification and Prediction of Diseases  

using CNN 
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Disease Leaf with Disease Name 
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4.3.  Data Pre-Processing 

 

In this study, data augmentation approaches as a pre-processing step has been 

applied to the datasets before they were used for model training. By utilizing 

multiple datasets, we aimed to enhance the robustness and reliability of our 

findings and gain a more comprehensive understanding of cucumber leaf 

diseases and pests. Data augmentation has been used on both datasets to 

improve the generalization and adaptability of deep learning models. 

 

a) Pre-Processing of Dataset-1 (Self-Made Dataset) 

 

In order to illustrate the effect of the number of sample images of each class 

on the performance of the model results, it has augmented according to the 

maximum image number of class samples. For these experiments, the training 

sample number of powdery mildew has been chosen because it contains the 

maximum sample number of 1493 images. All other training classes increased 

to the range of (1320 –1418) images. Likewise, the number of test class images 

increased to the  range of (265–285) images. All training and testing augmented 

class samples have nearly the same number of images. For this purpose, five 

different augmentation methods have been applied on each training and testing 

images such as rotation, shear, zoom, flip horizontally, and brightness, as 

illustrates in Figure 4.2. The augmented dataset was divided into training and 

testing sets, approximately 80% and 20%, respectively. The total image 

samples of a new augmented dataset increased to 9927 images, and among 

them: 8267 images were used for training, and 1660 images for testing, as 

shown in Table 4.1. Finally, images were resized to 227 × 227 × 3. 

 

 



 

 
 

82 

 

Figure 4. 2 Illustrates the effects of data augmentation techniques on one image of the 

dataset 

 

 

Table 4. 1 Statistics of Dataset-1 used for model performance 

Class 

No. 
Class Name 

Original 

dataset 

samples 

Samples After Augmentation 

dataset 

samples 

Training 

images 

Testing 

images 

1 Spider 610 1746 1461 285 

2 Leaf Miner 886 1702 1418 284 

3 Downy mildew 349 1676 1400 276 

4 Powdery mildew 1493 1599 1320 279 

5 CYSDV 693 1593 1328 265 

6 Healthy 837 1611 1340 271 

Total 4868 9927 8267 1660 
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b)  Pre-Processing of Dataset-2 (Cucumber Plant Disease Dataset) 

 

To address the issue of small sample number of Dataset-2 images, the data 

augmentation process had been performed on training set only to enlarge data 

samples and improve accuracy performance. Five different augmentation 

techniques have been applied on each training image such as rotation, shear, 

zoom, flip horizontally, and brightness. The training images are increased from 

557 images into 3308 image samples, as shown in Table 4.2. Finally, images 

were resized to 227 × 227 × 3. 

 

 

Table 4. 2. Images of training and testing in each class of dataset-2 

Class 

No. 
Class Name 

Original 

image 
Augmented training images 

Testing 

images 

1 Good Cucumber 343 1636 68 

2 Ill cucumber 352 1672 70 

Total 695 3308 138 

 

  

4.4.  Cucumber Leaf Disease Recognition using Proposed Methods  

 

The increasing popularity of deep learning models leads to the well-known 

implementation of CNN as the primary tool for image analysis and 

classification. CNNs have demonstrated remarkable performance in different 

classification tasks, but despite their immense potential, they still face several 

challenges. The challenges arise from the extensive scale of the networks, 

characterized by numerous layers and a multitude of parameters, alongside the 

concerns involve overfitting and limited generalization abilities. Furthermore, 

researchers are increasingly concerned about the improving of CNNs on their 

data (Mikołajczyk and Grochowski, 2018). To address these issues and 
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improving CNNs performance in image recognition, researchers have actively 

made modifications to the deep learning networks. 

The development of designing an intelligent and automated diagnosing 

cucumber leaf diseases and pest system was achieved by effectively classifying 

unhealthy and healthy cucumber leaves. In this section, we present our 

proposed cucumber leaf disease and pest recognition system. The system takes 

a leaf image as input that comprises various symptoms associated with 

cucumber leaf diseases and pests. The main objective of the proposed system 

is to predict whether the cucumber leaves are healthy or unhealthy, and 

identifying specific types of cucumber leaf diseases and pests such as (spider, 

leaf miner, downy mildew, powdery mildew, and CSYDV). During the 

implementation phase, this study, proposes two CNN architectures from 

scratch, named 1-CNN and 2-CNN which are utilizing principles derived from 

deep learning methodologies, to diagnose the cucumber leaf diseases and pests. 

Those proposed CNN models includes an input layer, convolutional layers, 

batch normalizations layer, Activation function, pooling layers, dropout layers, 

fully connected layers, and an output layer. 

 

4.4.1. Proposed 1-CNN Architecture  

 

The proposed 1-CNN model has taken an input image with 227 × 227 × 3 

pixel size. It contains five convolutional layers, each with a distinct number of 

filters and window sizes. In the convolutional layer, an input image is 

convolved with multiple kernels, resulting in the generation of convoluted 

images (feature maps) associated with each filter. The convolution operation 

involves computationally intensive calculations, which become more complex 

as the image size and the number of convolutional layers increase. The 

adjustable weights within the filter serve as the parameters in this context. 



 

 
 

85 

The filter sizes are 7x7, 5x5, 5x5, 5x5, and 3x3 for the five layers 

respectively, while, the numbers of filters are 20, 32, 40, 64, and 96 with 

padding 2, 2, 2, 1, and 1, respectively. The complete feature maps are obtained 

by using several different kernels. Mathematically, the feature value at location 

(i , j) in the k-th feature map of the l-th layer, Zi,j,k
l  , is calculated as follows (Gu 

et al., 2018):  

 

Zi,j,k
l =  Wk

l T
  Xi,j

l  +  bk
l                          (4.1) 

 

Where Wk
l  and bk

l  are the weight vector and bias term of the k-th filter of the 

l-th layer respectively, and Xi,j
l   is the input patch centered at location (i,j) of the 

l-th layer. Each convolutional layer's dimension output of its feature maps was 

calculated using the formula explained in equation (4.2). 

 

𝐷𝑜𝑢𝑡  =  ((
𝐷𝑖𝑛−𝐷𝑓+2𝑃

𝑆
) + 1)                      (4.2) 

 

where Dout is the number of output feature map dimension, Din is the number 

of input image dimension, Df is the convolutional filter size dimension, P is the 

amount of convolutional padding used on the border, and S is the convolutional 

stride number. In the next step, batch normalization used. 

The process of training CNN is complicated due to the dynamic nature of 

input distributions in each layer throughout the training process, resulting from 

the modifications in parameters of preceding layers. Furthermore, to enhance 

the stability, performance, and efficiency of the CNN, the proposed architecture 

included the batch normalization (BN) layer. By implementing BN, effectively 

leverage higher learning rates and alleviate concerns regarding initialization, 

thereby reducing the necessity for dropout in certain cases. BN achieves 

equivalent accuracy when applied to a state-of-the-art image classification 
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technique, a substantially reduced number of training steps with 14 times, in 

regard to efficiency, it outperforms as the original model by a notable margin 

(Ioffe and Szegedy, 2015). For activation function, rectified linear unit (ReLU) 

is used for all layers, which is the most well-known activation function 

employed in CNN for feature learning. ReLU is calculated based on the 

following equation (4.3) (Gu et al., 2018): 

 

ai,j,k = max ( xi,j,k , 0)                          (4.3) 

 

Where xi,j,k is the input of the activation function at location (i, j) on the k-th 

channel. The computational overheads of the network is reduced by reducing 

the overall number of parameters based on employed Maxpooling layers with 

the CNN model. This reduction aids in optimizing computational resources and 

enhancing the efficiency of the model. The max pooling layer is used and 

sequentially applied after layers in varying sizes 3, 3, 3, 3, and 2 with stride 2 

to extract features automatically and minimize the amount of parameters and 

computation in the network.  

The last three layers have used dropout technique with the rate 50%, 50%, 

and 40% respectively. During the forward pass training process, a few neurons 

randomly were dropped out from the network to reduce the model size, those 

neuron weights will not be updated during backward pass. Dropout layer is 

employed to overcome the overfitting issue and offers an efficient means of 

effectively merging the predictions made by multiple distinct neural networks. 

After performing convolutional and pooling layers, the output of the previous 

layers have been fed into a fully connected layers. It is utilized to gather and 

transform all the features from the preceding layers into a vector of one 

dimension. The proposed CNN architecture consists of two fully connected 

layers, which have 512 and 256 neurons respectively, with the last dense layer.  

A SoftMax function used in the final dense layer to calculate the estimated 
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probability for five different cucumber leaf diseases and one healthy leaf type. 

The proposed 1-CNN architecture is shown in Figure 4.3. 

 

 

 
Figure 4. 3 Proposed 1-CNN architecture 

 

 

From Figure 4.3, it can be seen that the proposed 1-CNN architecture has 

five blocks (where the first two blocks including convolution layers, BN, 

Activation, and Max pooling, while the last three blocks includes convolution 

layers, BN, Activation, Max pooling, and Dropout layers). In addition, Table 

4.3. demonstrates the proposed 1-CNN architecture descriptions for better 

understanding the recognition system.  

 

 

Table 4. 3. Description of the proposed CNN parameter architecture 

Layer Name Image size Learnable Parameters Total Parameters  

Input image     227 x 227 x 3            0      0 

Block_1    

Convolution2D (7x7) x 20 225 x 225 x 20 
  Weights  7*7*3*20 

Bias        1*1*20 
2960 

Batch Normalization 225 x 225 x 20 
         Offset 1*1*20 

         Scale 1*1*20 
40 

Activation ReLU 225x 225 x 20 - 0 
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Max Pooling 112 x 112 x 20 - 0 

Block_2    

Convolution2D (5x5) x 32 112 x 112 x 32 
Weights  5*5*20*32 

       Bias        1*1*32 
16032 

Batch Normalization 112 x 112 x 32 
       Offset 1*1*32 

       Scale 1*1*32 
64 

Activation ReLU 112 x 112 x 32 - 0 

Max Pooling 55 x 55 x 32 - 0 

Block_3    

Convolution2D (5x5) x 40 55 x 55 x 40 
Weights  5*5*32*40 

      Bias        1*1*40 
32040 

Batch Normalization 55 x 55 x 40 
      Offset 1*1*40 

      Scale 1*1*40 
80 

Activation ReLU 55 x 55 x 40 - 0 

Max Pooling 27 x 27 x 40 - 0 

Dropout 27 x 27 x 40 - 0 

Block_4    

Convolution2D (5x5) x 64 25 x 25 x 64 
Weights  5*5*40*64 

       Bias        1*1*64 
64064 

Batch Normalization 25 x 25 x 64 
       Offset 1*1*64 

       Scale 1*1*64 
128 

Activation ReLU 25 x 25 x 64 - 0 

Max Pooling 12 x 12 x 64 - 0 

Dropout 12 x 12 x 64 - 0 

Block_5    

Convolution2D (3x3) x 96 12 x 12 x 96 
Weights  3*3*64*96 

       Bias        1*1*96 
55392 

Batch Normalization 12 x 12 x 96 
       Offset     1*1*96 

       Scale      1*1*96 
192 

Activation ReLU 12 x 12 x 96 - 0 

Max Pooling 6 x 6 x 96 - 0 

Dropout 6 x 6 x 96 - 0 

Classification Block    

Fully connected 1 x 1 x 512 
Weights  512*3456 

        Bias        512 * 1 
1769984 

ReLU 1 x 1 x 512 - 0 

Dropout 1 x 1 x 512 - 0 

Fully connected  1 x 1 x 256 
Weights  256*512 

        Bias        256 * 1 
131328 

ReLU 1 x 1 x 256 - 0 

Dropout 1 x 1 x 256 - 0 

Fully connected  1 x 1 x 6 
Weights  6*256 

          Bias        6 * 1 
1542 

Softmax 1 x 1 x 6 - 0 

Classification Output 1 x 1 x 6 - 0 

Total  227 x 227  2073846 
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• Training Process ( Hyper-parameters) 

 

The proposed 1-CNN model was trained using a MATLAB script. During 

the training process of the proposed CNN architecture, the number of layers, 

convolutional layer parameter values such as the filter size and window size, 

and pooling window size were considered in the experiments. Furthermore, 

three other factors to be considered were optimization techniques, batch size 

and the number of epochs. The number of training images used in single 

iteration referred to the batch size, while the epochs denote the count of 

iterations during which the learning algorithm processes the entire training 

dataset. 

In this study, the model was trained using two optimization algorithms, 

namely Adam and stochastic gradient descent (SDGM), with Adam obtaining 

the best accuracy recognition results. Initially, the training was conducted for 

50 epochs, but instability was observed during the process. Therefore, the 

number of epochs was fine-tuned and tested with values of 75, 100, 125, 150, 

and 200, with the best results achieved at 200 epochs. To regulate the model's 

response to error, a learning rate parameter was employed during the training 

process, with an optimal value of 0.001. Additionally, an optimal batch size of 

32 was utilized to achieve the best performance during training. As can be seen 

in Table 4.4, various sets of hyperparameters were used to execute the proposed 

1-CNN model in terms of achieving the best accuracy result.  

Therefore, the chosen CNN architecture has been utilized for the 

development of the proposed system aimed at diagnosing and recognizing 

cucumber leaf diseases and pests. 
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Table 4. 4.  Hyper-parameter setting for the proposed 1-CNN 

Hyper-parameter Descriptions 

Number of Convolutional Layer 5 

Number of Max Pooling Layer 5 

Number of Batch Normalization Layer 5 

Convolutional Dropout Layer rate 0.5, 0.4, 0.5 

Fully Connected Layer 2 

Fully Connected Dropout Layer rate 0.5 , 0.5 

Activation Function ReLu 

Learning rate 0.001 

Max Epoch number 200 

Batch Size 32 

Optimizer Adam 

Validation Frequency 5 

Shuffle Every Epoch Yes 

 

 

4.4.2. Proposed 2-CNN Architecture  

 

In this section, a CNN model has been proposed, drawing inspiration from 

the state-of-the-art CNN algorithms, which have demonstrated exceptional 

performance. Specifically, the architecture of this CNN model is derived from 

the 1-CNN model outlined in section 4.4.1. Particularly, in this design, two 

separate CNN models are employed in parallel and seamlessly merged together 

named 2-CNN model, resulting in a synergistic combination of their respective 

capabilities. The architecture of the 2-CNN model comprises five convolutional 

layers, each with distinct numbers of filters and window sizes. The filter sizes 

are 7x7, 5x5, 5x5, 5x5, and 3x3 set for all layers of both parallel CNN models 

respectively; while, the number of filters are (32, 20), (40, 32), (45, 40), (75, 

64), and (96,96) with padding 2, 2, 2, 1, and 1, respectively. Batch 

normalization and ReLu activation function were used for all layers. The max 

pooling layer was employed and sequentially applied after layers in varying 

sizes 3, 3, 3, 3, and 2 with stride 2 to extract features automatically in both 



 

 
 

91 

models. A dropout layer has been used in the last three layers, with the rate 

(50,40%),(40,40%), and (50,50%) respectively, to address or reduce the 

overfitting issue. It is used to dropout a few neurons from the network during 

the process of training to reduce the size of the models. The output of both 

parallel CNNs' last layers was combined using a concatenation block and 

subsequently fed into fully connected layers. The 2-CNN architecture consists 

of two fully connected layers, which have 512 and 256 nodes respectively, with 

the last dense layer.  A SoftMax function was used in the final dense layer to 

calculate the estimated probability for five different cucumber leaf diseases and 

one healthy leaf type. Figure 4.4 showing the proposed 2-CNN architecture. 

 

 

 
Figure 4. 4  Proposed two combined CNN Architecture (2-CNN) 

 

 

4.5.  Evaluation of the CNN with Transfer Learning Models 

 

This section outlines the material and classification method used in this 

research. In this study, AlexNet, Inception-V3, and ResNet-50 were utilized as 

transfer learning models for conventional recognition evaluation on two 

different datasets. Furthermore, the proposed 1-CNN and 2-CNN models were 

compared with these models in terms of diagnostic performance of cucumber 
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leaf diseases and healthy recognition, using the confusion matrix. Accuracy, 

recall, precision, and F1-score were used in the evaluation of the model criteria 

based on the confusion matrix as they were clearly defined in section 3.6. 

 

4.6.  Results and Discussion 

 

This section provides a comprehensive analysis and interpretation of the 

results that have been empirically obtained from conducting different 

experiments on both proposed algorithms and pre-trained algorithms. This 

section aims to offer a thorough comprehension of the results and conclusions 

obtained from the conducted experiments through particular analysis and 

investigation. 

 

4.6.1. Result of Cucumber Leaf Disease and Pest Recognition   

 

This section describes the experiments and procedures that we have 

conducted concerning the proposed system for the recognition of cucumber leaf 

diseases and pests. To facilitate the experiments, two different datasets 

containing images of cucumber leaves have been utilized. In this context, each 

dataset was partitioned, whereby 80% of the available data has been allocated 

to the training set, and the remaining 20% has been assigned to the testing set.  

Numerous experimental tests have been conducted to diagnose cucumber 

leaf diseases and healthy leaves using the best combination of hyper-parameters 

to produce the highest recognition accuracy. During the training process of the 

proposed 1-CNN architecture, the number of layers, convolutional layer 

parameter values such as the filter size and window size, and pooling window 

size were considered in the experiments. Two different scenarios have been 

performed on Dataset-1, and another one has been performed on dataset-2.  
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In first scenario, all classes are used with different class image numbers from 

349 to 1493 (unbalanced data) to calculate model classification accuracy. The 

proposed 1-CNN performed better than other models on the unbalanced data. 

In particular, our proposed model attains the accuracy result with 97.53%, 

which is much higher than other pre-trained algorithms with accuracy, whereas 

97.13%, 97.44%, and 96.9% are achieved from F1-score, recall, and precision 

based on confusion matrix, respectively, as can be seen in Table 4.5. It also 

determines that most true values and predicted samples are matched. 

According to the performance of each class, the best performance was 

obtained on the powdery mildew disease class with an F1-score of 99%. Out of 

299 powdery mildew prediction images, 99.7% were correct. In addition, leaf 

miner and healthy classes observed similar recognition results, which are 

correctly classified as the images of 98.8% accuracy out of 177 and 167 

predictions, respectively. In case of other disease classes such as spider, downy 

mildew and CYSDV achieved a predictive accuracy of 98.3%, 94.4%, and 

91.4%, respectively. It can be seen in Table 4.5 that 1-CNN demonstrated 

higher results on the powdery mildew, leaf miner, and healthy classes; 

meanwhile, these classes have a larger amount of images than the others. 

 

 

Table 4. 5. Confusion matrix of the 1-CNN with unbalanced data on test dataset-1 

Actual Classes Predicted Classes Evaluation metrics (%) 

Leaf disease  
Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy Recall Precision F1-score  

Downy mildew 67 0 0 0 1 1 97.1 94.4 95.73 

Powdery mildew 0 294 1 1 3 0 98.3 99.7 99 

Leaf miner 0 1 169 1 5 1 95.5 98.8 97.12 

Spider 1 0 1 119 2 0 96.7 98.3 97.5 

CYSDV 0 0 0 0 138 0 100 91.4 95.5 

Healthy 3 0 0 0 2 162 97.0 98.8 97.9 

               Total Accuracy (%) :   97.53  
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Second scenario: involves examining whether the proposed 1-CNN was 

influenced by the amount of data. This aims to ensure the impact of data 

quantity on the model, all experiments were performed on the proposed model 

with balanced data. In this experiment, the data augmentation process was 

applied separately to the training and test sets of Dataset-1. This was done to 

ensure that all classes within the datasets have an almost equal number of 

images. An augmented Dataset-1 including 9927 leaf images in total. The 

training set contained 8267 images, while the testing set comprised 1660 

images. Intuitively, the accuracy of the proposed 1-CNN model demonstrated 

superior performance in comparison to its performance when dealing with 

unbalanced data. Table 4.6 illustrates the test results. From Table 4.6, it can be 

seen the 1-CNN algorithm obtained average accuracy result is 98.19%, whereas 

98.2%, 98.21%, and 98.21% were achieved from F1-score, recall, and 

precision, respectively. In essence, 1-CNN has achieved satisfactory accuracy 

results because of large data rather than unbalancing data. This result is in 

accordance with the experimental outcome of (Zhang and Zhang, 2010).  

According to the performance of each class as shown in Table 4.6, the best 

performance was obtained on the downy mildew class with an F1-score of 

99.09%. Out of 276 downy mildew prediction images, 98.2% were correct. In 

addition, healthy and leaf miner classes have similar recognition results, which 

are correctly classified images with 100% and 98.5% out of 271 and 284 

predictions, respectively. Other disease classes, spider, powdery mildew, and 

CYSDV, achieved a predictive accuracy of 97.6%, 97.5%, and 97.4%, 

respectively. The recall value for each class was 100%, 98.6%, 95.1%, 98.9%, 

98.9%, and 97.8%, respectively. According to the results, 1-CNN exhibited a 

higher rate of errors when predicting leaf miner and healthy classes. These 

misclassifications are attributed to the similarity in color, shape, and vein 

patterns of the leaves. Leaf miner shares the most similarities with CYSDV and 
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spider classes, while healthy leaves exhibit resemblances to downy mildew and 

CYSDV classes. 

 In contrast, downy mildew and spider class symptom images were correctly 

classified. The performance of all models was improved significantly. More 

precisely, 1-CNN accuracy was improved from 97.53% to 98.19%. Based on 

the results, it can be concluded that the size of the input dataset significantly 

impacted the results. This observation aligns with the finding that the 1-CNN 

model can achieve satisfactory results with a large amount of data. 

 

 

Table 4. 6. Confusion matrix of the 1-CNN model with balanced data on test dataset-1 

Actual classes Predicted Classes Evaluation metrics (%) 

Leaf disease 
Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy Recall Precision F1score 

Downy mildew 276 0 0 0 0 0 100 98.2 99.09 

Powdery mildew 0 275 2 2 0 0 98.6 97.5 98.04 

Leaf miner 0 5 270 4 5 0 95.1 98.5 96.8 

Spider 0 2 0 282 1 0 98.9 97.6 98.2 

CYSDV 0 0 2 1 262 0 98.9 97.4 98.1 

Healthy 5 0 0 0 1 265 97.8 100 98.9 

                   Total Accuracy (%):     98.19 

 

 

In the third scenario, to demonstrate the robustness of the 1-CNN model 

concerning the variety of classes, an additional dataset named Dataset-2 was 

used along with a data augmentation scheme. For this experiment, 1-CNN and 

other models have also been tested and implemented on Dataset-2. As 

expected, the performance of 1-CNN outperformed better on the accuracy 

compared to that with large class numbers. Table 4.7 presents the test results. 

It is evident from the confusion matrix that the 1-CNN model achieved an 

accuracy of 100%. Additionally, the F1-score, recall, and precision have 

achieved the highest result which is 100%. Based on the test findings, it is 

determined that the number of classes in the input dataset was an influenced of 
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factor, which agreed with the conclusion that 1-CNN can attain adequate 

results. 

 

 

Table 4. 7. Confusion matrix of the 1-CNN model on test dataset-2 

   A
ctu

al C
lasses 

 Predicted Classes Evaluation metrics (%) 

Classes Ill cucumber Good cucumber Recall Precision F1score 

Ill cucumber 70 0 100 100 100 

Good cucumber 0 68 100 100 100 

           Total Accuracy (%): 100                                               

 

 

The obtained test results were achieved from the evaluation of both the 

proposed and pre-trained models. The analysis led to the conclusion that the 

proposed 1-CNN model has the superior capability and better performance in 

diagnosis cucumber diseases, pests and healthy image leaves better than other 

models (AlexNet,ResNet-50,Inception-V3,and 2-CNN). Particularly, when 

considering factors such as dataset size (including the number of classes and 

the quantity of sample images) as well as the presence of both balanced and 

unbalanced data, as shown in Figure 4.5. 

Furthermore, based on Figure 4.5, the performance of the proposed 1-CNN 

system demonstrates significant improvement as a result of data augmentation 

techniques applied to both datasets. Additionally, when utilizing a smaller 

dataset with fewer leaf class types, the learned 1-CNN model achieves superior 

performance. 
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Figure 4. 5 Performance comparison for the trade-off  between the number of classes and 

the quantity of sample images  employed in the proposed CNN model 

 

 

4.6.2. Performance Evaluation of Cucumber Leaf Disease Recognition 

 

The correct diagnosis of cucumber leaf disease is significant to construct a 

robust and effective model for an automated cucumber leaf disease, pest and 

healthy leaf recognition. The performance of AlexNet, Inception-V3, and 

ResNet-50 as pre-trained models and also 1-CNN, 2-CNN as a proposed model 

from scratch have been tested on both datasets (Datasets-1 and 2). Numerous 

calculations are performed based on confusion matrix such as accuracy, recall, 

precision, and the F1-score as shown in Figures 4.6 – 4.8 and Tables 4.8–4.10. 

Figure 4.6 results indicate clearly that the proposed 1-CNN model outperforms 

AlexNet, Inception-V3, ResNet-50, and 2-CNN models in terms of 

performance. 

It can be seen in Table 4.8 that the proposed 1-CNN outperformed better on 

dataset-1 with unbalanced data than Inception-V3, Resnet-50, 2-CNN, and 

AlexNet. The test accuracy results were obtained as shown in Figure 4.6 are 



 

 
 

98 

97.53%, 97.02%, 96.30%, 95.07%, and 94.24%, respectively, whereas the 

higher accuracy result which is 97.53% was achieved from the 1-CNN model. 

Moreover, the degree of misclassification is examined. From Table 4.8 and 

Figure 4.6, we can see a relatively large number of misclassifications that were 

found between the models’ performance. It shows that 1-CNN has the lowest 

misclassification based on accuracy result that is 2.47% compared with other 

models Inception-V3, ResNet-50, 2-CNN and AlexNet that are 2.98%, 3.70%, 

4.93%, and 5.76%, respectively. 

 

 

 
Figure 4. 6 Performance evaluation of different models on unbalanced class images on 

Dataset-1 

 

 

Table 4. 8. Test results of the models with unbalanced dataset-1 

Methods 

Evaluation metrics (%) 

Recall  Precision  F1 score  Accuracy  

Proposed 1-CNN 97.44 96.90 97.13 97.53  

Inception-V3 97.01 97.27 97.13 97.02 

Resnet-50 96.26 95.94 95.99 96.30  

Proposed 2-CNN 95.19 94.30 94.72 95.07  

AlexNet 94.64 94.74 94.68 94.24  



 

 
 

99 

Furthermore, all models were experimented and tested on Dataset-1 with 

balanced data. The comparative results of the 1-CNN, Inception-V3, ResNet-

50, 2-CNN, and AlexNet models have been shown in Figure 4.7. Values have 

clearly indicated that 1-CNN is more accurate as compared with other models. 

From Figure 4.7, it can be obviously seen that how 1-CNN significantly 

improved the recognition accuracy for cucumber leaf disease and pest 

recognition (from 97.53% to 98.19%). This improvement reflects data 

augmentation that was applied on Dataset-1 to enlarged and balanced data.  

It was revealed in Table 4.9 that the recognition accuracy was 98.19%, 

97.77%, 97.53, 96.69%, and 96.14%, respectively on 1-CNN, Inception-V3, 

ResNet-50, 2-CNN, and AlexNet models. Comparing to the conventional 

models, 1-CNN demonstrated superior results of recognition accuracy. By 

analyzing the results showed in Figure 4.7 and Table 4.9, It is evident that when 

the quantity of data samples rises, the recognition accuracy rate of the proposed 

1-CNN model demonstrates an upward trend. The findings demonstrate a 

positive relationship between the quantity of data samples and the accuracy rate 

of the proposed 1-CNN model. In other words, as more data samples are 

incorporated, the proposed model enhances proficiency in accurately 

recognizing and classifying cucumber leaf diseases and pests, thus observation 

suggests that a larger dataset positively impacts the model's performance and 

effectiveness. 
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Figure 4. 7 Performance Evaluation of Different models on balanced images of the dataset-1 

 

 
Table 4. 9. Test results of the models with balanced dataset-1 

Methods 

Evaluation metrics (%) 

Recall Precision F1 score  Accuracy  

Proposed 1-CNN 98.21 98.21 98.20 98.19 

Inception-V3 97.8 97.78 97.79 97.77 

Resnet-50 97.54 97.52 97.53 97.53 

Proposed 2-CNN 96.69 96.72 96.69 96.69 

AlexNet 96.15 96.16 96.15 96.14 

 

 

In order to demonstrate the impact and show the effectiveness of class 

numbers for the performance authenticity of the 1-CNN model, a series test 

experiments were conducted using 1-CNN model based on Dataset-2. The 

objective of these experiments, as illustrated in Figure 4.8 and detailed in Table 

4.10, was to assess the efficacy of the 1-CNN model. The findings illustrated 

in Figure 4.8 show that precision, recall, F1-score, and accuracy result for the 

AlexNet model were worse. This indicates that the proposed 1-CNN model is 

more accurate at classifying cucumber leaf diseases and pests than the AlexNet 
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and other models, emphasizing its effectiveness and superiority in handling 

varying class numbers present in the dataset. 

From Figure 4.8, it can be obviously and clearly seen that how 1-CNN 

recognition accuracy was significantly improved for cucumber leaf disease and 

healthy leaf recognition (from 98.19% to 100%). This improvement reflects 

decreasing the class number and image samples on Dataset-2. According to the 

results that are shown in Table 4.10, 1-CNN model has obtained the accuracy 

result with 100%, while 2-CNN, Inception-V3, ResNet-50, and AlexNet have 

achieved 99.28%, 99.28, 98.55%, and 97.10%, respectively. From the achieved 

results in Figure 4.8 and Table 4.10, we can see a relatively large number of 

misclassifications that were found between models accuracy performance. 1-

CNN has no misclassification result compared with other models.  

 

 

 
Figure 4. 8 Performance Evaluation of Different models on images of dataset-2 
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By analyzing the results showed in Figure 4.8 and Table 4.10, it indicates 

that the recognition accuracy rate of the proposed 1-CNN model shows an 

upward trend as the number of classes decreases. In addition, the presented test 

results provide evidence indicating that both the 1-CNN and 2-CNN models 

had superior performance when admitted with situations involving a fewer 

class numbers and image samples. These results obviously determine that in 

scenarios characterized by fewer classes, both the 1-CNN and 2-CNN models 

demonstrate well performance and accuracy.  

 

 

Table 4. 10 Results of testing models in images of dataset-2 

Methods 

Evaluation metrics (%) 

Recall  Precision  F1 score  Accuracy  

Proposed 1-CNN 100 100 100 100 

Proposed 2-CNN 99.26 99.30 99.28 99.28 

Inception-V3 99.26 99.3 99.28 99.28 

Resnet-50 98.53 98.61 98.55 98.55 

AlexNet 97.08 97.16 97.1 97.1 

 

 

 

The performance of the pre-trained models (AlexNet, Resnet-50, and 

Inception-V3) based on confusion matrix regarding the abovementioned 

scenarios have been illustrated in Tables 4.11-4.13. Table 4.11 illustrates the 

performance of AlexNet model based on confusion matrix for unbalanced and 

balanced dataset-1 and dataset-2. 
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Table 4. 11. Performance of AlexNet model on both dataset-1 and dataset-2 

Models Confusion Matrix 

U
n
b
alan

ced
 D

ataset-1
 

 

  Predicted Classes 

 
Leaf disease  

Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy 

A
ctu

al C
lasses 

Downy mildew 68 0 0 0 0 1 

Powdery mildew 0 284 8 0 5 2 

Leaf miner 0 7 156 2 10 2 

Spider 0 1 0 121 1 0 

CYSDV 0 11 5 0 122 0 

Healthy 1 0 0 0 0 166 

Recall(%): 94.64 Precision(%):94.74 F1_Score(%): 94.68 Accuracy(%): 94.24 

 

B
alan

ced
 D

ataset-1
 

 

  Predicted Classes 

 
Leaf disease  

Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy 

A
ctu

al C
lasses 

Downy mildew 273 0 0 0 0 3 

Powdery mildew 0 257 16 2 3 1 

Leaf miner 0 3 267 3 10 1 

Spider 0 2 0 281 2 0 

CYSDV 0 4 6 1 254 0 

Healthy 6 1 0 0 0 264 

Recall(%): 96.15 Precision(%): 96.16 F1_Score(%):96.15 Accuracy(%):96.14 

 

D
ataset-2

 

A
ctu

al class 

 Predicted Classes 

Classes Ill cucumber Good cucumber 

Ill cucumber 69 1 

Good cucumber 3 65 

Recall(%): 97.08 Precision(%):97.16 F1_Score(%):97.10 Accuracy:97.10 
 

 

 

Table 4.12 illustrates the performance of ResNet-50 model based on the 

confusion matrix for unbalanced and balanced dataset-1 and dataset-2. 
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Table 4. 12. Performance of ResNet-50 model on both dataset-1 and dataset-2 

Models Confusion Matrix 

U
n
b
alan

ced
 D

ataset-1
 

 

  Predicted Classes 

 
Leaf disease  

Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy 

A
ctu

al C
lasses 

Downy mildew 67 0 0 0 0 2 

Powdery mildew 0 296 2 0 1 0 

Leaf miner 1 3 152 6 13 2 

Spider 0 1 0 121 0 1 

CYSDV 0 1 0 2 135 0 

Healthy 1 0 0 0 0 166 

Recall(%): 96.26 Precision(%): 95.94 F1_Score(%): 95.99 Accuracy(%): 96.30 

 

B
alan

ced
 D

ataset-1
 

 

  Predicted Classes 

 
Leaf disease  

Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy 

A
ctu

al C
lasses 

Downy mildew 276 0 0 0 0 0 

Powdery mildew 0 267 10 0 2 0 

Leaf miner 0 5 266 2 10 1 

Spider 0 0 0 285 0 0 

CYSDV 0 3 5 0 257 0 

Healthy 3 0 0 0 0 268 

Recall(%): 97.54 Precision(%): 97.52 F1_Score(%): 97.53 Accuracy(%): 97.53 

 

D
ataset-2

 

A
ctu

al class 

 Predicted Classes 

Classes Ill cucumber Good cucumber 

Ill cucumber 70 0 

Good cucumber 2 66 

Recall(%): 98.53 Precision(%):98.61 F1_Score(%):98.55 Accuracy:98.55 
 

 

 

Table 4.13 illustrates the performance of Inception-v3 model based on the 

confusion matrix for unbalanced and balanced dataset-1 and dataset-2. 
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Table 4. 13. Performance of Inception-v3 model on both dataset-1 and dataset-2 

Models Confusion Matrix 

U
n
b
alan

ced
 D

ataset-1
 

 

  Predicted Classes 

 
Leaf disease  

Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy 

A
ctu

al C
lasses 

Downy mildew 67 0 0 0 0 2 

Powdery mildew 0 291 5 0 3 0 

Leaf miner 0 4 166 2 3 2 

Spider 0 3 1 119 0 0 

CYSDV 0 0 1 0 134 3 

Healthy 0 0 0 0 0 167 

Recall(%): 97.01 Precision(%): 97.27 F1_Score(%):97.13 Accuracy(%): 97.02 

 

B
alan

ced
 D

ataset-1
 

 

  Predicted Classes 

 
Leaf disease  

Downy 

mildew 

Powdery 

mildew 

Leaf 

miner 
Spider CYSDV Healthy 

A
ctu

al C
lasses 

Downy mildew 276 0 0 0 0 0 

Powdery mildew 0 269 8 0 2 2 

Leaf miner 0 3 271 3 4 3 

Spider 0 6 1 278 0 0 

CYSDV 0 0 2 0 263 0 

Healthy 4 0 1 0 0 266 

Recall(%): 97.08 Precision(%): 97.78 F1_Score(%): 97.79 Accuracy(%): 97.77 

 

D
ataset-2

 

A
ctu

al class 

 Predicted Classes 

Classes Ill cucumber Good cucumber 

Ill cucumber 70 0 

Good cucumber 1 67 

Recall(%): 99.26 Precision(%):99.30 F1_Score(%):99.28 Accuracy:99.28 
 

 

 

We note that the proposed model is well fitting the training data, while the 

validation loss indicates how well the model fits with new data for both 

datasets-1 and 2 as shown in Figures 4.9(a)–4.9(c). In Figure 4.9(b), the training 

and validation loss had been improved due to data argumentation as compared 

to Figure 4.9(a). It also shows that data are trained well and loss function 

reduced as compared with unbalanced data. In addition, Figure 4.9(c) 

demonstrates that a smaller number of classes and images led to a reduction in 
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model loss functions. It is evident that the training process is a good fit, and the 

loss function clearly well with new data. 

 

 

Figure 4. 9 Loss function of 1-CNN Model: (a) balanced datset-1, (b) unbalanced datsatet-

1,(c) dataset-2 
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According to the experimental results, it is obvious that the proposed 1-CNN 

model functioned very well and it has lower error and loss function. Thus, the 

proposed 1-CNN model seems to be a suitable and robust deployed to become 

a practical application on mobile devices for cucumber leaf disease and pest 

diagnosis. Furthermore, the model demonstrates outstanding performance in 

terms of recognition outcomes, not only when applied to a large dataset 

containing numerous classes with a large number of images but also when 

applied on datasets with a few number of classes. Moreover, the Inception-V3, 

ResNet-50, and AlexNet models have pre-trained on extensive amounts of data.  

Within this research study, the obtained results demonstrate that the 

proposed 1-CNN model achieved remarkable recognition accuracy with 

datasets characterized by a considerable number of samples and classes. 

Additionally, these findings highlight the model's versatility and its potential 

for real-world application, particularly when integrated with mobile devices.  

 

4.6.3. Statistical Performance Analysis 

 

The methods were presented in the past sections, and experiments were 

conducted for five different models based on deep learning (1-CNN, 2-CNN, 

Inception-V3, ResNet-50, and Alex Net) on two different datasets (Datasets-1 

and 2). As explained in sections 4.6.1 and 4.6.2, the proposed model attained a 

superior accurate recognition result. To demonstrate the efficacy of the 

proposed 1-CNN algorithm performance, experiments on the models were 

conducted statistically using the chi-square test. It is a statistical test that is used 

to compare observed and expected results based on the formula, as defined in 

equation (4.4) (Sampath Kumar Gajawada, 2019). 

 

𝑋2 = ∑
  ( 𝑂𝑖− 𝐸𝑖 ) 2

𝐸𝑖
                        (4.4) 
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where 𝑂𝑖 is observed value and 𝐸𝑖 is expected value. 

The predicted test samples based on the adopted models have been compared 

using the chi-square test. A standard threshold α = 0.05 was used to show the 

significance differences of the proposed model compared with others models. 

Based on the results shown in Table 4.14, the values of the test statistics of 1-

CNN with Inception-V3, ResNet-50, 2-CNN, and AlexNet were 4545.520, 

4389.209, 4418.237, and 4273.575, respectively. The p-value of the proposed 

1-CNN model was found to be less than the chosen significance level α = 0.05 

when compared with all other models. We can state that there was a significant 

difference between 1-CNN with other models on unbalanced dataset-1 that 

included 973 test image samples. 

 

 

Table 4. 14. All model statistical analysis on unbalanced dataset-1 

Models Test statistic value p-value 

1-CNN * Inception-V3 4545.520 0.001 

1-CNN * Resnet 4389.209 0.003 

1-CNN * 2-CNN 4418.237 0.0025 

1-CNN * AlexNet 4273.575 0.004 

 

 

In addition, 1660 test image samples were statistically experimented. From 

Table 4.15, we can see that the test statistical values were 8019.351, 7901.902, 

7808.641, and 7722.563, for 1-CNN model with other models which are 

Inception-V3, ResNet-50, 2-CNN, and AlexNet, respectively. The results 

indicate that there was a significant difference between proposed 1-CNN and 

other models on balanced dataset-1. The p-value of the proposed 1-CNN 

model, when compared with all other models, was determined to be less than 

the chosen significance level α = 0.05. 
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Table 4. 15. All model statistical analysis on balanced dataset-1 

Models Test statistic value p-value 

1-CNN * Inception-V3 8019.351 0.001 

1-CNN * Resnet 7901.902 0.003 

1-CNN * 2-CNN 7808.641 0.005 

1-CNN * AlexNet 7722.563 0.007 

 

 

On the other hand, a statistical evaluation of all models on dataset-2, which 

consisted of 138 test image samples, was conducted. Based on the results 

shown in Table 4.16, it is indicated that there was a significant difference 

between 1-CNN and other models on dataset-2. The p value of 1-CNN with 

other models was less than the significance level α = 0.05. 

 

 

Table 4. 16.  All model statistical analysis on dataset-2 

Models Test statistic value p-value 

1-CNN * Inception-V3 134.056 0.00053 

1-CNN * Resnet 130.221 0.0036 

1-CNN * 2-CNN 134.056 0.00053 

1-CNN * AlexNet 122.557 0.017 

 

 

The statistical analysis, as well as the evaluation of recognition outcomes, 

demonstrated that the proposed 1-CNN model exhibited superior performance 

in comparison to the other models. The statistical assessment, relying on 

calculated p-values, provided compelling evidence of the statistically 

significant differences in performance among the models. Furthermore, the 

assessment of recognition results, using various evaluation metrics, 

consistently preferred the proposed 1-CNN model. These results clearly 
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indicate the superior ability of the proposed model in accurately recognizing 

cucumber leaf diseases and pests. These findings highlight the robustness and 

effectiveness of the proposed 1-CNN model, emphasizing its potential for 

various applications in diagnosing cucumber diseases and healthy leaves. 

 

4.7.  Summary  

 

In the domain of agriculture, diagnosing and classifying cucumber leaf 

diseases and pests is a critical task. In this chapter, an automated cucumber leaf 

disease and pest recognition system was proposed. Two different datasets, 

locally created dataset was used including five cucumber diseases and pests, 

i.e. spider, leaf miner, downy mildew, powdery mildew, CYSDV, and healthy 

leaf classes, and another publicly available dataset was used. Then they 

enlarged using data augmentation techniques to reduce overfitting. Quantitative 

experiments verified that the proposed 1-CNN model achieved superior 

recognition results. Additionally, comparison test results indicated that the 

proposed 1-CNN algorithm performed better than the 2-CNN, AlexNet, 

Inception-V3, and Resnet-50 models. The proposed 1-CNN algorithm yielded 

the best result as the number of sample images increased and the number of 

classes decreased. 
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5.1. Introduction  

 

An improved and proposed CNN model procedure from scratch for 

cucumber leaf disease and pest recognition system was presented in Chapter 4. 

The detection procedure of cucumber leaf disease and pest symptoms bases on 

deep learning models and research activities in this chapter is regarded as the 

second part within the overall research plan outlined in Chapter 3. This chapter 

focuses on addressing the problem of detecting symptoms in early stages, and 

detecting multiple disease symptoms on one cucumber leaf surface. The main 

objective of this chapter is to improve and develop YOLOv5 model based on 

deep CNN algorithm model for detecting cucumber leaf disease and pest 

symptoms.  

The chapter starts with an overview of the procedures investigated in this 

part. It then proceeds to explain the dataset that was collected and prepared for 

the model by labeling image samples, followed by the improved YOLOv5 

algorithm for detecting diseased cucumber leaf symptoms. The performance 

metric criteria are presented in relation to the accuracy of detection, as 

evaluated through the utilization of a confusion matrix. Furthermore, deep 

learning models in the YOLO family versions were applied for detection and 

comparing them with the improved yolov5 model. Finally, the chapter 

concludes with a summary of the investigations conducted. 

 

5.2.  Overview of the Improved Algorithm  

 

The investigation in this chapter can be divided into three main parts, namely 

data preparation, data labelling and finally improving the network model. 

Figure 5.1 illustrates an overview of the experimental detecting procedure for 

cucumber leaf disease and pest. The first objective of this chapter is to improve 

YOLOv5 model-based deep learning algorithms suitable for the accurate 
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detection of small cucumber leaf disease and pest symptoms under natural light 

conditions. The system takes an image as input, which includes symptoms of 

cucumber leaf diseases and pests, based on a constructed leaf image dataset. 

Another objective in this chapter is, the improved YOLOv5 model from scratch 

with YOLOv5 family pre-trained models such as YOLOv5s, YOLOv5m, 

YOLOv5l, YOLOv5n, and YOLOv5x have been examined. The purpose of the 

developed system can help farmers detect the symptoms of these issues in 

timely stage before they cause significant damage to crops. This can help 

farmers take timely action and reduce their losses.  

 

 

 

 

Figure 5. 1 An overview the procedure of detecting cucumber leaf diseases and pests 
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5.3. Data Preparation 

 

In this chapter, the locally created dataset was used to conduct the model 

experiments. The dataset used in this chapter includes four various cucumber 

leaf diseases and pests. Figure 5.2 shows sample images of the dataset. It 

contains four cucumber disease classes including two pest diseases (spider and 

leaf miner), two fungal diseases (downy mildew and powdery mildew). Total 

images of the dataset are 3057 images, each class having a sample image 

number in the range of 313–1379. Class diseases names and sample numbers 

were described in Table 5.1.  

 

 

 
Figure 5. 2  Samples of Images of the dataset 

 

 

Images of cucumber leaf diseases and pests were involving single and multi-

disease infections. However, cucumber leaf symptom diseases in the images 

were not labeled. The region symptoms in each image in the dataset should be 

labeled and annotated in order to be fit into the model as an input. 
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Table 5. 1 Dataset class image disease name and number 

Class 

No. 
Class Name 

Original 

dataset 

Training 

images 

Testing 

images 

1 Spider 555 455 100 

2 Leaf Miner 810 709 101 

3 Downy mildew 313 273 40 

4 Powdery mildew 1379 1199 180 

 Total 3057 2636 421 

 

  

 

5.4. Data Pre-Processing (Data Labelling) 

 

In this study, we prepared a dataset of 3057 images for cucumber leaf disease 

and pests to train YOLOv5 model in our experiments. To make the images 

suitable as input for the model, it's necessary to mark and annotate the 

symptoms in the regions of cucumber leaf diseases and pests in each image in 

the dataset. A labelling tool named (Image Labeler software) was used. We 

labeled and annotated the regions of interest for cucumber leaf diseases and 

pest symptoms with rectangular boxes in each image in the dataset using a 

custom algorithm, which was explained in detail in Section 3.5. Images which 

were used from the collected dataset for the training and validation sets. The 

names and numbers of images in each class are shown in Table 5.1. 

Furthermore, all image size dimensions are fixed at a resolution of 640 × 640. 

This step aimed to minimize computational complexity and enhance the 

model's efficiency. The labeling test image procedure resulted in a number of 

instances, which are presented in Table 5.2. Some test images included more 

than one symptom of the same disease or pest type, while other images included 

symptoms of different diseases or pests. 
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Table 5. 2. The labelling test image procedure resulted in a number of instances 

Class name Test Image Sample Number Test Instances 

Downy Mildew 40 497 

Leaf Miner  101 452 

Spider 100 191 

Powdery Mildew 180 1765 

Total 421 2905 

 

 

5.5. Cucumber leaf Disease and Pest Detection Model 

 

With the rapid development of the agricultural sector, particularly in leaf 

disease detection, numerous research studies and implementations have 

employed deep learning techniques to identify leaf diseases and pests. Inspired 

by the recent advancements in deep learning models, our research proposed an 

approach for detecting cucumber leaf diseases and pests by improving the 

YOLOv5 model. Among the comprehensive algorithms, the YOLOv5 

algorithm stands out as the most notable within the YOLO series. In this study, 

the YOLOv5l is improved as the base algorithm. Consequently, addressing the 

issues of precisely detecting leaf symptom regions and making improvements 

to the original YOLOv5 algorithm are considered of utmost importance. 

Therefore, YOLOv5l has been improved and enhanced in order to detect small 

cucumber leaf diseases and pest symptoms accurately. The enhancements made 

to the YOLOv5l algorithm seek to enhance its capability to accurately detect 

and classify different types of diseases and pests affecting cucumber leaves. 

The vital goal is to provide a robust and effective solution that contributes to 

improved agricultural practices and facilitates timely intervention for disease 

management in cucumber crop leaves. 
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5.5.1.  Improved YOLOv5 Network Structure  

 

The cucumber leaf disease spots and pest symptoms are small objects 

compared with the whole plant leaf images, especially in cucumber plant 

diseases; therefore, the standard YOLOv5 model still has an issue in 

generalization and domain adaptation, despite its widespread popularity and 

recognized efficiency (Li, Ahmed, et al., 2022). In this circumstance, to 

establish a lightweight deep learning model and the most intuitive purpose to 

fit the embedded system, we improved the YOLOv5 model to focus on 

adapting the network to specific cucumber leaf disease and pest detection tasks. 

The improved YOLOv5 model architecture includes four main parts: input, 

backbone, neck, and head. In this study, the YOLOv5l model was developed 

based on the model size that was used with a large number of data samples.  

Our proposed model begins by inputting the image into the network, with 

the image size set to 640 × 640 × 3. Subsequently, a series of middle layers is 

employed. These include focus layer, convolutional layers with batch 

normalization and the SiLU activation function, along with up-sampling layers, 

concatenation layers, and finally, detection layers. The convolutional layers 

play a crucial role in feature mapping and extraction, utilizing filters to perform 

convolutions that capture diverse levels of detail from the input image. In the 

backbone section, filter sizes of (64, 128, 148, 224, and 256) are employed with 

3x3 window size, while in the neck section, the filter sizes are specified as (512, 

256, 128, and 128). The filter size determines the dimensions of the regions in 

which neurons establish connections with the input, influencing the receptive 

field and information integration within the network. The improved YOLOv5 

model architecture is shown in Figure 5.3. 
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Figure 5. 3 An improved YOLOv5l model structure 

 

 

Furthermore, several modifications were implemented on the original 

YOLOv5 model to address the aforementioned concerns and challenges 

effectively. The major modifications between the standard and the improved 

YOLOv5 are particularly applied in the backbone section. Firstly, the first 

convolutional layer was replaced with a focus layer, which involves 

partitioning the input image to acquire a downscaled feature map that contains 

twice the amount of information, to reduce the parameters, layers, CUDA 

memory, and FLOPS, as shown in Figure 5.4. 

 

 

 

Figure 5. 4 Focus layer architecture (He and Wei, 2023) 
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Secondly, the Bottleneck cross-stage partial (CSP) is added and used instead 

of C3 module to enhance the representation of features. BottleneckCSP was 

used with different filter, kernel, and stride sizes, which improved the accuracy 

result. Additionally, the utilization of BottleneckCSP serves to tackle the 

concern of excessive computational requirements during inference, with a 

focus on optimizing the network structure design. Moreover, the incorporation 

of BottleneckCSP significantly enhances the network's capacity for effective 

learning. The BottleneckCSP consists of four convolutional modules, batch 

normalization, and Bottleneck. The Bottleneck is a residual block known for its 

accelerated computational speed. Additionally, it allows for the creation of 

deeper network architectures while minimizing computational parameters 

(Zhou et al., 2023). The modifications were shown in Figure 5.5. Finally, the 

last C3 module layer was removed with the objective of decreasing the count 

of layers and parameters and enhancing the capability of feature extraction. 

Neck section of YOLOv5, comprises supplementary convolutional layers 

that are responsible for integrating and combining features extracted from 

different spatial scales or feature maps. The model's capacity to effectively 

handle objects with diverse sizes and aspect ratios is also enhanced. The entire 

feature hierarchy with precise localization signals in the lower layers through 

bottom-up path augmentation were improved, which shortens the information 

path between the lower layers and the topmost feature. In addition, YOLOv5 

uses a path aggregation network (PANet) to improve information flow. In the 

neck section, all C3 modules were replaced with the BottleneckCSP module. 

These modifications are expected to enhance the models ability and efficacy in 

accurately detecting cucumber leaf disease and pest symptoms region. 
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Figure 5. 5. Comparison of YOLOv5 model  (Left figure is the C3 layer, Right figure is the 

way C3 is replaced by BottleneckCSP) 

 

 

5.5.2. Hyper-parameter setting    

 

The improved YOLOv5 model was trained using a python. During training 

and processing, different model hyperparameters, such as number of layers, 

filter numbers and sizes, were carefully adjusted to achieve the best detection 

accuracy outcome. Furthermore, three other factors to consider were the size of 

the input shape, the epoch number, and the size of the batch. 

In this study, the training dataset images were resized into three different 

sizes: 380, 640, and 800. Among these sizes, the highest results were achieved 

when the images were resized to 640×640×3. Initially, the model was trained 

for 100 epochs. Subsequently, the number of epochs was fine-tuned and tested 

with values of 126, 150, 172, 185, and 210, ultimately determining that the best 

results were obtained with 100 epochs. To regulate the model's response to 

error, a learning rate parameter of 0.01 was employed during the training 

process. Moreover, the optimal batch size for training was determined to be 8, 
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while batch sizes of 16 and 32 were also tested. The specific training hyper-

parameters for YOLOv5 can be seen in Table 5.3. Following improvements 

made to YOLOv5l, the resulting model comprised a total of 6,613,189 

parameters and 214 layers. 

 

 

Table 5. 3  Improved YOLOv5l  model hyper-parameter settings 

Parameters  Value 

Image size 640  x 640 x 3 

Batch size 8 

Number of Epochs 100 

Learning rate 0.01 

Optimizer SGD 

 

 

5.5.3. Incorporating the Attention Mechanism 

 

Effective feature extraction is essential for cucumber leaf disease and pest 

symptom detection using deep learning. However, this task becomes 

challenging when using common YOLOv5 models due to the small size of spot 

symptoms relative to the entire image. To address this issue and enhance the 

significance of spot symptom diseases, we introduce the convolutional block 

attention module (CBAM) into the backbone section of both the improved and 

original YOLOv5l models. CBAM combines channel and spatial attention, as 

illustrated in Figure 5.6, where channel attention emphasizes important features 

and suppress less relevant ones. Spatial attention focused on modelling the 

interconnections among various spatial locations within a feature map. This 

enables the model to concentrate on significant regions while suppressing 

irrelevant or less informative areas (Niu et al., 2021). The integration of these 
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attention mechanisms results in a superior feature representation. CBAM model 

is introduced after the convolutional layer of the backbone section of the 

YOLOv5l network model.  

 

 

 
Figure 5. 6 Structure of CBAM (He and Wei, 2023) 

 

 

In Figure 5.6, The CBAM incorporates both channel attention (Mc) and 

spatial attention (Ms). For a given feature map, 𝐹 ∈ 𝑅𝐶𝑥𝐻𝑥𝑊, where C denotes 

the channel count and HxW signifies the feature map's dimensions, the CBAM 

module first processes F through the channel attention module. 

Simultaneously, it uses average and max pooling methods to gather information 

about each channel. These obtained parameters are then combined using a 

multilayer perceptron (MLP) and activated using the Sigmoid function, 

resulting in channel attention characteristics. Next, the output from Mc is fed 

into the spatial attention module, where channel information is gathered again 
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using average and max pooling, followed by a convolutional layer. The 

obtained parameters are then activated through the Sigmoid function, yielding 

spatial attention features. 

In this study, the CBAM is incorporated into the original YOLOv5l network 

backbone section. The performance of cucumber leaf disease and pest symptom 

detection is improved by adding CBAM models after the convolutional layer 

of the backbone section of the YOLOv5l network model via enhancing feature 

extraction. Two CBAM blocks have been inserted after the last two 

convolutional layers in the backbone network section. The structure of the 

original YOLOv5l network with the added CBAM module is illustrated in 

Figure 5.7. The images were resized to 640×640×3; there was 100 epochs in 

the training procedure. During the training procedure, a learning rate value of 

0.01 was used. Moreover, the optimal batch size for training was determined to 

be 8.  

 

 

 
Figure 5. 7  Network architecture of the original YOLOv5l with incorporation of CBAM in 

the backbone section 
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Furthermore, the CBAM is incorporated into the improved YOLOv5l 

model. CBAM block has been added following all the convolutional layers in 

the backbone network section. The structure of the improved YOLOv5l 

network with the added CBAM module is depicted in Figure 5.8. The images 

were resized to 640×640×3, and the model was trained for 100 epochs. During 

the training process, a learning rate value of 0.01 was used. Moreover, the 

optimal batch size for training was determined to be 8. 

 

 

 
Figure 5. 8 Network architecture of the improved  YOLOv5l with the incorporation of 

CBAM in the backbone section 

 

 

5.6.  Evaluation Indicators (Evaluation Model Metrics) 

 

In this study, the improved YOLOv5 model's detection capability has been 

evaluated using three different metrics; the model applicability in real scenarios 
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was evaluated using precision, recall, and mAP @0.5. The calculation formulas 

of the recall, precision and mAP were defined and explained in Section 3.7.   

 

5.7.  Results and Discussion 

 

This section provides a comprehensive analysis and interpretation of the 

results that have been empirically obtained from conducting different 

experiments on the improved YOLOv5 from scratch. This involves evaluating 

the accuracy and efficiency of these algorithms on a dataset of annotated 

images and their performance is compared to that of other state-of-the-art 

models. This study improves a lightweight YOLOv5l algorithm from scratch 

based on deep learning methods to precisely detect cucumber leaf diseases and 

pest spot symptoms. The detection system is done to identify and localize 

disease spots at timely stages and to minimize time consuming, hence reducing 

the network layers and increasing the accuracy rate. The performance of the 

detection system was measured based on percentage of correctly identified and 

localized disease and pest spots.  

 

5.7.1. Cucumber Leaf Disease and Pest Detection Analysis  

 

To assess the effectiveness of the proposed YOLOv5 models in accurately 

detecting cucumber leaf pests and disease symptoms, a series of experiments 

were performed. These experiments focused on various factors including the 

input image size, number of layers, parameters of the convolutional layers such 

as filter size and window size, activation function, batch size, and number of 

epochs. The study also involved in a comparative analysis of all YOLOv5 

model versions with the improved YOLOv5l network specially designed for 

cucumber leaf disease and pest detection. The evaluation of model performance 
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and effectiveness involved the use of metrics including recall, precision, and 

mAP, which were calculated based on the confusion matrix. 

The choice of selecting YOLOv5l as the base model for improvement and 

testing purposes was based on the correlation between the model size and the 

size of the constructed dataset. The improved YOLOv5l model was trained for 

100 epochs using a dataset consisting of 3057 images for training, and 

validation purposes. The improved YOLOv5l network was trained from scratch 

specifically for this test. The outcomes indicated that the enhanced model 

outperformed the other YOLOv5 models, achieving an mAP@0.5 accuracy of 

80.10%. Precision and recall, based on the confusion matrix, yielded values of 

73.80% and 73.90%, respectively. The improved YOLOv5l model precision, 

recall, and mAP@0.5 metrics are provided which were presented in Table 5.4. 

 

 

Table 5. 4 Precision, recall, and mAP results of the improved YOLOv5l 

 Precision (%) Recall (%) mAP@0.5 (%) 

All Classes 73.8 73.9 80.1 

 

 

Furthermore, Figure 5.9 provides the P-R (precision-recall) curves obtained 

from the conducted experimental results. The algorithm's performance is 

considered superior when the P-R curve approaches the coordinate position (1, 

1). The precision-recall curve (PRC) is a visual representation that illustrates 

the relationship between precision (also called positive predictive value) and 

recall (also known as sensitivity or true positive rate). The PRC is graphically 

displayed, with the x-axis representing recall and the y-axis representing 

precision. 
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Figure 5. 9. PR curve: With the recall rate on the horizontal axis and the precision rate on 

the vertical axis 

 

 

5.7.2. Comparison with Original YOLOv5l Algorithm 

 

In order to indicate the superior performance of the improved algorithm, this 

study conducts a comparative analysis with the original YOLOv5l model in the 

context of detecting cucumber leaf disease and pest symptoms. The evaluation 

metrics employed in this comparison include precision, recall, and mAP@0.5. 

The improved YOLOv5l model and the original YOLOv5l version models 

were training for 100 epochs using a constructing dataset consisting of 3057 

images for training, validation, and testing purposes; a test set of 421 randomly 

selected images were used in this dataset. 

In this study, the improved YOLOv5l model trained from scratch was 

compared with the original YOLOv5l model, based on the best mAP@0.5 

result. However, the original YOLOv5l model utilizes its own pre-trained 

weights obtained from the common object in context (COCO) dataset (Jung 

and Choi, 2022). The improved YOLOv5l model demonstrated superior 

mailto:mAP@0.5
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performance with an mAP@0.5 of 80.10% as compared to the original 

YOLOv5l model's mAP@0.5 of 79.00%. Experimental results presented that 

the improved model outperformed the original YOLOv5l model by 1.1% 

achieving with mAP@0.5. Comparative results for disease and pest detection 

are presented in Figure 5.10, where precision, recall, and mAP metrics are 

provided.  

 

 

 
Figure 5. 10 Comparison of result values for original and improved YOLOv5l models 

 

 

Based on the findings presented in Figure 5.10, it can be concluded that the 

improved YOLOv5l model outperformed the original YOLOv5l model 

exhibiting superior performance in terms of precision, recall, and mAP. 

Notably, the improved model was trained from scratch without utilizing pre-

trained model weights, and it demonstrated the best performance compared to 

the weights obtained from the trained YOLOv5 model. As shown in Figure 

5.10, the precision and recall for the improved YOLOv5l model increased by 

1.5%, and 2.3%, respectively. In addition to that, the improved YOLOv5l was 

selected due to its optimal balance between accuracy and speed, along with its 
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ability to effectively detect small leaf disease spot symptoms, which were 

abundant in the dataset.  

The training process of the improved YOLOv5l is shown in Figure 5.11. 

Based on metric curves, the results of the graphs indicate that the improved 

model demonstrates superior accuracy in detecting cucumber leaf diseases and 

pest symptoms compared to other models. Figure 5.11 displays the metric 

curves representing the progression of training and validation sets. The first 

three columns of the figure illustrate the loss components of the improved 

YOLOv5l model, specifically the box, object, and classification losses during 

the training processes. The second row's first three columns illustrate the 

validation process. Throughout the training, the experimental results indicate 

accurate identification of the four classes used for detection. Considering the 

change in the threshold value for the confidence level, the performance of the 

object detector was evaluated based on the PRC method. The confidence level 

refers to a value that indicates the user’s confidence in the algorithm’s 

detection. As a comparison, Figure 5.12 illustrates the original YOLOv5l 

training and validation process. 

Furthermore, to the aforementioned points, the evaluation of the improved 

YOLOv5l model's detection capabilities necessitates conducting performance 

analysis in scenarios where small objects are present. This analysis takes into 

account the different sizes of diseases and pest symptoms that may occur during 

their various stages. Given the substantial size variations demonstrated by these 

objects, accurate detection and identification in small disease and pest symptom 

object scenarios becomes particularly important. This evaluation is essential for 

ensuring the model's reliability and applicability in a variety of real-world 

scenarios involving diseases and pest symptoms of different sizes. 
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Figure 5. 11 Convergence the loss functions of training and validation sets for improved 

YOLOv5l 

 

 

 

Figure 5. 12  Convergence the loss functions of training and validation sets for original 

YOLOv5l 

 

 

Based on the findings presented in Table 5.5, it is concluded that the 

improved YOLOv5l model exhibits superior performance in detecting small 

disease spot instances and larger disease spot instances. The evaluation of each 
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class's performance highlights notable results, particularly in the spider class. 

Precisely, the spider detection achieved a precision of 83.4%, recall of 73.9%, 

and mAP@0.5 of 86.0%. In contrast, the leaf miner class presents even better 

performance with a recall of 79.2%. This study has significantly improved the 

detection of small pests and disease symptoms. Regarding other disease classes, 

such as powdery mildew and downy mildew, the mAP@0.5 values were 79.6% 

and 74.8% respectively. As the data presented in Table 5.5, the improved 

YOLOv5l model demonstrated superior results, especially in the spider class 

when compared to the other classes. 

 

 

Table 5. 5 Key indicator values of the improved YOLOv5l 

Parameter 
Downy 

Mildew 
Leaf Miner Spider 

Powdery 

Mildew 
Total 

Precision (%) 64.30 66.30 83.4 81.2 73.8 

Recall (%) 76.7 79.2 73.9 65.7 73.9 

mAP@.5 (%) 74.8 80.2 86 79.6 80.1 

 

 

Furthermore, in this study, we present the robustness and detection 

effectiveness of the improved YOLOv5l model. We considered variables 

including the count of parameters, layers, and the duration of the training 

process. These aspects are illustrated in Table 5.6. 

 

 

Table 5. 6. Experimental output parameters of improved YOLOv5l and YOLOv5l models 

Models 
No. 

Layers 
Parameters Weight Size 

Training  

Time/ Hours 

Improved YOLOv5l 214 6613189 13.6 MB 2.58  

Yolov5l 267 46124433 92.8 MB 4.41 
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Based on the values presented in Table 5.6, we confirm that the improved 

model exhibits superior characteristics in terms of the training process time, 

number of layers, number of parameters, and weight sizes. Specifically, the 

improved model achieved a training process time of 2.58 hours, which 

demonstrates a faster training procedure, with a total of 214 layers. 

Furthermore, the number of parameters associated with the improved model is 

6613189, indicating a more optimized and efficient design. In terms of weight 

sizes, the improved model recorded 13.6 MB, reflecting efficient utilization of 

storage resources. From Table 5.6, we provide evidence that the improved 

model outperformed the original YOLOv5l model in terms of space complexity 

and training time consumption. The improved model's faster training time 

allows for expedited model development and deployment, saving valuable 

computational resources. Additionally, the reduced space complexity of the 

improved model optimizes storage utilization, resulting in more efficient and 

scalable implementation. These findings demonstrate the significant 

advancements attained through the improvement made to the YOLOv5l model. 

The multiscale training approach suggested in this research can improve the 

robustness of the model for the detection of images of various resolutions. This 

research separates the input image size into different distinct resolution sizes 

380, 640, and 800, to examine the detection effect of the model on the input 

images of various resolutions. The best performance was achieved at a medium 

resolution of 640. 

In addition, to evaluate how effectively the improved model performs, 

external test images were used for experimentation, as illustrated in Figure 

5.13. As can be observed from Figure 5.13, the improved YOLOv5l can 

effectively address challenges related to false detection and missing detection 

issues. This capability remains reliable even in scenarios involving with a 

multiple of disease symptoms and diverse small-sized disease and pest spots 

within the image. Therefore, based on the experimental results, the improved 
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YOLOv5l model proves to be a capable solution for effectively accomplishing 

the detection task of cucumber leaf diseases and pests. Particularly, this 

deduction is derived by considering various factors such as detection accuracy, 

detection speed, minimal parameter number, the presence of small symptom 

disease spots, and the overall weight sizes. 

 

 

 
Figure 5. 13 Comparison of the detection effects of all classes. (a–d) Improved YOLOv5l ; 

(e–h) Original YOLOv5l. 

 

 

5.7.3. Ablation Experiments 

 

In this study, the algorithms conducted improvements on both the improved 

YOLOv5l and original YOLOv5l detection framework. Additionally, the 

CBAM was introduced into both the improved and original models. To verify 

the effectiveness of the presented methods for cucumber leaf disease and pest 

symptom detection, ablation experiments were conducted using two groups of 
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networks based on YOLOv5. The results of the evaluation and comparison of 

model improvement strategies were shown in Table 5.7. 

 

 

Table 5. 7 Results of ablation experiments 

Models 

Evaluation Metric (%) 
No. of 

Layer 

Training 

Time / 

Hours 

Weight 

size (MB) Precision  Recall mAP@0.5 

YOLOv5l 72.3 71.6 79 267 4.41 92.8  

YOLOv5l + CBAM 75.1 73.8 79.8 289 4.01 94.5  

Improved YOLOv5l 73.8 73.9 80.1 214 2.58 13.6  

Improved YOLOv5l     

+ CBAM 
74.9 73.3 80.2 258 2.73 13.8  

 

 

The findings from Table 5.7 demonstrate that each model contributes to 

enhancing the model's overall performance to different degrees, as evaluated 

by precision, recall, and mAP@0.5 metrics. The initial detection outcome for 

the original YOLOv5l model is presented in the table's first row, achieving 79% 

mAP@0.5. When the CBAM layer is added into the backbone section of the 

original YOLOv5 after the last two convolutional layers, the detection results 

for precision, recall, and mAP@0.5 show an increase of 2.8%, 2.2%, and 0.8% 

respectively, as compared to the original YOLOv5 network. On the other hand, 

the detection result accuracy for precision, recall, and mAP@0.5 of the 

improved YOLOv5l increased by 1.5%, 2.3%, and 1.1% respectively, as 

compared to the original YOLOv5l network. Furthermore, when the CBAM 

layer is added into the backbone section of the improved YOLOv5 after all the 

convolutional layers, the detection results for precision, recall, and mAP@0.5 

experienced an increase of 2.6%, 1.7%, and 1.2% respectively, as compared to 

the original YOLOv5 network. 

mailto:mAP@0.5
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Through the comparison of ablation experiments, it was observed that the 

performance improvement is achieved by the improved model. The improved 

YOLOv5l model demonstrates efficient detection capabilities for cucumber 

leaf diseases and pests while considering factors such as detection speed, a 

smaller number of parameters, fewer layers, and manageable weight sizes. 

 

5.7.4. Comparison with All YOLOv5 Family Version Models 

 

In this study, the YOLOv5 models including YOLOv5n, YOLOv5s, 

YOLOv5m, YOLOv5l, YOLOv5x, and the improved YOLOv5l from scratch 

were carried out  to detect disease symptoms in cucumber leaves. Based on the 

confusion matrix, various calculations were performed, including recall, 

precision, and mAP@0.5. The performance of all the standard YOLOv5 family 

model versions was compared to accurately verify the effectiveness of the 

improved YOLOv5l model. Consequently, we conducted a series of 

experiments to test the evaluation of YOLOv5n, YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x models using the constructed dataset. Each 

experiment was performed independently, and the precision, recall, and 

mAP@0.5 values were compared.  The resulting data were summarized and 

presented in Table 5.9 and Figure 5.13 for ease of comparison. Upon analyzing 

the final values, our proposed model exhibited the best performance. 

The findings resulting from the analysis of the experiments illustrated in 

Table 5.8 and Figure 5.14 provide clear evidence that the improved YOLOv5l 

model outperformed the other models and demonstrated a higher level of 

accuracy in the detection of small cucumber leaf disease and pest symptom. 

The improved YOLOv5l model demonstrated a superior performance in 

accurately identifying and localizing symptoms within a given image scene. 

Thus, founds its prominence as a robust and efficient solution for object 

detection tasks. 
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Figure 5. 14 Performance evaluation comparison of result values for YOLOv5 and our 

improved model 

 

 

Table 5. 8. All YOLOv5 model versions performance comparison with improved 

YOLOv5l model. 

                                                           Evaluation metrics (%) 

Models Precision Recall mAP@.50 

YOLOv5n 73.2 74.2 77.9 

YOLOv5s 75.8 73.4 79.1 

YOLOv5m 73.7 74.1 79.6 

YOLOv5l 72.3 71.6 79 

YOLOv5x 73.6 73.5 79.4 

Improved YOLOv5l 73.8 73.9 80.1 

 

 

5.8. Summary  

 

The inadequate adaptability of the model contributes to the obsolescence of 

the reference model, thus leading to poor accuracy in detecting small symptoms 

and a notable increase in the rate of missed detections. Identifying and 

localizing symptom regions associated with multiple diseases and pests posed 

a significant challenge in terms of detection. This chapter discusses the 
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enhancement of an adaptive model designed for detecting cucumber leaf 

diseases and pest symptoms. The model, based on the improved YOLOv5l, 

utilizes a custom dataset to support adaptive learning and the identification of 

regions with disease symptoms. 

Based on the severity of changes in the YOLOv5l model, the improved 

YOLOv5l model experienced retraining, which included modifications in 

various aspects such as the input image size, number of layers, parameters of 

the convolutional layers including filter size and window size, batch size, and 

number of epochs. The experimental results obtained provide the improvement 

in detection accuracy, particularly for instances involving small disease and 

pest symptoms. Moreover, the findings of this chapter face a difficulty related 

to recognizing small object instances within image classes. In addition to 

addressing detection accuracy, the improved YOLOv5l model effectively 

considers a range of other factors, including detection speed, minimal number 

of parameters, the presence of small symptom disease spots, and the overall 

weight sizes. 
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6.1. Conclusion 

 

Disease and pests pose a significant obstacle to cucumber production and 

quality in agricultural farming. Recognizing various cucumber leaf diseases is 

of utmost importance for farmers worldwide. Unfortunately, the current 

methods for diagnosing cucumber leaf diseases and pests manually are often 

laborious, time-consuming, and subjective. The crucial challenges outlined 

above have prompted numerous researchers to dedicate their efforts towards 

improving the accuracy of diagnosing and detecting cucumber leaf diseases and 

pests to prevent the spread of such diseases and minimize crop damage.  

Therefore, there is a demanding need for an effective algorithm that enables the 

diagnosis, classification, and detection of cucumber leaf diseases and pests. 

This necessity arises from the desire to propose and improve an automated 

system capable of actively classifying cucumber diseases and health based on 

their leaves. The study aims to enhance a model for the effective diagnosis and 

detection of cucumber leaf diseases and pests. It focused on the development 

of an adaptive model tailored for use in agricultural farming, where the accurate 

diagnosis of these diseases is crucial. The three contributions have been divided 

into three phases. 

In the first phase, a new structured dataset was created that includes healthy 

and infected cucumber leaves with single and multi-infections. The data are 

collected from natural scenes in Kurdistan region, Sulaymaniyah, Rania. It 

contains two pest diseases (spider, and leaf miner), two fungal diseases 

(powdery mildew and downy mildew), one viral disease CYSDV, and one 

healthy leaf. Total images of the dataset are 4868 images. It will also be 

available as a standard public dataset for a wide range of research community.  

The objective of the second phase is to improve the accuracy of recognizing 

cucumber leaf diseases and pests and minimize the error classification rate 

caused by the number of image samples and classes in the dataset. This phase 
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focused on the development of fine-tuned CNN algorithm for cucumber leaf 

disease recognition system. It is necessary when farmers are unable to diagnose 

leaf diseases and distinguish healthy cucumber plants. The results showed a the 

improvement in correct classification accuracy and a reduction in error rates. 

Significant improvements were observed in cases where the dataset was 

balanced through data augmentation techniques to enlarge the size of dataset   

and a reduced number of classes were used. 

Quantitative tests confirmed the CNN's superior recognition performance. 

The accuracy achieved by the proposed CNN model on the unbalanced dataset 

was 97.53%, while on the balanced dataset, it reached 98.19%. Additionally, 

the accuracy achieved on the publicly available dataset was 100%. The 

comparative test results showed that the proposed model outperformed other 

models, including Pre-trained models (AlexNet, Inception-V3, Resnet-50), and 

two combined CNN models developed from scratch. The system will be 

deployed as a real-time mobile application in agriculture farming. It would also 

be useful for farmers to detect and identify cucumber leaf diseases at early 

stages. 

The third phase, corresponding to the third objective of the PhD dissertation, 

focused on enhancing the detection capabilities for timely identification of 

cucumber leaf disease and pest symptoms. The aim was to enable effective 

management to prevent their spread and minimize crop damage. This phase 

involved the development of a model for cucumber leaf disease detection, 

utilizing the improved YOLOv5l network. With the aim of reducing the model's 

size, modifications were applied to the model's hyper-parameters. Additionally, 

the BottleneckCSP module was used instead of the C3 module within both the 

backbone and neck network sections. As a result of reducing the number of 

parameters, layers, and computations, there was a significant improvement in 

the detection impact. The experimental results indicated that cucumber leaf 

disease and pest detection based on the improved YOLOv5l model obtained 
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80.10% mAP@0.5, 73.8% precision, and 73.9 recall.  Furthermore, the training 

process time is only 2.58 hours. Additionally, the authenticity of the proposed 

model is demonstrated by incorporating the CBAM into both the improved and 

original YOLOv5l model. Furthermore, a comparison of the detection findings 

revealed that the improved YOLOv5l network outperformed the original 

YOLOv5l, YOLOv5n, YOLOv5s, YOLOv5m, and YOLOv5x networks. The 

improved model demonstrated better detection accuracy, particularly for large 

object symptoms and cases involving multiple disease symptoms on a single 

leaf surface. Additionally, it significantly reduced storage complexity and 

training time consumption. The system will be deployed as a real-time mobile 

application, operating in dynamic and immediate environments. 

 

6.2.  Recommendation for Future Studies 

 

The results of this study investigation are expected to utilise a considerable 

influence on the future direction of researches in the domain of plant cucumber 

leaf disease and healthy recognition and detection systems. An early detection 

and identification is much considerable preliminary phase. This research 

presents a notable opportunity and direction for optimizing system efficiency, 

particularly in constructing lightweight systems. The following perspectives 

will guide for future studies: 

a) Focusing on enlarging the constructed cucumber leaf dataset by 

increasing disease and pest types and sample image number. 

b)  Focusing on diagnosing cucumber leaf disease and healthy system that 

would be a reliable tool for farmers and plant pathologies to help humans 

save their efforts and reduce plant pesticide usage. Furthermore, the plan 

will be included expanding the dataset to encompass various disease 

types and variations, with the goal of early-stage disease detection. 
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c) Despite the encouraging outcomes obtained from utilizing the improved 

YOLOv5 network for cucumber leaf disease and pest detection, there is 

still a need for enhancing the accuracy of detection. The network model 

structure will be further adjusted in subsequent studies to enhance the 

network performance of the cucumber leaf disease and pest detection 

models. 
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   پوخته
     

مێرووەکڵن و نەخۆشتییە وووەکییەکڵن  رر ررنتورن  اڵکوەنن کە کڵننتەننڵن لە کشتوککڵدا،   

  كردنیڵنلەسەن رەڵای خەنڵن هەنە کڵرێک رەشە دەکەن. نەبکون  دەسونیشڵنکردن  خیر، و کۆنورۆڵ نە

. لە ئێتتتتتوتڵد،  كتەكتەنووهنتڵووکن  لەو،نەنە ببێوە هۆی کەمبکونەوەی بەنهەم نتڵن لتە  كتڵر  ییکنتتتتتوتا،لتە

وە لە نتڵستتتتینەوەی نەخۆشتتتتییە  رتەبکنتەجکریتڵن،ن لە ستتتتەن،نتتتتتەنی جیبتڵنتا، وووبەوووی کێشتتتتە  

جۆن،وجۆنەکڵن  رەڵای خەنڵن. بەد،خەوە  رەکنیکەكڵن  ئێتتتتتوڵ بۆ دەستتتتونیشتتتتڵنکردن و دۆ ننەوەی  

كڵریك   ۆننش  وه  نەخۆشتتییەکڵن  رەڵای خەنڵن بکێک   ۆن لە ستتەنوڵوە مرۆنیەکڵن بەکڵندەهێنێ 

ییتا،ن  ئەلتۆننوێێک  کتڵننتەن کە نهلەبەن ئەوە  یێکنتتتتتوییەک  د،و،کر،و هەنە بۆ یتە  .تد،ایرۆدهبتە

 بتە  بیت رک،نتڵی دەستتتتونیشتتتتڵنکردن و یۆلێنکردن و دۆ ننەوەی نەخۆشتتتتییەکتڵن  رەڵای خەنتڵنی هتە

ن ستتە  لەە  ئۆرۆمڵریكیییا،ن و بڵشتتورکردن  مۆدێکێکنهئەم رێزە یەمەبەستتو   .  ك  ئۆرۆمڵریك نەشتتیکه

  كڵن ەنەخۆشتتتی  یۆلینكردن  بەکڵنهێنڵن  رەکنیکەکڵن  اێربکون  قکوڵ بۆ دەستتتونیشتتتڵنکردن و  مڵیبنە

لێکۆدینەوەکەد،  وەنان  کێشتتە و ررا  دۆ ن،ونەرەوە کە یێکنتتتویڵن بە وڵنەستتەن   رەڵای خەنڵن. لە

 نڵنكە ڵای خەبۆ وێنەی نەخۆشتت  رە هەنە. لە هەمکوی ررنتور  نەبکون  د،رڵی رشتتو  بڵوەویێکر،وه

  ئۆرۆمتڵریك   ییتا،ن  ئەلتۆننوێێک نه. دو،رر  یتەوهن،نتەن رکنژهلانتەلتە  كتڵنهینتڵنستتتت  بیت  بۆ بتەندهبتە

 بە ( بۆ یۆلێنکردن  نەخۆشتییەکڵن  رەڵای خەنڵنCNN) فیربونی قوڵی مڵینبنەستەلە ییکنتتوەکڵننتەن

 لە   (YOLOv5) ررریبین  كر،وه ستەبڵنەت بە مۆدێک ك   نەكیشتە  . ستێیەم ك  وندودنوست نەشتیکه

ی  كیشتە  ایرۆد،ن  كڵت بۆ یۆلی  كردن وه بە نڵن ڵای خەخۆشت  رەدۆ ننەوەی نیشتڵنە بوکوکەکڵن  نە

 .كڵنخۆشیەی جۆنی نەوهنجڵم  نڵسینەخر،ی  ئە  وه بۆ د،ریركردن  بیررە كەی مۆدنکەبڵنهقە

م  بۆ كتە: نتەو،نتەد،  لتەریزه  مەلت   نجتڵم دن،وهنتتڵونتئ ئتەنتا هتەوتە  م كیشتتتتڵنتەنی ئتەستتتتەبۆ وتڵنه

ی نکێ لە  وننە  یئکۆمەد كە  ،دبکون بەسەن نەبکون  د،رڵنەک  رشویا،  د،رڵسیویك  نکی دنوس  كر،وه

كتڵن جۆنی میروه  دوو لتە  ییكبتڵرکه  نتڵن لەخۆ دەررێت  كتەرەڵای ختە  كتڵن جۆن،وجۆنه  ەنەخۆشتتتتیت 

(spider, leaf miner  دوو  )  جۆنی( نەخۆش  کەوووdowny mildew, powdery mildew   )

كتڵن كکندستتتتوتڵن وننتە لتە  ك یۆل  رەڵای رەنتانوستتتت   كتەنتە هنەخۆشتتتت  ۆتڵنرۆستتتت  وجۆنی نەک  

ەم ریزی  .  لەرەڵ ئەوەشتتتا،  ئررن خۆدهلە  نڵنوێنەی رەڵای خە 4868کۆی رشتتتو      وهوهكۆكر،ونە

( CNN) فیربونی قوڵی مڵینبنەستتتەییا،ن  ئەلتۆننوێێک لەنهدکوۆن،نە جەخ  دەکڵرەوە لەستتتەن یە

نڵستتینەوەی یێنج جۆنی  لە وێکختتتون  هڵنرەنیڵن،میوەنەکڵن بۆ بڵشتتورکردن  ئەد،ی مۆدێکەکە لرەلە

ن و ڵكت ەکە بتڵشتتتتورکردن  وێنەكتڵن و دەنهێنتڵن  رتڵنبەرێەنتای وننت     نەخۆشتتتت  ورەڵای رەنتانوستتتت 

 وه کردن بەکتڵنهێنر،یس   نتڵدکردن  د،رتڵ وەک هەنتتڵوێتک یێش یرۆستتتت لەخۆ دەررێت .   یتڵنیۆلێنکردن



 

 
 

. بە شتتێکەنەک  ئۆرۆمڵریک  رڵنبەرێەنانیەکڵن  ەد،رڵستتێوەک كڵن لەەی ونن نڵدكردن  ژمڵنه  ستتو بەمەبۆ

و نەک رەڵای   نتڵنختە. یتڵشتتتتڵن یێنج نەخۆشتتتت  رەڵای  CNNدەنهێنر،ون بە بەکتڵنهێنتڵن  وینەکتڵن  

 ڵاكڵن بە نرەخۆشت  ستەكڵن  نەی نیشتڵنەوهش  بۆ دۆ ننەوهن،ی ئەنهستە .كرن رەنانوست  یۆلێ  دە

ایربکن   لە ستتەنەرڵوە لەستتەن بنەمڵی مۆدێک   نریان،وهنهیە  كڵنوندی  مۆدێکیك  دۆ ننەوەی نیشتتڵنە

( متتۆدێتتکەکە   (YOLOv5قتتکدتت   قەبتتڵنەی  کەمتتکتتردنەوەی  بتتۆ    BottleneckCSPمتتۆدنتتکلتت   . 

 لەرەڵ ( Backbone and Neckك ) وه كەمۆدنکە  بەشەکڵن ی  ییكبڵرە لە C3لەجیڵر    وهبەکڵنهێنر،

. بەهۆی کەمبکونەوەی ژمتڵنەی یتڵن،میوەنەکتڵن  كتەكتڵن  مۆدێکیتەنه،میوتەنڵهتڵنرەنیت   رۆن،نكتڵنی لتە

ژمڵنەی وینەکڵن  کڵننتەنی دۆ ننەوەکە بە شتێکەنەک  بەنوڵو بڵشتور بکول لەرەڵ ئەوەشتا،  مۆدێک   

بۆ بڵشتتتوركردن    وهبوکک  رەڵای نەخۆشتتت  باۆ ێوەوە.   ینیشااا ن بڵشتتتورکر،و رک،نڵی ئەوەی هەنە 

هەندوو مۆدێک      نتتڵد كر، بۆ  ( مۆدنکلCBAMكتتڵن )نتتای وننتتەرێتتەنهینتتڵن  رتتڵنبتتەی دهیرۆستتتتتە

 .YOLOv5))و وەسەن  ییان،ونهیە

  رڵقیکردنەوەی بەن،وندکڵنی پیدراورهپ  (یCNNكڵن  مۆدنک  )بۆ هەدتتتەنتڵنان  ئەنجڵمە

  AlexNet  ResNet-50 Inception-V3ك ) نا مۆدنکیك  جیتڵو، وهكڵنهینتڵن  جەبە ئەنجتڵمان، بە

یشتتتوک،ستتت     یئەوە كەریزهن ،نیڵنی رر.ئەنجڵمە رڵقیکردنەوەنیەکڵن   ستتتەییشتتتور و،هینر،ون لە ( كە

بە   نڵنخە کڵننتەن بکوە بۆ نڵسینەوەی نەخۆش  رەڵای  CNNئەلتۆننوێ  یێشنیڵنکر،وی  وە کە كرده

 وه  کە بەبێ  نڵدکردن  د،رڵستتیوەلەستتەن بنەمڵی هەندوو د،رڵ هو  بەن،وند لەرەڵ ئەلتۆننوێەکڵن  رر

  .هینڵوه بەدەست   ی   ٪۹۸.۱۹وێژەی نڵستینەوەی    ییان،ونهەیی   CNNمۆدنک  .  دو،ی  نڵدكردن  د،رڵ

نیشڵن    (YOLOv5)ی وردی دۆ ننەوەییان،وی  نهمۆدێک  یەهەنوەهڵ  ئەنجڵمە رڵقیکردنەوەنیەکڵن   

ی ننژه بە  (mAP)نی  مڵی ییکهن بنتەستتتتەنڵن لەڵای خەخۆشتتتت  رەی نەوهنڵستتتتینتەکە رێکک،ی     د،

بکو  ٪۷۳.۹   ٪۷۳.۸بە وێژەی  (precision, recallك ) كڵن  وهنهییکهبکو  لە کڵرێکا،     ۸۰.۱۰٪

ی  بتڵنه قتە ن،وند بتەبتە بتە وهرتەمور بۆكتەوییتان،نهیتەمۆدێک  ی  با رهشاااادا   قا وهل ئا گا لا   كتا،.دو،ی نتەبتە

لە بیررە د،ریر   مورشتتتکننیك  كە و،ی كردوه كە  مێتڵبڵن  13.6  مێتڵبڵن  بۆ  ۹٢.۸ كڵن  رر لەمۆدنکە

کڵرژمێر و  2خکلەک بۆ رەنبڵ   41کڵرژمێر و   4 لە وهكردۆرەکڵر  کەمورش مەو،ی ئەنه. ستتتتەکڵت  ب

 .كڵن  ررمۆدنکە بە ن،وندبە ایربکنیرۆسەی  خکلەک لە 58
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