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ABSTRACT 

The automatic fault detection in rotating machinery has emerged as crucial 

factors for ensuring the high reliability of modern industrial systems. Therefore, 

developing automatic fault detection is a vital challenge in modern industry. 

This dissertation intends to develop an automatic model based on machine 

learning to detect gear faults. During the development of an automatic model 

for gear fault detection, certain issues are found that need to be addressed to 

establish a reliable monitoring system. Firstly, the literature has not yet 

explored the potential of representing vibration signals, despite their time-series 

nature, using both non-time-series based and/or time-series-based features. 

Secondly, the vibration signal may have different channels based on the type 

of accelerometer sensor. A lack of studies is noticed to show the impact of the 

representation of these channels on the performance of the fault detection 

system. And thirdly, the fault diagnosis process for rotating machinery becomes 

challenging due to the non-stationary and non-linear characteristics that 

commonly arise from varying operating conditions. Various conditions make it 

difficult for traditional linear to effectively capture the underlying fault 

patterns. 

To address these problems, some investigations are required to be studied 

including investigating various feature representations for fault detection, 

investigating the nature of fault detection in terms of time series or non-time 

series analysis, investigating various forms of fusion models using traditional 

concatenation or adopting multi reservoir to model with multi-channels, and 

investigating time-consuming of model.  

Regarding the utilized features, Mel Frequency Cepstral Coefficients 

(MFCCs) and Gamma tone Cepstral Coefficients (GTCC) have been adopted 

as a feature and various forms of these features have been used to feed two 

main different models including the time series model and non-time series 
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model. For the time series model, Long Short-Term Memory (LSTM) and Echo 

State Network (ESN) have been adopted to classify the gear faults. The high 

performance of LSTM is achieved for gear fault classifications despite its being 

time-consuming during the training phase. To avoid time consumption, the 

ESN, which consumes less time as some of their layer’s weight values are non-

trainable and selected randomly. Further investigation has been studied by 

adopting multi channels reservoir which has led to achieving reliable gear fault 

detection.  

Regarding the non-time series model, Support Vector Machine is fed by 

two different forms of the feature representation, the first of which is the 

statistical form called in this dissertation (stat-SVM). The problem with the 

statistical form is that it may lead to loss of some important features related to 

gear fault and it may lead to degradation in gear fault detection. To address this 

problem, we use a concatenation of the frames of both features (MFCC and 

GTCC) to be fed to the SVM (concat-SVM). Consequently, a high-

performance rate of gear fault detection is achieved. Further, investigation is 

adopted by optimizing the features hyperparameters as both features were 

originally designed to extract features from speech signals. For this purpose, 

Grey Wolf Optimization (GWO) and Fitness Dependent Optimizer (FDO) have 

been utilized to optimize three hyperparameters of both GTCC and MFCC. The 

performance of optimizing the hyperparameters of MFCC has not shown any 

improvements. Oppositely, improvement in GTCC performance by the same 

optimization process is observed and validated. 

All the proposed models have been evaluated by two public datasets 

namely, Prognostic Health Monitoring 2009 (PHM09) and Drivetrain Dynamic 

Simulator (DDS). Based on the result, non-time series model demonstrated 

superior performance compared to time series models within a margin of 2 to 

15% accuracy. 
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CHAPTER ONE  

1 INTRODUCTION 

1.1  Overview  

 

Rotating machinery is a crucial component and one of the most vital parts 

of mechanical equipment. It's functioning heavily depends on rotation to serve 

a specific purpose, and it finds widespread use in mechanical transmission 

applications such as aircraft engines, wind turbine generator systems, gas 

turbine engines, pumps, and gearbox systems. However, due to inevitable 

malfunction and equipment downtime during operation, diagnosing faults is of 

immense importance for ensuring the reliability and safety of rotating 

machinery (Tang et al., 2020a). Therefore, the reliability of machines or tools 

is gaining importance in the industry because of the need to decrease the 

possible loss of production whenever the machine experiences an abnormal 

situation during the working load. There are plenty of useful market assessment 

tools in the industry, which are utilized as well by analysts to understand the 

competitive dynamics of an industry (Candanedo et al., 2018). A health 

monitoring system is one of the well-known assessment tools that has been used 

to monitor a dynamic system and predict a failure in the early stages (Henriquez 

et al., 2014). This monitoring process is mostly conducted using various 

channels such as vibration (Wang et al., 2019), temperature, lubrication, and 

acoustic signal (Qu et al., 2013). 

The successful implementation of a condition monitoring system can provide 

valuable and reliable information for maintenance programs, resulting in 

significant cost benefits for industries. By reducing unnecessary scheduled 

maintenance and minimizing unplanned downtime, the machinery can operate 

at as high as possible of its capacity. One of the most used and popular 

monitoring techniques for rotating machinery is vibration signature analysis, 
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which is considered an important predictive tool in most maintenance 

programs. Vibration signals contain crucial information about the mechanical 

condition of the various parts involved, as well as reflecting the overall system 

assembly's performance. The vibration signals are highly sensitive to any 

abnormality in the moving components, such as a bent rotating shaft or a 

damaged gear tooth, and are directly related to the periodic movement of the 

machine components (Edwards et al., 1998).  

An automatic condition monitoring system can be adopted by using machine 

learning algorithms to automatically monitor the condition of the equipment or 

the system and detect anomalies or faults that could indicate impending failure. 

The role of machine learning in fault detection is to enable the automated 

detection of faults or anomalies in a system or process, based on data from 

sensors or other sources. By using machine learning algorithms to analyze this 

data, it is possible to identify patterns and deviations that may indicate the 

presence of a fault or anomaly (Kateris et al., 2014). 

There is a variety of machine learning techniques that can be used for fault 

detection, including supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning algorithms can be used to train a 

model on a labeled dataset of normal and faulty behavior, and then to use that 

model to detect anomalies in real-time data. Unsupervised learning algorithms 

can be used to identify patterns in data that deviate from normal behavior, 

without requiring labeled data. Reinforcement learning can be used to detect 

faults by learning to optimize a reward function that encourages normal 

behavior and penalizes deviations. One of the advantages of using machine 

learning for fault detection is that it can be used to detect faults that may be 

difficult to detect using traditional rule-based methods. Machine learning can 

also adapt to changing conditions and learn from new data, making it a useful 
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tool for fault detection in dynamic or complex systems (Chahal and Gulia, 

2019). 

As machine learning advances, deep learning techniques have been 

increasingly applied to gear fault detection. Deep learning models can be 

trained using raw signals and/or hand-crafted features. In studies utilizing raw 

signals, researchers have directly fed vibration raw signals into Convolutional 

Neural Network (CNN) models, eliminating the need for prior knowledge of 

application-specific features (Yang et al., 2019)-(Jing et al., 2017). On the other 

hand, Shao et al. (Shao et al., 2019) employed time-frequency distributions to 

generate images through wavelet transforms, converting raw input into image 

data. The authors (Wang et al., 2017) introduced local feature-based gated 

recurrent unit networks, which are trained using both handcrafted and 

automatically learned features. 

 

1.2 Problem Statement 

 

The problem statements are listed below: 

• Despite the time-series nature of the vibration signal, it can be 

represented in both non-time series-based features and/or time-series 

based features. However, this characteristic has not been investigated in 

the literature. Additionally, representation of the feature in the non-time 

series form for fault detection can also be problematic and need a suitable 

model design. 

• Vibration signals for gear fault detection may have various channels 

based on the accelerometer sensor dimensions, representation of these 

channels can impact the performance of gear fault detection systems. 
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Designing models for such a situation is another problem that has been 

dealt with in this dissertation. 

• Rotating machinery often exhibits non-stationary and non-linear 

characteristics due to varying operating conditions, load changes, and 

wearing and tearing over time. These characteristics complicate the fault 

diagnosis process, as traditional linear and stationary methods may not 

accurately capture the underlying fault patterns. 

 

1.3 Challenges in Gear Fault Diagnosis  

 

As with any automatic detection process, gear fault diagnosis faces various 

challenges especially when adopting vibration signal and utilizing machine 

learning tools, which require data collection, feature extraction and selection in 

addition to classification model selection. The main challenge in this 

dissertation that have been faced is lack of data. Collecting special datasets, 

requires access to proper laboratories, or collaborating with industry partners, 

and research institutions to pool data resources and create larger datasets, which 

are not available and applicable here. Therefore, this lack of data became a 

challenge during working on this dissertation. To overcome this challenge, we 

use existing data. 

 

1.4 Research questions 

 

This dissertation aims at addressing the problems stated in the previous section. 

During the investigation made in this work, some essential research questions 

have been raised, following are the research questions of this dissertation: 
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• How the time step sample dependencies of the vibration signal are 

important in fault detection? 

• Is there any possibility to reduce the training time at the training phase 

for fault detection in the era of deep learning? 

• Is the representation of various channels of the vibration signal affecting 

the performance of the model? What is the ideal way to deal with the 

channel representation? 

• Regarding the available hand-crafted features which are originally 

extracted for speech applications such as (MFCC and GTCC), are the 

default parameters suitable for vibration signal-based applications? 

 

1.5 The objective of this Work 

• To Investigate and analyze various feature representations for fault 

detection, which gives insight into the time series-based features and the 

non-time series-based feature representation impact on fault detection 

task. 

• To design a model that can overcome the challenge of high computation 

time in the training phase to minimize the need for resources such as the 

non-trained weight ESN model, which can perform comparably to the 

trained weight Long Short-Term Memory (LSTM). 

• To design, implement and evaluate various forms of fusion models using 

traditional concatenation or adopting multi reservoir to model multi-

channel gear fault vibration signal. 

• To evaluate the proposed models using two main mechanical datasets 

that include various gears and gearboxes.  

The connections between problem statement, research question and 

objectives are illustrated in Figure 1.1. 
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gear fault vibration 

signal. 
Rotating machinery 

often exhibits non-

stationary and non-

linear characteristics 

due to varying 

operating conditions, 

load changes, and 

wearing and tearing 

over time. These 

characteristics 

complicate the fault 

diagnosis process. 

How a good 

model can be 

developed which 

can be used for 

gear fault 

detection in 

various condition? 

Developing a high-

performance model 

which can be useful in 

various circumstances 

such as different loads 

and speed. 

Studying of the impact 

of optimizing feature  

Adopting multi-

reservoirs to make the 

system become more 

reliable .  

Figure 1.1: connection between problem, research question and objective. 
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1.6 Scope of the Work 

 

In this dissertation, the vibration signal is adopted to identify faults in gear. 

Additionally, as the dissertation eventually tries to develop a model for 

automatic fault detection, the usefulness of machine learning algorithms has 

been utilized for this purpose. The performance of cepstrum features (Mel 

Frequency Cepstral Coefficients (MFCC) and Gamma tone cepstrum 

coefficients (GTCC) and some representation of them have been investigated 

to train the adopted and proposed classifiers. Regarding the utilized tools that 

were used for this dissertation, all adopted machine learning models were 

implemented on MATLAB except ESN model was implemented on Python. 

The experiments were conducted on a personal computer with Core (TM) i7-

7500U CPU @ 2.70GHz   2.90 GHz. 

 

1.7 Dissertation Organizations 

 

 The dissertation map is organized into five chapters. The first chapter gives 

an overview of the dissertation topic, problem statements, dissertation 

objectives, and dissertation organization.  

The second chapter presents the literature review regarding fault detection and 

the theoretical background of algorithms. Based on the literature, condition 

monitoring systems can be categorized based on whether they analyze time 

series data or non-time series data. Brief literature for both of them is presented. 

The third chapter is dedicated to gear fault detection based on the time series 

model. Two of the well-known machine learning algorithms (LSTM and ESN) 

are explained and two versions of ESN including one reservoir and three 

reservoirs are implemented. 
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In the fourth chapter, gear fault detection based on the non-time series feature 

is presented. Two types of feature representations are fed to Support Vector 

Machine (SVM) including statistical representation of MFCC and GTCC and 

concatenated both features. We named stat-SVM and concat-SVM for the 

statistic model and concatenated feature model.  

Finally, the conclusion about time series and non-time series analysis is 

presented in chapter five. We also provided a reason for each of the obtained 

results. The suggested future studies are given at the end of the conclusion 

section.
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CHAPTER TWO 

2 BACKGROUND AND LITERATURE REVIEW  

2.1 Rotating Machinery 

 

Rotating machinery refers to mechanical systems that consist of various 

rotating components that convert energy, typically in the form of rotational 

motion, into useful work. These systems play a crucial role in numerous 

industries, including power generation, manufacturing, transportation, and 

process industries. Nowadays, plenty of rotating machinery systems are used 

such as turbines (extract energy from fluids)(Qiao and Lu, 2015), Pumps (move 

fluids)(Muralidharan and Sugumaran, 2013), Compressors (increase the 

pressure of a fluid), Electric motors (convert electrical energy into mechanical 

energy)(Choi et al., 2020), and Gearboxes (transmit and convert rotational 

energy between different components of a machine). Changing energy is 

becoming increasingly important as the world continues to move towards 

renewable sources of energy. Therefore, rotating machinery is essential for 

modern industries, and effective maintenance and fault diagnosis is crucial to 

ensure their safe, efficient, and reliable operation (Liu et al., 2018). 

 

2.1.1 Gearbox 

 

A gearbox is a mechanical apparatus that utilizes a set of gears to transfer 

power from a rotating power source, like an engine or motor, to another 

machine or mechanical component, enabling adjustment of the rotational 

motion's speed, torque, and direction. Three key components found within a 

gearbox are shafts, bearings, and gears (Abdul et al., 2016). 
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A. Shaft 

 

A shaft refers to a cylindrical component that is utilized to transmit 

power and motion between the rotating parts of a machine. Typically made of 

durable materials like steel, they are designed to be rigid enough to withstand 

various forces like bending, torsion, and other stresses that may arise during 

operation (see Figure 2.1). The principal function of a shaft is to transfer 

rotational motion and torque from a power source, like an engine or motor, to 

a driven machine or tool. For instance, an electric motor can utilize a shaft to 

transmit power to a conveyor belt, a pump, or a machine tool. Moreover, shafts 

can be utilized to support rotating components and create a sturdy connection 

between two or more machines. In such cases, the shaft serves as a stable base 

for the components to rotate around, maintaining the alignment and stability of 

the machines (Watson et al., 2007). 

 

 

 

Figure 2.1: Structure of Shaft(Clive Jennings, 2020) 
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B. Bearings 

 

Bearings are integral components that guide and support rotating shafts, 

which create a seamless and efficient connection between the shaft and the 

surrounding machinery. By minimizing friction between the moving parts, 

bearings prevent wear and tear, promote smoother operation, and improve the 

performance of machines. The principal purpose of bearings is to reduce 

friction between the rotating shaft and the housing. Typically, a bearing 

comprises two primary components: an outer race or housing and an inner race 

or sleeve, with a series of balls, rollers, or needles placed between them (see 

Figure 2.2). As the shaft rotates, the balls or rollers move along the raceways, 

evenly distributing the load and decreasing friction across the bearing (Klein et 

al., 2011). 

 

 

 

Figure 2.2: Structure of bearing(Brkovic et al., 2017) 
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C. Gears 

 

Transmitting power from one shaft to another can be done using gears 

through engaging gear teeth. When the teeth of the gears mesh with each other, 

motion, torque, and force are transmitted from one shaft to another. The speed 

of the shaft can be reduced or magnified by using two gears with different sizes 

or different numbers of teeth that they have. Nowadays, there are plenty of 

gears have been developed such as spur, helical, spiral bevel, bevel, internal, 

and worms which are used in the various tools and gearboxes (Smith, 2003). 

Figure 2.3 illustrates some of the gear types. 

 

 

 

Figure 2.3: Some types of gears(Mec.Edu teams, 2020) 

 

 

All machinery components, including gears, generate a mechanical force 

during normal condition operation which is named dynamic force. The force is 

created due to the mesh of the gear teeth, and this is the main source of the 
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vibration and noise in gears. The dynamic force leads to the construction of 

both broadband and impulsive noise, even gears run under normal situations. 

There are other sources of vibration and noise in gear namely, geometry factors, 

variations of speed and load, and expulsion of fluid.  Pressure angle, gear pitch, 

contact ratio, alignment, tooth face width, and tooth surface finish, all are 

examples of geometry factors. A noise and shock wave might be generated due 

to the expulsion of air and lubricant when the teeth interact with each other 

(Norton and Nelson, 1990).  

 

A. Characteristics of Vibration Frequency in Gears 

 

During the condition monitoring of gears, multiple frequencies in the gear's 

vibration need to be taken into account. These frequencies include the Gear 

Mesh Frequency (GMF), sidebands of the gear mesh frequency, Hunting Tooth 

Frequency (HTF), assembly phase frequency, gear natural frequencies, and 

ghost or phantom frequencies. GMF refers to the frequency at which the teeth 

of two meshing gears come into contact or engage with each other. It is a 

measure of the rate at which the teeth make contact and separate as the gears 

rotate.  Gear mesh frequency sidebands are additional frequencies that appear 

around the primary gear mesh frequency in a gear system. These frequencies 

are very useful in the diagnosis of the gear as they are indicators of the bad 

condition of the gears. HTF is related to the contacting teeth of the gears. The 

maximum vibration will observe if there are damages in both contacting teeth 

(Smith, 2003). 
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B. Defects in Gears 

 

The tooth of gears is contacted at the same time with their respective pinions 

in the gearbox which consequences in the sliding of each tooth on the other 

thereby generating vibrations.  Gear faults can arise due to a variety of reasons, 

which can be broadly categorized into manufacturing defects, material issues, 

operational factors, and maintenance-related problems. Here is a list of 

common reasons that contribute to gear faults (Sharma and Parey, 2016; Wilk 

et al., 2008). Figure 2.4 illustrates some of the gear faults.  

• Manufacturing defects: Imperfections during the gear manufacturing 

process, such as inaccuracies in gear tooth geometry, surface roughness, 

or heat treatment, can lead to weaknesses in the gear structure, making it 

more susceptible to faults. 

• Material issues: The use of inappropriate or low-quality materials for 

gear production can cause localized weaknesses, such as inclusions, 

voids, or micro-cracks, which can increase the likelihood of gear faults, 

such as tooth breakage or surface damage. 

• Improper gear design: Inadequate gear design can lead to excessive stress 

on gear teeth, resulting in tooth bending fatigue, breakage, or other faults. 

Factors such as gear size, tooth geometry, and load capacity should be 

carefully considered during the design phase to minimize the risk of gear 

faults. 

• Operational factors: Excessive load, high speeds, or sudden changes in 

load can cause increased stress on gear teeth, leading to accelerated wear, 

pitting, scuffing, or even tooth breakage. Ensuring that the gear system 

is operated within its specified limits can help prevent gear faults. 
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• Misalignment: Incorrect alignment of gear axes can result in uneven load 

distribution and increased stress on gear teeth. This can lead to 

accelerated tooth wear, pitting, eventually causing gear faults. 

• Backlash issues: Excessive or insufficient backlash (the clearance 

between mating gear teeth) can cause increased tooth stress, noise, and 

vibration, leading to premature gear wear and failure. 

• Temperature fluctuations: Extreme temperature fluctuations can cause 

thermal expansion and contraction of gear components, leading to 

misalignment, increased stress on gear teeth, and potential gear faults. 

• Inadequate lubrication: Insufficient or improper lubrication can cause 

increased friction, wear, and heat generation in the gear system. This can 

lead to various gear faults, such as scuffing, pitting, and tooth breakage. 

• Contamination: The presence of abrasive particles, dirt, or debris in the 

lubricant can accelerate gear tooth wear and increase the likelihood of 

surface damage, such as pitting or spalling. 

• Poor maintenance: Lack of regular inspection, maintenance, and 

replacement of worn or damaged components can exacerbate existing 

gear faults or cause new ones to develop. 

 

Figure 2.4: gear fault types(Jiao et al., 2018). 
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2.2 Condition Monitoring 

 

Condition monitoring refers to the process of continuously monitoring the 

health and performance of a system or equipment, such as machinery or 

vehicles, to detect any signs of deterioration, wear, and tear, or impending 

failures. Predictive maintenance is becoming more and more interesting and 

even necessary for many industries to be cost-effective. The goal of condition 

monitoring is to prevent unplanned downtime, reduce maintenance costs, and 

improve the overall performance the system. The demand for higher efficiency 

and lower environmental impact of transmissions in the automotive and 

gearbox industries is on the rise, creating a need for advanced technical 

solutions that can fulfill these requirements (Muralidharan and Sugumaran, 

2013; Salameh et al., 2018; Zhu et al., 2014).  In this context, condition 

monitoring is a crucial aspect of the transmission life cycle, saving valuable 

resources and time. With the recent advancement in technology, condition 

monitoring has shifted from a reactive to a proactive approach, using machine 

learning techniques to predict and detect minor faults before they evolve into 

significant issues. 

Many conventional approaches have been investigated to monitor rotation 

machinery by studying some important variables which can be categorized into 

four main variables namely, Vibration, Acoustic, Lubrication, and temperatures 

(Isermann, 1993). The most effective technique among these is vibration 

analysis as the vibration signal carries most of the information that is related to 

the condition of the rotating machinery (Edwards et al., 1998). 
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2.2.1 Acoustic Analysis   

 

Acoustic analysis is a field that deals with studying the properties of 

sound. Its application in industries involves the evaluation of sound emissions 

from machinery, equipment, and processes. The information obtained from 

sound analysis is critical in detecting potential problems, diagnosing issues, and 

optimizing performance. One of the primary benefits of acoustic analysis in the 

industrial field is predictive maintenance. It enables engineers to identify 

underlying issues with machines by analyzing the sound they produce, which 

can prevent significant problems before they occur. Predictive maintenance 

reduces unexpected downtimes, cuts maintenance costs, and ultimately 

improves the efficiency of the industrial process. In addition, acoustic analysis 

is also valuable in quality control. Engineers can assess the sound output of 

products, ensuring that they meet quality standards and are devoid of faults. 

Overall, acoustic analysis is a crucial aspect of the industrial field that improves 

performance, reduces expenses, and ensures that products conform to set 

standards (Wu et al., 2019; Zhang et al., 2020). 

 

2.2.2 Lubrication Analysis  

 

Lubrication analysis is a technique used to evaluate the condition and 

performance of lubricants in machinery and equipment. The process involves 

analyzing oil samples from machines and examining the physical and chemical 

properties of the lubricant. By analyzing the oil sample, engineers and 

technicians can identify potential problems and make recommendations for 

maintenance or lubricant replacement. Lubrication analysis is a critical aspect 

of predictive maintenance, which involves the detection of potential issues 

before they cause significant damage to machinery. By monitoring the 
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condition of the lubricant, engineers can identify issues such as contamination, 

wear, and degradation of the lubricant, which can lead to poor performance and 

equipment failure. Lubrication analysis can also help to optimize machinery 

performance and reduce maintenance costs. By identifying potential issues 

early, maintenance can be scheduled at convenient times, which reduces 

downtime and maintenance expenses. Additionally, the analysis can help 

identify the ideal lubrication requirements for specific machines, leading to 

better performance and longevity. In conclusion, lubrication analysis is a 

valuable tool in the field of predictive maintenance, which helps to reduce 

maintenance costs, optimize machinery performance, and increase the lifespan 

of the equipment (Belkacemi et al., 2020).  

 

2.2.3 Temperature Analysis 

 

The assessment of temperature fluctuations in different industrial 

processes, equipment, and systems is known as temperature analysis. This 

process involves tracking temperature changes over time by measuring and 

analyzing temperature readings. The aim is to identify possible issues, optimize 

performance, and enhance efficiency. In predictive maintenance, temperature 

analysis plays a crucial role by enabling engineers and technicians to monitor 

equipment and systems for temperature changes that could be an indication of 

impending issues. For instance, if there is a sudden rise in temperature in a 

bearing, it could imply that the bearing is overheating due to friction or 

insufficient lubrication, which could lead to failure if not addressed promptly. 

Temperature analysis is also valuable in optimizing performance and reducing 

energy consumption. By analyzing temperature data, engineers can identify 

areas for adjustment in processes, equipment, and systems to operate at optimal 
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temperatures. Consequently, this leads to improved efficiency and energy cost 

reduction (Karabacak et al., 2022). 

 

2.2.4 Vibration Analysis 

 

Among the array of techniques used for condition monitoring, vibration 

analysis stands out as a powerful and non-intrusive tool. Vibration signals serve 

as sensitive indicators of machinery health, capable of detecting early signs of 

faults and deviations from normal operation because the vibration signal carries 

most of the information that is related to the condition of the rotating machinery 

(Edwards et al., 1998). 

By continuously monitoring vibration patterns, maintenance teams can 

proactively address potential issues before they escalate into severe problems, 

leading to improved performance of the system and reduced downtime. The 

maximum vibration will be observed if there are damages in both contacting 

teeth and the gear frequencies are mostly located in the low frequency (Abdul 

et al., 2020). The vibration signal analysis approach can be conducted in 

different domains including time, frequency, and time-frequency which are 

useful in terms of fault detection (Abdul and Talabani, 2022).  

 

2.3 Gear Condition Monitoring Based on Vibration Signal. 

 

Gear fault diagnostics refers to the process of identifying a gear's faults or 

conditions based on observable symptoms. Fault detection requires the skill to 

recognize a machine's condition from its symptoms, much like medical 

diagnosis. In the context of gearboxes, vibration is often seen as a symptom of 

their condition. Despite the complex structure of the vibration generated by 
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gearboxes, it can provide valuable information for analysis. Condition 

monitoring in early works of gear fault diagnosis was conducted using the 

visual inspection of the vibration signal and it is limited to those faults that even 

observe from the stationary signals.  

To overcome this limitation, statistical analysis has been used for gear 

fault detection. However, there is no guarantee to identify all kinds of gear 

faults by statistical analysis as the pattern of some faults cannot be observed by 

statistical property.  Nowadays, Machine learning algorithms play a vital role 

to detect the condition of gears. Therefore, they have been adopted for detecting 

unknown patterns of faults based on the extracted features (Wilk et al., 2008). 

 

2.3.1 Statistical Analysis  

 

Statistical analysis is a method of data analysis that involves the use of 

statistical techniques and tools to analyze and interpret data. Statistical analysis 

based on the features, also known as analysis, based on non-time series features, 

is also an important aspect of gear fault detection, as they provide a summary 

of the overall characteristics of the gear's vibration signals. However, there are 

two main drawbacks of using non-time series features for fault detection, firstly 

non-time series features do not provide information about the dynamics and 

evolution of the gear's condition over time. Secondly, non-time series features 

might not be suitable to certain types of noise and interference(Al-Talabani, 

2015).   
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2.3.2 Fault Detection-based Machine Learning. 

 

Machine learning has brought up many significant improvements in 

various applications such as vehicle production systems (Luo and Wang, 2018), 

fault detection in industrial systems (Chen, Li, et al., 2019), robotics (Zeng et 

al., 2021), medical applications (Zeng et al., 2018)  and speech analysis 

(Gaikwad et al., 2010). Machine learning-based fault detection can be defined 

as a model for detecting faults in systems and machines by utilizing machine 

learning algorithms to identify patterns in recorded data. The algorithms used 

in machine learning-based fault detection are trained to recognize patterns in 

data that indicate a fault or malfunction. Using this information, the system can 

either alert an operator of the fault or take corrective action to repair the system. 

Machine learning-based fault detection can be used in a variety of applications 

including manufacturing, automotive, aerospace, and medical systems (Kumar 

and Hati, 2020). 

  

2.4 Gear Fault Detection Based on Machine Learning. 

 

Machine learning algorithms can be used for gear fault detection by 

recognizing patterns in data that indicate a fault or malfunction. There are some 

pre-requirements to develop a gear fault detection system based on Machine 

Learning including Feature extraction and classification model. Both sections 

are explained below. 
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2.4.1 Feature Extraction  

 

Feature extraction is a challenging topic in any machine-learning system. 

Many feature extraction techniques have been developed to extract effective 

fault information in rotating machinery. Due to the different transmission 

characteristics of the machine, the vibration features of rotary machines are 

unique (Aherwar, 2012). In the gear fault frequency domain-based features, 

various peaks indicate different types of defects. For gear problems, particular 

significance is attached to the Fast Fourier Transform (FFT) spectrum defect 

frequencies (Decker and Lewicki, 2003). FFT spectra produces peaks at the 

specified fault frequencies. These peaks define the stated defects. Harmonics 

must be also considered to work out whether the identified frequencies have 

been produced from the indicated fault (Sharma and Parey, 2016). If a peak 

shows up at the gear fundamental frequency and another peak shows up at two 

times the fundamental frequency, it is a powerful indicator that the fault is real. 

Another good indicator that the specified fault has occurred is that no peak 

shows up at the gear fundamental frequency. However, peaks do present at two, 

three, and four times the gear fundamental frequency (Cerrada et al., 2017).  

     In FFT, comparing the amplitude of faulty and non-faulty signals is a well-

established approach to detecting fault severity in gears, where a higher 

amplitude than normal indicates a problem (Dhamande and Chaudhari, 2016). 

This is exactly why the amplitude of various frequencies is considered an 

effective feature for fault detection in rotation machinery (Stamboliska et al., 

2015). To extract these kinds of information, bandpass filters are a useful 

adopted technique.  

To track harmonic frequencies and extract all related information to the fault 

indicator, two feature extraction methods (MFCC and GTCC) are adopted. 

MFCC uses a filter bank that highlights the low frequencies (where gear 
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frequencies lie) over the higher frequencies. However, the accelerometer signal 

has a self-noise and MFCC is frequently reported to be sensitive to noise. 

Therefore, we have proposed the use of the GTCC feature which is reported to 

be more robust with noisy signals and overcome MFCC in various speech 

applications (Revathi et al., 2014)(Dimitriadis et al., 2011). There are two 

beneficial steps in the extraction of both proposed features, which are splitting 

the signals into some frames (windowing signal) and applying a sequential 

band-pass filter to each frame signal. Windowing ensures the stationary of the 

signal in each window where the extraction of spectral features is more 

accurate. Both feature extractions (MFCC and GTCC) are explained in the 

subsection below. 

 

I. Mel-Frequency Cepstral Coefficients  

 

MFCC is one of the reliable feature extraction techniques that has been used 

a lot for audio analysis (Tiwari, 2010). Recently, it has been used for fault 

detection and diagnostics and it shows an ability to extract defect information 

(Andrew F. Geib, Chung Chieh Kuo, Martin Gawecki, EnShuo Tsau, Je Won 

Kang, 2014; Zhang et al., 2018). The common property of this technique is 

robustness in extracting linear and nonlinear properties from audio or vibration 

signals. However, it has a low level of noise immunity. Four steps are required 

to proceed MFCC technique after windowing the signal as listed below: 

A. Discrete Fourier Transformer (DFT) is computed for each signal frame, 

and it can be computed by the below equation (2.1) 

𝑋(𝑘) = ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

𝑒−
2𝜋𝑗𝑛𝐾
𝑁                𝑘 = 1,2,3…𝑁 − 1 (2.1) 

where 𝑥(𝑛) is the discrete signal and N is the length of the signal. 
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B. Applying Mel filter bank on the obtained power spectrum. Usually, the 

filter bank is constructed based on 40 triangular filters and the transfer 

function filters can be computed by equation (2.2) and shown in Figure 

2.5.  

𝐻𝑛(𝐿) =

{
 
 
 

 
 
 

0                        𝐿 < 𝑓(𝑛 − 1).

𝐿 − 𝑓(𝑛 − 1)

𝑓(𝑛) − 𝑓(𝑛 − 1)
        𝑓(𝑛 − 1) ≤ 𝐿 < 𝑓(𝑛).

1                 𝐿 = 𝑓(𝑛).

𝑓(𝑛 + 1) − 𝐿

𝑓(𝑛 + 1) − 𝑓(𝑛)
         𝑓(𝑛) < 𝐿 ≤ 𝑓(𝑛 + 1).

0                       𝐿 > 𝑓(𝑛 + 1).

              

 

(2.2) 

 

 

where, 𝑓 (𝑛) is the midpoint frequency of the triangular filter and  

∑ 𝐻𝑛(𝐿) = 1
𝑁−1
𝑛 . The mathematical expression relating the Mel scale to the 

response frequency or vice versa can be computed by equations (2.3) and (2.4). 

𝑛 = 2595𝑙𝑜𝑔10 (1 +
𝑓
700⁄ ). (2.3) 

 

𝑓 = 700(10
𝑛
2595⁄ − 1) (2.4) 

 

C. A logarithm is calculated for each filtered power spectrum. 

D. Applying Discrete Cosine Transform (DCT) to obtain 1-14 coefficients. 

The DCT can be computed by the below equation (2.5). 

𝑋(𝑘) = ∑ 𝑥𝑛

𝑁−1

𝑛=0

∗ 𝐶𝑂𝑆 ( 
2𝜋𝑗𝑛𝑘

𝑁⁄   ) , 𝑘 = 1,2,3…𝑁 − 1  (2.5) 

where 𝑥𝑛 is a discrete signal and N is the length of the signal. 



25 

 

 

 

Figure 2.5:Mel frequency filters(Abdul et al., 2020). 

 

II. Gammatone Cepstral Coefficients  

 

GTCC is a sisterhood technique with MFCC and has been developed for 

extracting features from audio signals. Most of the processes of conducting 

MFCC and GTCC are the same including applying DFT, calculating the 

logarithm for each of the filtered power spectrum and applying the DCT as 

shown in Figure 2.6. The main difference between them is the type of filter 

bank that is used for obtaining filtered power spectrum. A gammatone filter 

bank is used in the GTCC technique. The filter bank consists of 32 filters and 

each of the filters is described by an impulse response, which is composed of 

the product of sinusoidal tone and the gamma distribution (Adiga et al., 2013). 

The impulse response or Gamma-tone filter is computed using the equation 

(2.6) and shown in Figure 2.7. 
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𝑔(𝑡) = 𝑎𝑡𝑛−1𝑒−2𝜋𝑏𝑡 cos(2𝜋𝑓𝑐 ∗ 𝑡 + 𝜇).  (2.6) 

 

where, 𝑓𝑐 is the midpoint frequency and μ is the phase, which is normally set to 

be 0. n is the degree of freedom of the filter which is typically set to be equal 

to or less than 4. 𝑎 is a constant used to control the gain, and lastly, b is a factor 

associated to 𝑓𝑐 and is formulated by equation (2.7). 

b =  1.019 ∗  24.7 ∗ (4.37 ∗
𝑓𝑐

1000
+  1).  (2.7) 

 

Different 𝑓𝑐 leads to a set of Gamma-tone filters which are named a Gamma-

tone filter bank. The Gamma-tone bank filter is suitable to extract the 

characteristics of the signal at various frequencies (Qi et al., 2013).  

 

 

 

Figure 2.6: Feature extraction process for GTCC and MFCC(Abdul et al., 

2020) 
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Figure 2.7: Gamma-tone filters(Matlab, 2022) 

 

 

 

2.4.2 Classification Model 

 

A classification model is a type of machine learning model that aims to 

categorize or classify input data into distinct classes or categories. In the context 

of supervised learning, a classification model is trained using labeled data, 

where each data point is associated with a specific class or category. The trained 

model can then predict the class of new, previously unseen data points based 

on the patterns and relationships it has learned during the training process. In 

this work, we have used two kinds of supervised learning algorithms based on 

varying features over a time period namely time series model and none-time 

series model.  
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A. Long Short-Term Memory (LSTM) 

 

The LSTM is an improvement to the Recurrent Neural Network (RNN). 

The LSTM has a more complicated repeating module in the network structure. 

The main difference between the traditional RNN and LSTM is that the LSTM 

can capture long-term dependencies (Yang et al., 2018). It adopts a structure 

that can exceed the problem of gradient vanishing. The LSTM is a deep 

learning method that classifies and regresses time-series data such as voices 

and vibrations in consideration of feature changes at each time step 

(Yoshimatsu et al., 2018). The structure of the LSTM includes four parts in 

each repeating module; cell state (c), input gate (i), forget gate (f) and output 

gate (o) (see Figure 2.8). The cell state ct at time t is computed using the 

following equation (2.8): 

ct = ft⊙ ct−1 + it⊙gt   (2.8) 

     where ct−1 is the previous cell state, ⊙ denotes elementwise multiplication 

and ft, it and gt are computed using the equations listed below: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓)  (2.9) 

𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖)  (2.10) 

𝑔𝑡 = 𝜎𝑐(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) (2.11) 

 

    where σc and σg are gate activation functions, choosing a tanh and sigmoid 

function respectively. The parameters W, R and b are the input weights, the 

recurrent weights, and the bias of each component, respectively. 

The hidden state is also updated using equation (2.12): 

ℎ𝑡 = 𝑜𝑡⊙𝜎𝑔(𝑐𝑡)   (2.12) 

where: 
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𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜)  (2.13) 

 

    The cell state is responsible for remembering a value during the recurrent 

connection. Updating the remembered values and then forgetting them is 

crucial in the learning process of the module. The updated input value 

remembers values in the memory, while the forgetting gates determine when 

the remembered input is no longer important. The output gate is capable of 

knowing when the cell state gives the output value. The output of the previous 

step during the computation at each gate and cell state will be an input for the 

next step. Hence, the LSTM module learns how to maintain its memory as a 

function of previous values. It is reported that the LSTM can capture defect 

gear information based on a temporal feature that was combined with MFCC 

and GTCC features. However, the time consumption for training the LSTM 

model is quite high (Abdul et al., 2020). 

 

 

 

Figure 2.8: LSTM node (Xiang et al., 2020) 
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B. Echo State Network (ESN) 

 

Another popular progress of the RNN model is Echo State Network, 

which was invented by Jaeger and Haas (Jaeger and Haas, 2004). Similar to the 

LSTM model, the ESN is able to overcome the vanishing gradient problem that 

leads to reduced training time significantly compared to the RNN and LSTM 

(Dai et al., 2009). The structure of ESN consists of three main sections, input, 

reservoir, and readout section as shown in Figure 2.9. The weights of the input 

section are fixed and completely selected randomly. The connection of the 

reservoir nodes is sparse random connections, and their weights are fixed and 

random as well. The only weights, which need to be trained, are the readout 

weights which connect the reservoir to the output neurons. The training time is 

reduced significantly as the weights of two of the three sections are assigned 

untrained and selected randomly. In the training stage, the inputs are fed to the 

reservoir and the output of the reservoir (teacher output) will be fed to the 

output layer (Ismail Fawaz et al., 2019). It is obvious that the reservoirs include 

sparse random connections, which help to “echo” the previous states. Hence, 

when a new input that is similar to something it trained on reaches the network 

reservoir, the reservoir will dynamically start to follow the activation trajectory 

which is suitable for the input and consequently can provide a matching signal 

to what it trained on. The generalization will be performed if it is well-trained 

from what it has already seen, following activation trajectories that would make 

sense given the input signal driving the reservoir (Inc, 2023). 
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Figure 2.9: ESN structure (Verzelli et al., 2019) 

 

C. Support Vector Machine  

 

One of the powerful machine learnings is the support vector machine that 

was developed by Vapnik (Farhat, 1992). There is a similarity between single-

layer perceptron and SVM as they separate classes linearly, however, the SVM 

provides the line, the plane, or the hyperplane with maximum margin. The 

SVM aims to identify an optimal hyperplane between binary classes as shown 

in Figure 2.10.  The formula of the hyperplane can be set as follows: 

{
𝑤𝑇𝑥𝑖 + 𝑏 ≥ 1      𝑓𝑜𝑟 𝑦𝑖 = +1,

𝑤𝑇𝑥𝑖 + 𝑏 ≤ 1     𝑓𝑜𝑟 𝑦𝑖 = −1,
    (2.14) 

 

 

where, (𝑥𝑖 , 𝑦𝑖) is the training data and its labels, the bias b is a scalar, and  𝑤 is 

the weight vector. The object equation (2.15) with a constraint is used for 

maximizing the margin of the hyperplane. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                  𝜙(𝑤) = 1 2⁄ ∗ 𝑤𝑇𝑤 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜               𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜁    𝜁 ≥ 0, 𝑖

= 1,2,… . , 𝑛 

(2.15) 

 

Then by conducting the Lagrange optimization methods, a set of multipliers are 

introduced including αi, βi for constraints. The objective function and the 

constrained optimization problem become like equations (2.16) and (2.17) 

respectively. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜙(𝛼) =∑𝛼𝑖

𝑛

𝑖=1

− 1 2⁄ ∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥
𝑇𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2.16) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ∑𝛼𝑖𝑦𝑗

𝑛

𝑖=1

= 0,          0 ≤ 𝛼𝑖 ≤ 𝐶 , 𝑖 = 1,2,… , 𝑛 (2.17) 

 

The corresponding data points 𝛼𝑖 are named as support vectors if 0 ≤ 𝛼𝑖 ≤ 𝐶. 

Many state-of-arts studies have reported that the SVM is a very influential 

classifier in high-dimensional problems that leads to achieving good accuracy 

in the high-dimensional feature space (Al-Talabani et al., 2015). In this 

dissertation, the dimensionality of the feature space is increased by 

concatenating all of the frames of both MFCC and GTCC. Then the obtained 

feature is used to train the SVM classifiers. 
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Figure 2.10: Classification of data by SVM 

 

 

SVMs can handle both linear and non-linear data by using kernel functions, 

which transform the input data into a higher-dimensional space where classes 

can be separated more easily. Four common kernel functions have been used in 

SVMs including linear kernel, polynomial kernel, Radial Basis Function 

(RBF), and Sigmoid Kernel 

Choosing the appropriate kernel function for an SVM depends on the 

characteristics of the data and the problem being solved. The linear and RBF 

kernels are widely used due to their effectiveness and flexibility, while the 

polynomial and sigmoid kernels might be more suitable for specific problem 

domains or when prior knowledge about the data structure is available. 
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D. Optimization Algorithm for Tuning Hyperparameters  

 

Optimization algorithms can be categorized into two main types namely 

deterministic and stochastic.  Deterministic algorithms follow mathematical 

formulae and computational simulations and have been used to solve many 

optimization problems. However, deterministic algorithms are sometimes stuck 

in the local minimum. The issue has been addressed in metaheuristic 

algorithms, which are kinds of stochastic algorithms, by balancing between 

randomization and local search (Abdullah, 2019). Many metaheuristic 

algorithms have been developed by researchers to find out a perfect method to 

deal with limited resources problems within various restrictions. Recently, 

metaheuristic algorithms have been utilized in various fields such as 

engineering problems, browsing the Internet, financial profit, bioinformatics, 

geophysics, and optimizing features for pattern recognition applications (Salih 

et al., 2022). 

 Feature optimization can be done either by selecting a proper feature set, which 

is called feature selection or by optimizing the parameter within the feature 

technique itself. In 2020, Manik Sharma and Prableen Kaur reviewed  176 

articles about the use of metaheuristic algorithms for the feature selection 

process and the metaheuristic algorithms were classified by their inspiration 

like inspired birds, animals, humans, insects, and creatures (Sharma and Kaur, 

2021).  Ibrahim et al. proposed an optimal features selection mechanism using 

the Invasive Weed Optimization algorithm (IWO) for diagnosing the faults 

under different load conditions. In the beginning, Matching Pursuit (MP) and 

Discrete Wavelet Transform (DWT) were extracted, and some statistical 

features were adopted from the MP and DWT.  Then, the IWO was applied to 

select the optimal feature set for diagnosing the faults (Ibrahim et al., 2022). 
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Regarding optimizing the parameter inside the feature techniques, the initial 

parameters of the wavelet neural network were optimized using Improved Grey 

Wolf Optimization (IGWO) for addressing the problem of diagnostic accuracy 

and stability degradation. The optimizing initial parameters of WNN led to 

achieving higher performance in detecting fault by an amount of 1.15% higher 

compared to WNN where its parameters are selected randomly (Pan et al., 

2022).  Zhou Guifan optimized all parameters in variational modal 

decomposition (VMD) for bearing fault detection using a hybrid metaheuristic 

algorithm in which the idea of the algorithm has come from two other 

algorithms including a nondominated sorting genetic algorithm and multi-

objective particle swarm optimization.  The result shows that the optimized 

VMD is more robust for detecting faults compared with the conventional VMD 

(Guifan, 2022). 

In summary, the purpose of optimization algorithms is to find the best possible 

solution to a given problem by systematically searching through the solution 

space. Tuning hyperparameters is an essential step in the process of training 

machine learning models. Hyperparameters are the settings of the learning 

algorithm that determine its performance and generalization capabilities. 

Optimization algorithms can be used to search for the best hyperparameter 

values that lead to improved model performance. Many optimization 

algorithms have been developed which have been used to solve plenty of 

optimization problems including tuning hyperparameters in condition 

monitoring systems.  

 

I. Bayes Optimization  

 

Bayesian optimization is a global optimization technique used for finding 

the maximum or minimum of an objective function that is expensive to evaluate 
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or does not have an easily derivable gradient. It is particularly useful in 

situations where evaluating the function is time-consuming, costly, or noisy. 

Bayesian optimization is based on the principles of Bayesian statistics and 

incorporates prior knowledge about the objective function to guide the 

optimization process. There are two main components of Bayesian 

optimization. Firstly, the Surrogate model: A surrogate model is used to 

approximate the objective function, which is often a Gaussian Process (GP) or 

a Bayesian Neural Network. The surrogate model captures the uncertainty in 

the function evaluations and is computationally cheaper to evaluate than the 

actual objective function. Secondly, Acquisition function: The acquisition 

function is a utility function that guides the optimization process by 

determining the next point to sample in the search space. It balances exploration 

(searching in areas with high uncertainty) and exploitation (sampling near the 

current best solution). Some popular acquisition functions include Expected 

Improvement (EI), Probability of Improvement (PI), and Upper Confidence 

Bound (UCB) (Ibrahim et al., 2021a). The Bayesian optimization process 

generally follows these steps: 

 

1. Define the objective function: The objective function is the target 

function you want to optimize. 

2. Choose a surrogate model: Select an appropriate surrogate model to 

approximate the objective function, e.g., Gaussian Process or Bayesian 

Neural Network. 

3. Define an acquisition function: Choose an acquisition function to guide 

the exploration-exploitation trade-off during the optimization process. 

4. Initialize with a set of points: Start with a few initial points in the search 

space, which can be selected either randomly or using prior knowledge. 

5. Iterate until convergence or a stopping criterion is met:  
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a. Fit the surrogate model to the available data.  

b. Find the next point to sample by maximizing the acquisition 

function.  

c. Evaluate the objective function at the selected point and update the 

dataset.  

d. Repeat steps a-c until the optimization process converges or a 

predefined stopping criterion is met. 

Bayesian optimization has been successfully applied to various optimization 

problems, including hyperparameter tuning in machine learning models, 

experimental design, and optimization of expensive simulations. 

 

II. Grey Wolf Optimization  

 

GWO is a type of swarm intelligence that mimics the hunting behavior and 

hierarchical leadership of the grey wolf. These wolves work in groups of 5 to 

12 members. The GWO has been compared with different metaheuristic 

algorithms and it shows that GWO has advantages over others in terms of 

simplicity in operations, convergence speed, and achieving accurate solutions. 

The hierarchical leadership of wolves is divided into four categories of wolves 

which are alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔). The leader of the 

wolves is called alpha while supporters are called beta. Then, delta is a follower 

type that follows the instructions of alpha and beta. The final one is called 

omega which looks after the group requirements (see Figure 2.11).  (Seema and 

Kumar, 2016), (Mittal et al., 2016)(Mirjalili et al., 2014). 

In the beginning, GWO tries to use encircle mechanism to chase the prey after 

the initialization of the population. The encircling mechanism of the prey can 

be represented by the following equations (Mohammed et al., 2021): 
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�⃗⃗� = |   𝐶1 ⃗⃗⃗⃗  ⃗  ∙   𝑋𝑝(𝑖𝑡) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝑋𝑖𝑡⃗⃗⃗⃗  ⃗
      
|, 

𝑋(𝑖𝑡+1) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑋𝑝(𝑖𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝐴 ⃗⃗  ⃗  ∙  �⃗⃗�   , 
(2.18) 

 

Distance �⃗⃗�   can be found by using the current position and the position of the 

other three types of wolves (alpha, beta, and delta). These positions are 

represented by 𝑋𝑝(𝑖𝑡). Where 𝑋𝑝(𝑖𝑡) is the current position and  𝑋(𝑖𝑡+1) is the 

new position that can be found based on the distance equation for each type of 

wolf. 𝐴  and 𝐶 , are coefficient vectors that are calculated as follows(Mohammed 

et al., 2021): 

𝐴 = 2 ∙ 𝑎 ∙ 𝑟1⃗⃗⃗  + 𝑎  (2.19) 

𝐶 = 2 ∙ 𝑟2⃗⃗  ⃗ (2.20) 

 

Where 𝑟1⃗⃗⃗   𝑎𝑛𝑑 𝑟2⃗⃗  ⃗ are random numbers that are distributed in [0,1] and 𝑎 is the 

control parameter that is decreased linearly from 2 to 0 throughout iterations. 

After the encircling mechanism, the hunting method is done by using alpha, 

beta, and delta wolves. GWO assumes that each type of wolf has enough 

knowledge about the position of the prey, so they are participating in the 

hunting process to find the new position. So, this method can be done by using 

the three best solutions to update the current position. Mathematical equations 

are presented as follows: 

𝑋 ⃗⃗  ⃗(𝑖𝑡 + 1) =
𝑋1 ⃗⃗ ⃗⃗  ⃗ + 𝑋2 ⃗⃗ ⃗⃗  ⃗ + 𝑋3 ⃗⃗ ⃗⃗  ⃗

3
 (2.21) 

Each of 𝑋1 ⃗⃗ ⃗⃗  ⃗, 𝑋2 ⃗⃗ ⃗⃗  ⃗, 𝑎𝑛𝑑 𝑋3 ⃗⃗ ⃗⃗  ⃗ is calculated by using equations (2.26,2.27 and 2.28) 

(Mohammed et al., 2021): 

𝑋1 ⃗⃗ ⃗⃗  ⃗ = 𝑋𝛼⃗⃗ ⃗⃗  − 𝐴1 ⃗⃗ ⃗⃗  ⃗  ∙  𝐷𝛼⃗⃗⃗⃗  ⃗  , (2.22) 
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𝑋2 ⃗⃗ ⃗⃗  ⃗ = 𝑋𝛽⃗⃗ ⃗⃗  − 𝐴2 ⃗⃗ ⃗⃗  ⃗  ∙  𝐷𝛽⃗⃗ ⃗⃗    , (2.23) 

𝑋3 ⃗⃗ ⃗⃗  ⃗ = 𝑋𝛿⃗⃗ ⃗⃗  − 𝐴3 ⃗⃗ ⃗⃗  ⃗  ∙  𝐷𝛿⃗⃗ ⃗⃗   (2.24) 

 

Where 𝑋𝛼 , 𝑋𝛽  𝑎𝑛𝑑 𝑋𝛿 is the position of alpha, beta, and delta wolves. 

𝐷𝛼⃗⃗⃗⃗  ⃗, 𝐷𝛽⃗⃗ ⃗⃗   𝑎𝑛𝑑 𝐷𝛿⃗⃗ ⃗⃗    the distance can be found by using the following equations 

(2.29) in order to hunt the prey(Mohammed et al., 2021): 

𝐷𝛼⃗⃗⃗⃗  ⃗ = |   𝐶1 ⃗⃗⃗⃗  ⃗  ∙   𝑋𝛼 ⃗⃗ ⃗⃗ ⃗⃗  −  𝑋𝑖𝑡⃗⃗⃗⃗  ⃗
      
|, 

𝐷𝛽⃗⃗ ⃗⃗  = |   𝐶2 ⃗⃗⃗⃗  ⃗  ∙   𝑋𝛽⃗⃗ ⃗⃗  −  𝑋𝑖𝑡⃗⃗⃗⃗  ⃗
      
|, 

𝐷𝛿⃗⃗ ⃗⃗  = |   𝐶3 ⃗⃗⃗⃗  ⃗  ∙   𝑋𝛿⃗⃗ ⃗⃗  −  𝑋𝑖𝑡⃗⃗⃗⃗  ⃗
      
| 

(2.25) 

 

 

Decreasing the value of 𝑎  from 2 to 0 has a great effect on  𝐴 ⃗⃗  ⃗ because it has a 

range value between [-a, a]. As a result, GWO attacks the prey if the absolute 

value of  𝐴 < 1. Although, if the value of |𝐴 | > 1, the wolves explore new 

areas (Mirjalili et al., 2014; Panda and Das, 2019). 

Algorithm 1 illustrates the GWO pseudo-code. 

 

  

Algorithm 1: Grey Wolf Optimizer Pseudo-code 

Initialize population Xn ( n=1, 2, ….., m), Xα Xβ and Xδ 

initialize a and A and C vector 

finding fitness value 

While (it< Maxiteration) 

For each search agent 
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        Update the location of omega search agent by Equation 

(2.29) 

End For 

Update a, A, and C 

 Fitness evaluation 

Update Xα, Xβ and Xδ  

it=it+1 

End while 

return Xα 

 

 

 

Figure 2.11: Gray wolf optimization process, where, alpha (𝛼), beta (𝛽), 

delta (𝛿), and omega (𝜔). (Dai et al., 2018) 
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III. Fitness Dependent Optimizer  

 

The Fitness Dependent Optimizer (FDO) is one of the newest metaheuristic 

algorithms that has been developed by Abdullah and Rashid in 2019. The FDO 

working is based on a mechanism that bee swarming tries to find out food and 

it is slightly similar to the Particle Swarm Optimization (PSO) algorithm. The 

FDO is one of the metaheuristic algorithms that has been used by researchers 

to solve various applications, especially for engineering design problems (Salih 

et al., 2022). As with all other metaheuristic algorithms, the FDO starts by 

initializing an artificial scout population in the search space randomly (see 

Figure 2.12). Each of the scout bees in the scout population represents a 

solution (hive) and the scout bee attempts to find a better solution by randomly 

searching for more positions. When a better solution is found, the previously 

discovered solution is ignored. So, in each iteration, the algorithm identifies a 

better new solution. However, if the new solution is not better than the previous 

solution, the FDO will continue with its previous solution and catch a better 

new solution.  In Evert iteration, an artificial scout bee goes by adding pace to 

the current position and this movement of the scout bee can be calculated by 

equation (2.32)(Abdullah, 2019). 

Xi+1=Xi,t+pace  (2.26) 

where x denotes the scout bee, i represents the current scout bee, t is the current 

iteration, and pace value is dependent on Fitness Weight (fw) and random 

mechanism. The (fw) is obtained by equation (2.31)(Abdullah, 2019).  

𝑓w= [
  X*i,t fitness
Xi,t fitness

] -wf   (2.27) 

 

where wf is a weight factor,  X*
i,t fitness and  Xi,t fitness represent the global best 

and current best solution respectively. FDO has three different conditions for 
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calculating pace firstly when the fw is equal to one value as it is illustrated in 

equation (2.34) (Salih et al., 2022). 

𝑝𝑎𝑐𝑒 = Xi,t*r    (2.28) 

Second, when the fw is equal to zero (see equation (2.35)). 

𝑝𝑎𝑐𝑒 = distancebest bee*r  (2.29) 

Third, if fw>0 and fw<1. then the pace is calculated using equation (2.36). 

 

where r is a random number between [0 1] and  distance best bee indicates the 

variation in the current agent from the best agent, which can be calculated 

through equation (2.37) (Abdullah, 2019): 

distancebest bee=X
*-  Xi,t  (2.31) 

 

 

𝑝𝑎𝑐𝑒 = {
(𝑋𝑖,𝑡 − 𝑋

∗
𝑖,𝑡) ∗ 𝑓𝑤

∗ − 1       𝑟 < 0

(𝑋𝑖,𝑡 − 𝑋
∗
𝑖,𝑡) ∗ 𝑓𝑤                𝑟 ≥ 0

  (2.30) 
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Figure 2.12: FDO flowchart 
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𝒑𝒂𝒄𝒆 = 𝒙𝒊,𝒕 ∗ 𝒓 
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2.5 Related Works. 

 

Based on the works that have been conducted in the area of machine 

learning-based gear fault detection, we can decompose the related work into 

two main sections namely fault detection based on time series model and non-

time series model. Time series models and non-time series models are two 

different approaches to analyzing data, depending on the nature of the data. 

 

2.5.1 Related Work Based on Time Series Models. 

 

Lately, the application of Artificial Neural Network (ANN) has 

expanded in the domains of pattern identification and classification. Some 

benefits of these networks include deriving weights through neural 

computation and providing more objective diagnostic results compared to 

traditional techniques. Back-Propagation Neural Network (BPNN) is a type of 

these networks and has been extensively employed for fault diagnosis. 

Sorsa et al. (Sorsa et al., 1991) utilized a multilayer perceptron network 

featuring a hyperbolic tangent function, with 14 noisy measurement features 

and 10 faults as inputs and outputs, to identify faults in a real-world heat 

exchanger-continuous stirred tank reactor system. Li et al (Suphioglu et al., 

1998) employed frequency features of rolling bearings as neural network inputs 

to diagnose bearing defect types in motor-bearing systems. Kang et al. achieved 

optimal diagnostic results by extracting frequency features of vibration signals 

and using a fuzzy neural network (FNN) in motor systems(Kang et al., 2006). 

Although BPNNs or FNNs with frequency features can yield ideal diagnostic 

results, challenges arise when windowing signals for Fourier transformation, as 

the vibration signals may become distorted. Additionally, the frequency 
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spectrum distribution can be unclear for shock vibration signals, and 

determining true features can be difficult due to frequency sideband 

distributions in frequency modulation conditions. As a result, diagnostic results 

may not align with human expectations. 

Furthermore, the accuracy of diagnostic results is influenced by the relation 

matrix between frequency features and fault types, which is established through 

expert knowledge or experimentation. The implementation of time series 

analysis can help address these limitations (Samanta, 2004). 

Regarding time series features which are called temporal features, they have 

the potential to capture the dynamics and evolution of the gear's condition over 

time. These features can provide information about the gear's performance 

during the operation time (Fulcher, 2017). Many researchers proposed a gear 

fault detection system based on temporal features. For example, the standard 

RNN faces challenges in effectively training due to issues with gradient 

vanishing and exploding, despite its ability to handle time sequences. In 

contrast, the LSTM network, which incorporates forget, input, and output gates 

to filter information (Abdul et al., 2020), overcomes these problems and is a 

popular variant of RNN. Similarly, the Gated Recurrent Unit (GRU) neural 

network utilizes reset and update gates to achieve better training results based 

on the same theory. Both LSTM and GRU are suitable for many applications, 

but they may not be ideal for building very deep structures or analyzing high-

dimensional data (Li et al., 2022). 

In the field of machinery fault detection, simple and affordable models are 

desirable. To address this need, the ESN has emerged as a promising alternative 

to RNN. Instead of using hidden layer neurons, ESN employs a randomly 

generated reservoir as its basic processing unit (Jaeger and Haas, 2004). This 

approach allows for a simple structure and low data requirements, making ESN 

suitable for various applications, including emotion recognition (Ibrahim et al., 
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2021b) and fault diagnosis (Abdul and Talabani, 2022). However, ESN may 

not be effective in mining deep or spatial information.  

 

2.5.2 Related Work Based on Non-time series Models. 

 

In the literature, one can find two modern ways to develop automatic 

fault detection models, one of which depends on extracting information from 

the time series signal (Cabrera, et al, 2017; Ismail Fawaz et al., 2019a; Wang 

et al., 2017), whereas the other way is to extract information from the non-time 

series representation of the signal (Chen, Liu, et al., 2019; Yu and Zhou, 2020; 

Zamanian and Ohadi, 2016). The time series representation of the signal is 

adopted when the sequence of the information along the signal frames has 

important meaning to the application. On the other side, adopting the non-time 

series representation refers to the importance of the global information of the 

input signal rather than the order of the frame-based information (Cabrera et al. 

, 2017; (Ismail Fawaz et al., 2019). One of the research questions that this study 

tries to investigate is the usefulness of these two representations for fault 

detection from vibration signal when a set of specific handcrafted features is 

adopted. Both of the approaches can be used together with the traditional 

machine leaning or deep learning algorithms. Since the sequence is not 

important in the non-time series representation, a question will be raised 

regarding the representation design of the features along various frames. 

Traditionally, statistics will be computed along the frames, which have the 

advantages of unifying the length and reducing the dimensions. However, 

statistics may lead to loss of information, in addition to  the fact that the data 

along the frames may not have known probability distribution, which may lead 

to produce non-representative feature vector (Eyben et al., 2009). These 

approaches  can be applied on fault detection models using various types of 
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signals such as vibration, acoustic, lubrication and temperatures (Isermann, 

1993). For fault detection in rotating machinery, the most effective signal 

among all is the vibration signal, since it carries significant information that are 

related to the condition of the rotating machinery (Edwards et al., 1998). 

Condition monitoring in early works of fault diagnosis is limited to those faults 

that can be observed from stationary signals. Moreover, power spectrum, 

cepstrum, adaptive noise cancellation, time-domain averaging, and time-series 

analysis are also established approaches in the time domain or frequency 

domain to effectively deal with stationary signals (Jena et al., 2014)(Riaz et al., 

2017). However, there are some difficulties with these approaches related to 

some faults such as cracking gear teeth because they are incapable of disclosing 

the inherent information of the non-stationary signals, and some faults can be 

detected by analysis of the non-stationary signals. Therefore, there are new 

approaches for dealing with non-stationary signals such as time-frequency 

analysis (Wei et al., 2019). 

Due to the increase in the use of artificial intelligence, there have been 

significant improvements in most industrial technologies including fault 

detection in rotation machinery. Two methods of machine learning have been 

used for fault detection and isolation; traditional machine learning and deep 

learning (Saravanan et al., 2008). Both machine learning algorithms have 

brought up many significant improvements in various applications such as 

vehicle production systems (Luo and Wang, 2018), fault detection in industrial 

systems (Chen, Li, et al., 2019)(Kumar and Hati, 2020), robotic (Zeng et al., 

2021), medical application (Zeng et al., 2018)  and speech analysis (Gaikwad 

et al., 2010). Traditional machine-learning algorithms are being criticized by 

researchers for requiring a handcraft feature (Lei et al., 2019). However, using 

handcrafted features leads to developing models with less complexity 

compared to the deep leaned features. 
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Feature extraction is key to improving the performance of the machine 

learning-based model of fault detection and diagnosis. At the features level, 

some researchers have input statistics to the classification methods such as the 

mean, standard division, skewness, kurtosis and root mean square. For 

example, there was a fusion of some statistics and the adoption of a time 

derivative and a high-low pass filter. The fused features are selected using a 

genetic algorithm and then classified by SVM and an Artificial Neural Network 

(ANN) (Samanta, 2004). In (Saravanan et al., 2008), the authors evaluated both 

the SVM and Proximal Support Vector Machines (PSVM) based on the 

statistical features obtained from morlet wavelet coefficients. While in (Rafiee 

et al., 2010), four statistical values were adapted from continuous wavelet 

coefficients in the origin signal.  

The DWT has been widely exploited and applied to the vibration signal for 

fault detection purposes. For example, the DWT feature is used with the 

Decision Tree (DT) classification in (Saravanan and Ramachandran, 2009). 

The normalized wavelet energy of post-fault voltage and current fault were 

computed together to feed the SVM classification (Livani and Evrenosoglu, 

2012). In another study, a BPNN based on Clarke’s transformation was trained 

by the DWT-based features (Asuhaimi Mohd Zin et al., 2015). The DWT is 

also proposed to feed k-Nearest Neighbor (k-NN) (Manohar et al., 2018). The 

results show that DWT is a powerful and flexible feature for decomposing 

linear and non-linear processing. 

Although the Local Binary Pattern (LBP) is a well-known feature in image-

based applications, it has also been adopted for fault detection. A two-

dimensional LBP (2D-LBP) was extracted from textures in the 2D vibration 

images with the k-NN classifier to detect bearing faults (Khan and Kim, 2016). 

One-dimensional LPB (1D-LBP) was also employed to detect different types 

of gear faults. The 1D-LBP features obtained from the original signals are used 
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as input to the k-NN and SVM classifiers (Abdul et al., 2016). The 1-D LBP 

algorithm was engaged to extract the LBP features of the wavelet coefficients 

for weld defect classification. Then the features were assessed by k-NN (Hu et 

al., 2018). The LBP indicates the ability to extract effective and relevant 

features for detecting a fault in rotation machinery. 

The MFCC is a well-known feature that has been widely used in speech 

analysis such as speech recognition, speaker identification and emotion 

recognition from speech (Abdul, 2019; Gaikwad et al., 2010; Kathiresan and 

Dellwo, 2019). However, the MFCC is also proposed for fault detection and 

diagnosis. In (Zhang et al., 2018), Zhang et al. used the MFCC, the wavelet 

packet energy decomposition and the zero-crossing rate features together with 

the SVM classifier. Researchers in (Benkedjouh T., Chettibi T., Saadouni Y., 

2018) confirm that the defect information in rotation machinery is mainly 

included in the first three MFCC coefficients. The model has been evaluated 

using the SVM. Zhang et al.   (Zhang et al., 2018) extracted MFCC from the 

linear combination of wavelet packet decomposition and zero-crossing rate of 

vibration signal and then fed it to the SVM classifier.  Benkedjouh et al. 

(Benkedjouh T., Chettibi T., Saadouni Y., 2018) extracted a set of features 

including some temporal indicators and MFCC coefficients then the SVM  was 

utilized for classifying the gear and bearing faults. Based on the result of 

(Benkedjouh T., Chettibi T., Saadouni Y., 2018), defect information of gear 

fault is mainly included in the first three MFCC coefficients. However, other 

studies show that all of the 14 coefficients of MFCC include more relevant 

information to gear fault detection than the first three coefficients alone (Abdul 

et al., 2020).  In this work, we have adopted the use of 14 MFCCs and 14 

GTCCs along the frames to be used to train the SVM classifier. Benkedjouh et 

al. extracted the MFCC feature and fed it to the SVM and claimed that the first 

three MFCC components contain the most defect information of gears 
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(Benkedjouh T., Chettibi T., Saadouni Y., 2018). However, based on the 

research of Abdul et al., 1-13 MFCCs are more effective to be taken to train 

LSTM (Abdul et al., 2020) and Jin et al. evaluated some sets of MFCCs (16, 

21, 26, 31, 36, 41 MFCCs) by feeding them into a CNN model individually and 

the result shows that 41 MFCCs outperformed the others for gear fault 

detection. In conclusion, the dimension of the MFCC features is important for 

increasing the classification rate (Jin et al., 2021). There are some other 

researchers who used MFCC as feature for fault detection as shown in Table 

2.1.    

 

 

Table 2.1: Summarizing of those papers that use MFCC for fault detection 

Classification  Feature Advantage   Disadvantage  

SVM 

MFCC(Benkedjouh T., 

Chettibi T., Saadouni 

Y., 2018), Fusion 

MFCC, Wavelet 

Packet Decomposition 

Energy features and the 

Zero-crossing rate 

(ZCR) (Zhang et al., 

2018). MFCC and its 

delta (Akpudo and Hur, 

2021) 

Most influential 

coefficients are the first 

three MFCC 

coefficients(Benkedjouh 

T., Chettibi T., Saadouni 

Y., 2018). For Fusion 

feature, higher 

classification accuracy 

was achieved even under 

noisy 

environment(Zhang et 

al., 2018). Rank-based 

recursive feature 

elimination was used to 

select proper feature 

among them and the 

selected feature are 

reliable for fault detection 

in electromagnetic 

pumps(Akpudo and Hur, 

2021). 

Other features like 

Wavelet Packet 

Decomposition and 

Zero-crossing rate 

were used to 

support the MFCC 

to gain better 

performance in the 

noisy 

background(Zhang 

et al., 2018). 

GMM 

MFCC(Fang and Liu, 

2020),MFCC+ 

Kurtosis(Nelwamondo 

and Marwala, 2006),  

MFCC can hold 95% of 

defect information and 

adding Kurtosis leads to 

the improvement the 

accuracy by 

The model was not 

checked in noisy 

environment  
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4%(Nelwamondo and 

Marwala, 2006) 

XGboost 

algorithm 

An improvement of 

MFCC was named 

adaptive frequency 

cepstrum coefficient 

(AFCC) (Qi et al., 

2021). 

Adaptive MFCC 

improves the 

performance of the fault 

detection system  

MFCC method is 

limited for 

detecting bearing 

fault as Mel scale 

designed based 

speech signal and is 

not suitable for the 

frequency 

distribution of 

rolling bearing 

vibration signal 

Similarities 

analysis 

MFCC (Kemalkar and 

Bairagi, 2017) 

MFCC suitable to show 

some various faults 

detection 

The proposed 

model was 

composed into two 

parts. Fault 

detection and fault 

classification. The 

MFCC was only 

used for fault 

classification  

 

 

With the progress of machine learning, deep learning methods have been 

conducted in gear fault detection and received extensive attention. The deep 

learning models may be fed by a raw signal and/or hand-crafted features. 

Regarding the works that use the raw signal, researchers exploited the vibration 

raw signal directly and fed it to the CNN model, where there is no need to have 

any prior knowledge of the related features to the application (Yang et al., 

2019)-(Jing et al., 2017). On the other hand, Shao et al. (Shao et al., 2019) used 

images created by the time-frequency distributions by conducting wavelet 

transform to convert raw input to image data. Authors in (Wang et al., 2017) 

proposed local feature-based gated recurrent unit networks that are trained by 

handcrafted features and automatically learned features. Abdul et al.(Abdul et 

al., 2020) extracted a temporal feature, which is based on the MFCC and GTCC 

and fed the LSTM to classify gear faults for helical gears and parallel gearbox 

alone. Saufi el at. (Saufi et al., 2020) proposed a deep learning model based on 
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a Stacked Sparse Auto Encoder (SSAE) and then combined it with t-stochastic 

neighbor embedding (t-SNE). The deep learning model has sole rewards in 

fault classification due to its potential automatic learning and extracting feature 

without human interaction (Tang et al., 2020b). In (Hoang and Kang, 2019), 

the authors use it to isolate the bearing faults, where the raw data vibration 

signal is given to the CNN model, as CNN is the featureless model. The authors 

in (Ma et al., 2019) developed a model where the pyramid wavelet packet 

decomposition of the signal became an input for the proposed CNN model. 

Shao et al. (Shao et al., 2019) adopted a pre-trained CNN model specifically 

(VGG-16) for fault detection. The CNN results show a significant improvement 

in the classification rate.  However, there are two main trades of issues in 

conducting deep learning models which are: 1) the complexity of the model 

and 2) setting the hyperparameters of the model. The complexity issue is very 

problematic, however, the hyperparameters of the deep learning model can be 

optimized. For example, Tang et al. optimized the hyperparameters of a CNN 

model by using Bayesian optimization (CNN-B) for detecting faults in a 

hydraulic pump. Continuous wavelet transform was taken from the vibration 

signal and fed to the CNN-B model and the result indicates that optimizing 

hyperparameters of the CNN can improve the accuracy of the fault detection 

system (Tang et al., 2022). 

 

2.6 Performance Measurement  

 

Accuracy is a metric used to evaluate the performance of a machine-

learning model. It is defined as the proportion of correct predictions made by 

the model out of all predictions made. In other words, accuracy measures how 

well the model is able to correctly classify the input data. The accuracy of a 

model is typically calculated by comparing its predicted output to the true 
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output for a set of test data. The accuracy is calculated as the number of correct 

predictions divided by the total number of predictions made (Poveda-Martínez 

and Ramis-Soriano, 2020). Mathematically, accuracy can be expressed as: 

Accuracy = (Number of correct predictions) / (Total 

number of predictions) 

(2.32) 

 

Accuracy is an important metric for fault detection because it measures the 

proportion of correct predictions made by a model out of all predictions made. 

In fault detection, accurate detection of faults is critical for preventing 

equipment damage and ensuring safety. A high accuracy score indicates that 

the model is correctly identifying faults and anomalies and minimizing false 

positives and false negatives. False positives occur when the model predicts a 

fault when none exists, while false negatives occur when the model fails to 

detect a fault that actually exists. Both false positives and false negatives can 

have serious consequences in fault detection. False positives can result in 

unnecessary maintenance and downtime, while false negatives can lead to 

equipment failure or safety hazards (Decker and Lewicki, 2003). 

The accuracy metric provides a clear and objective measure of how well a fault 

detection model is performing, which can be used to compare different models 

or fine-tune the parameters of a model to improve its performance. Other 

metrics, such as precision, recall, and F1-score, are also commonly used in fault 

detection, but accuracy is often the most straightforward and intuitive metric to 

interpret. 
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2.7 Summary of the Chapter 

 

In this chapter, two main topics are explained. Firstly, a background of these 

tools that have been used in this work such as both features (MFCC and GTCC), 

with their implementation and some classifiers (SVM, LSTM, and ESN). 

Secondly, a literature review about two types of fault detection based on 

machine learning algorithms such as those that can deal with time series 

features and others that can identify patterns based on non-time series features. 
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CHAPTER THREE 

3 GEAR FAULT DETECTION USING TIME SERIES MODEL 

 

Fault detection based on time series models is a valuable approach used 

across industries to recognize abnormalities or deviations from anticipated 

patterns in systems or processes. These models effectively capture the temporal 

dependencies and patterns found in sequential data, making them ideal for 

detecting faults in systems that evolve over time. The fundamental concept 

behind fault detection using time series models revolves around capturing 

comprehensive dynamic information at regular intervals.  Machine learning 

models that capture the temporal features of the vibration signal need to be 

capable of detecting the dependencies between time steps. Traditionally, 

Hidden Markov Model (HHM) and DTW are among the most used machine 

learning models for this purpose. Due to the advancement of deep learning 

methods RNN based models are frequently adopted by researchers.  However, 

the problem of gradient vanishing that appears in RNN leads to the 

development of new modified versions, two of which (LSTM and ESN) are 

utilized in this chapter (see Figure 3.1). In the following sections, the adopted 

methodologies of both models are presented, in addition to the implementation 

and experimental setups. 
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Figure 3.1: procedure of this chapter. 

 

 

3.1 Gear Fault Detection Using LSTM. 

3.1.1 Motivation of Using LSTM for Gear Fault Detection. 

 

LSTM was  introduced by Hochreiter and Schmidhuber in 1997, (Jaeger 

and Haas, 2004) as a modified architecture of RNN. It serves as an extension 

to standard RNNs and offers several advantages. LSTM is a well-known and 

useful model for time series-based pattern recognition problems due to its 

capability to handle long-term dependencies, retain relevant information in 

their memory cell, and accommodate variable-length sequences. Specifically, 

when training RNNs on extended sequences, LSTMs address the vanishing 

gradient problem, which can block learning. Their memory cell enables the 

retention of information over extended periods, which facilitates to capture and 

utilize long-term dependencies within the data samples (Bai, 2021). 

Time series model 

LSTM ESN

ESN Modification 
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Moreover, LSTMs possess the capacity to selectively remember or forget 

information from previous time steps using their memory cell. This capability 

ensures that significant information is retained while irrelevant or redundant 

data is discarded. Thus, it enhances the learning process and ultimately 

improves model performance. Additionally, the flexibility of LSTMs allows 

them to handle sequences of varying lengths effectively. This feature is 

particularly valuable when working with sequential data that lack fixed lengths, 

enabling the model to adapt and process such data dynamically. These 

characteristics of LSTM make a suitable and effective candidate model to be 

proposed for the vibration signal applications such as gear fault detection 

(Xiang et al., 2020). 

 

3.1.2 Dataset Description  

 

I. Dataset-PHM09 

 

One of the utilized datasets was collected by the Prognostics and Health 

Management Society, recognized as Prognostic Health Monitoring (PHM09). 

This database has been used widely by many researchers for detecting faults in 

gearbox equipment (Wei et al., 2019)(Abdul et al., 2016)(Shao et al., 2019). 

Three sensors were tied in a gearbox with two acceleration sensors and a 

tachometer sensor for recording the vibration signals and speed shaft. Two 

typical gearboxes were used during the data acquisition process. Both 

gearboxes were different in terms of the utilized gear, helical or spur. Each 

gearbox ran under different shaft speeds; 30, 35, 40, 45, and 50 Hz, and 

different variance loads. The length of each record is four seconds with a 

66667-sample rate.  In this dissertation, four gear cases are considered 

including normal, chipped, broken, and mixed faults. Hence, the data comprises 
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120 samples with lengths of 266666-digit rate. Table 3.1 and 3.2 illustrate the 

four cases for helical and spur gear respectively and Figure 3.2 illustrates the 

structure of the gearbox. 

 

 

Table 3.1:  Status of the helical gears in PHM09. 

Case 16Teeth 48Teeth 24 Teeth  40 Teeth 

Helical 1 Good Good Good Good 

Helical 2 Good Good Chipped Good 

Helical 3 Good Good Broken Good 

Helical 4 Good Good Broken Chipped 

 

 

Table 3.2: Status of the Spur gears in PHM09 

Case 32T 96T 48T 80T 

Spur 1 Good Good Good Good 

Spur 2 Chipped Good Eccentric Good 

Spur 3 Good Good Eccentric Good 

Spur 4 Good Good Good Broken 
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II. Dataset_ DDS. 

 

      Gearbox datasets were collected from a Drivetrain Dynamic Simulator 

(DDS) in Southeast University, China. A DDS was used to diagnose the faults 

in the gearbox under two different operation conditions such as load 

configuration and rotating speed (0V-20Hz and 2V-30Hz). The DDS consists 

of four main parts; parallel gearbox, planetary gearbox, brake, and motor (see 

Figure 3.3). The types of gear fault employed in the experiments were missing 

one of the gear feet (miss), crack in the root of feet (root), surface wear (surface) 

and feet crack (chipped). Therefore, to diagnose the gear fault four different 

data sets were created each with five classes (health and four fault conditions). 

     One of the accelerometer sensors was employed to measure the planetary 

gearbox vibration in the x, y, and z directions. Another one of the accelerometer 

sensors was used to measure the vibration of the gearbox in different directions. 

The last accelerometer sensor was used to measure the motor vibration. A 

Figure 3.2: Structure of PHM09 gearbox where the T is tooth of 

the gear (PHM, 2009). 
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torque sensor was used in the experiments for measuring the load. The sampling 

window and sampling frequency of the data acquisition instrument are 512 s 

and 1024 Hz, respectively (Wang et al., 2017)(Shao et al., 2019). 

 

 

 

Figure 3.3: Drivetrain Dynamic Simulator (DDS) (Shao et al., 2018). 

 

 

3.1.3 Feature Extraction and Representation  

 

   The adopted extracted features from the vibration data in this dissertation 

are the MFCCs and the GTCC.  The process of feature extraction is started by 

windowing the raw signal into a number of frames, which depends on the 

frequency rate (fs) of the vibration signal. The length of the constructed 

vibration signal samples in both datasets is set to be ( 2 ∗ 104) and the total 
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utilized number of samples are (416) and (750) for PHM09 and DDS datasets 

respectively. Therefore, the obtained frames for each sample are 17 in both 

datasets (dataset_PHM09 and dataset_DDS). For both the MFCC and GTCC 

features, 14 coefficients of each frame are computed where the default 

parameters for the MFCC and GTCC are fixed as shown in Table 3.3.  

 

 

Table 3.3: The MFCC and GTCC Parameters  

Parameters MFCC GTCC 

Delta Window Length 2 2 

Frequency Range 133 to 6864 Hz 50 Hz to fs /2 

Number of Filters 40 32 

Number of Coefficients 14 14 

Log Energy 15 15 

Window Length 0.03* freq. rate 0.03* freq. rate 

 

 

      Both features represent the input samples and are used for training the 

classifiers in a concatenated form (feature fusion). The adopted time series 

representation of features is producing a matrix of size (tr) (denoted as matrix 

𝐴) for each sample, where t is the number of windows (time step) and r is the 

number of features (dimensions). The matrix 𝐴 𝑡×𝑟 for both MFCC and GTCC 

is combined to produce a matric of size (𝑡 × 2𝑟) and then feed the LSTM.  
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3.1.4 LSTM Architecture  

 

The adopted LSTM model in this chapter consists of two LSTM layers 

and one fully connected layer (see Figure 3.4). Due to the lack of resources, the 

hyperparameter of the adopted LSTM model was fixed at two LSTM layers 

each with 228 nodes and a ReLU function that feeds a fully connected layer 

with a number of neurons equal to the number of classes and followed by a 

SoftMax layer. In the training phase, the batch size is fixed to be 300, the 

number of epochs is chosen to be 30 and the adopted optimizer is selected to 

be Adam.  

In order to reduce the complexity of the gear fault model based on the LSTM 

architecture, which was adopted by (Abdul et al., 2020), the adopted size of the 

input sample in this model is reduced since the extracted feature for each sensor 

feeds the classification model in an independent way instead of taking the 

concatenated form of both features as an input to the classification model (see 

Figure 3.5). For instance, when the LSTM model in (Abdul et al., 2020) was 

fed by PHM09, the features (MFCC and GTCC)  were extracted from both 

input and output sensors and then concatenated to feed the classification model. 

The same idea is adopted for the DDS when the feature is extracted from each 

direction x, y, and z individually then feeds the LSTM model. 

To evaluate the conducted experiments, a 10-fold cross-validation 

approach is applied to assess the performance of the adopted LSTM model and 

evaluate the different conditions related to the nature of the vibration data.  

In the whole of this dissertation, chi-square, and T-tests have been adopted as 

a statistical test to know how significant the models are.  The Chi-Square test 

is a statistical test used to determine whether there is a significant association 

between two categorical variables. Chi-Square is suitable to know the 

significant association between the output of two models for a specific case. 
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The T-test is used to show a significant association between the output of two 

models for several cases.  

 

 

 

Figure 3.4: LSTM structure  

 

 

 

Figure 3.5: Gear fault detection based on LSTM model where we have three 

coefficients (r=3) and three-time steps (t=3). 

 

 

3.2 Gear Fault Detection Using ESN  

 

3.2.1 Motivation of ESN 

The ESN is a form of RNN that was introduced by Jaeger in 2004 (Jaeger 

and Haas, 2004). Its purpose is to effectively process and analyze time-series-
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based data, much like LSTM networks. Nevertheless, ESNs exhibit distinct 

characteristics and advantages in comparison to LSTMs. Within an ESN, the 

recurrent portion of the network called the reservoir, comprises randomly 

initialized recurrent nodes or units. These units are connected in a sparsely 

interconnected manner, establishing a multitude of recurrent connections. 

ESNs possess several key advantages, such as easy training and memory 

capability. Firstly, easy training implies that training an ESN involves a simple 

learning step solely for the readout layer. The recurrent connections within the 

reservoir are fixed and randomly initialized, which remains unaltered during 

training. Consequently, this approach renders the training process 

computationally efficient and less susceptible to overfitting. Secondly, ESNs 

possess memory capability, which enables them to capture and utilize 

information from past time steps. The recurrent connections within the 

reservoir retain the historical context of the input data, which facilitates the 

network's recognition of temporal patterns and dependencies (Dai et al., 2009; 

Inc, 2023). Due to the challenge of the lack of computational resources that this 

work faced (as mentioned in (1.3)), ESN becomes a preferable candidate model 

for this work. 

 

3.2.2 Time Complexity of ESN And LSTM 

 

Comparing the time complexity of ESN and LSTM networks can provide 

insights into their computational efficiency for sequence modeling tasks. Big 

O notation of ESN can be computed based on several factors  

- Training Time Complexity: O(N^2) for initialization, where N is the 

number of reservoir units. O(T) for training, where T is the length of the 

training data sequence. Overall, the training time complexity is dominated by 

the initialization step and is relatively efficient, especially for long sequences. 
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- Inference (Prediction) Time Complexity:O(T), where T is the length of 

the input sequence. ESNs are computationally efficient during inference 

because they involve fixed random connections and simple recurrent 

computations. 

Regarding the time complexity of the LSTM can be computed as follows. 

- Training Time Complexity: O(T * N^2) for the forward and backward 

passes during training, where T is the sequence length, and N is the number of 

LSTM units in a layer. Training LSTMs can be more computationally 

expensive, especially with large sequence lengths. 

- Inference (Prediction) Time Complexity: O(T * N^2) for the forward 

pass during inference. LSTMs involve complex computations at each time step, 

making them potentially less efficient during inference compared to ESNs. 

In summary, ESNs are often preferred for applications where 

computational efficiency is crucial, especially during training. LSTMs, on the 

other hand, offer more modeling flexibility and can capture complex temporal 

dependencies but come with higher computational costs. The choice between 

the two depends on the specific requirements of the task and the available 

computational resources. 

 

3.2.3 The Adopted ESN Architecture  

 

In recent years, several researchers have independently expanded upon 

the basic architecture of ESN by developing more advanced reservoirs, 

readouts, or input representations. To assess the combined effectiveness of 

these modifications in the context of multi-time series classification, the 

authors (Bianchi et al., 2021), introduced a comprehensive framework for 

classification of the multivariate time series. This framework generalizes 
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various Reservoir Computing (RC) architectures by integrating four key 

modules, a reservoir module, a dimensionality reduction module, a 

representation module, and a readout module. Each module serves a specific 

purpose, and its descriptions are provided below. Figure 3.6 provides an 

overview of the models that can be implemented within this framework. 

 

 

 

Figure 3.6: ESN structure for one reservoir (Bianchi et al., 2021).  

 

 

3.2.3.1 Reservoir Module 

 

Bidirectional reservoir was adopted by (Bianchi et al., 2021) which 

refers to a reform of the traditional ESN architecture that incorporates 

bidirectional connections within the reservoir layer. In a standard ESN, the 

connections between neurons in the reservoir layer are unidirectional which 
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means the information flows only in one direction. Bidirectional reservoirs in 

ESNs differ from the standard architecture by including additional connections 

that facilitate the bidirectional flow of information within the reservoir layer. 

This enables reservoir neurons to capture both past and future inputs, resulting 

in a more comprehensive representation of the input sequence. It is important 

to note, though, that the incorporation of bidirectional reservoirs can introduce 

computational complexity due to the increased number of connections and the 

necessity to propagate information in both directions during training and 

inference. Bidirectionality is implemented, as shown in equation 3.1, by 

feeding an input sequence into the same reservoir both in straight and reverse 

orders. 

ℎ⃗ (𝑡) = 𝑤𝑖𝑛∗𝑥(𝑡) + 𝑤𝑟 ∗ ℎ⃗ (𝑡 − 1) 

ℎ̅(𝑡) = 𝑤𝑖𝑛∗𝑥(𝑡) + 𝑤𝑟 ∗ ℎ̅(𝑡 − 1) 
(3.1) 

 

where h (t) is the RNN state at time t that depends on its previous value h (t − 

1) and the current input x (t), f (·) is a non-linear activation function and the 

matrices 𝑊𝑖𝑛 and 𝑊𝑟 are the weights of the input and recurrent connections, 

respectively. The full state is obtained by concatenating the two-state vectors 

as illustrated by equation (2.14) and can capture longer time dependencies by 

summarizing at every step in both recent and past information. 

 

3.2.3.2 Dimension Reduction Using Principal Component Analysis  

 

The output of the reservoir layers is high dimensional and sparse, which 

can lead to overfitting and high computational costs. To address this issue, the 

well-known trainable dimension reduction technique Principal Component 

Analysis (PCA) was used to reduce dimension and convert the output into a 



68 

 

non-correlated representation. This can help improve the performance of 

machine learning models, reduce storage and computation requirements, and 

assist in visualizing high-dimensional data (Bianchi et al., 2021). 

PCA works by selecting eigenvectors of the covariance matrix with the 

greatest eigenvalues, resulting in a data-dependent projection that de-correlates 

the data from the original input. The dimension of the output data is then 

reduced to a pre-fixed number, which can be either fixed or optimized through 

one of several approaches (Bianchi et al., 2021). This dimension reduction step 

helps to minimize the computation of the reservoir model space and produces 

a new sequence ℎ1
~, ℎ2

~, and ℎ3
~, which are used as input to the reservoir model. 

 

3.2.3.3 Reservoir Module Space  

 

The reservoir model space method, originally introduced in (Bianchi et 

al., 2021), aims to capture the generative process of the reservoir sequence and 

establish a metric relationship among the samples. In the approach, the output 

of the reservoir module representation is not solely based on the final reservoir 

state, it rather depends on the entire sequence of states generated over time. As 

a result, the dataset is conveniently described as a three-mode tensor (ℋ ∈

 ℛ𝑁 × 𝑇 ×𝑅), requiring a transformation that maps (𝑅 →  𝐷𝑠.𝑡 , 𝐷 ≪ 𝑅) while 

keeping the other dimensions unchanged. To achieve dimensionality reduction 

on high-order tensors, the authors in (Bianchi et al., 2021) suggest utilizing 

Tucker decomposition. This decomposition involves expressing the tensor as a 

core tensor multiplied by a matrix along each mode. When modifying only one 

dimension of ℋ, the Tucker decomposition is essentially equivalent to applying 

a 2D PCA on a specific matrix representation of ℋ. Particularly, to reduce the 

third dimension (R), one computes the mode-3 matricization of ℋ by arranging 

the mode-3 fiber (high-order analog of matrix rows/columns) to be the rows of 
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a resulting matrix 𝐻(3) ∈  ℛ
𝑁𝑇 ×𝑅  . Then, the standard PCA projects the rows 

of 𝐻(3) on the eigenvectors associated with the largest D eigenvalues of the 

covariance matrix  𝐶 ∈  ℛ𝑅 ×𝑅   , which is defined a 

𝐶 =  
1

𝑁𝑇 − 1
∑ (ℎ𝑖 − ℎ)(ℎ𝑖 − ℎ)

𝑇
𝑁𝑇

𝑖=1
 

(3.2) 

 

Where, ℎ𝑖 is the i-th row of 𝐻(3) and ℎ =
1

𝑁
∑ ℎ𝑖
𝑁𝑇
𝑖=1 . As a result of the 

concatenation of the first two dimensions in ℋ, the reservoir states across all 

samples and time steps are simultaneously captured in the tensor ℋ and the 

matrix C evaluates the variation of components over time. However, this 

approach results in the loss of both the original data structure and the temporal 

orderings. The reservoir states from different samples and generated at different 

time steps get mixed together, potentially causing a loss in representation 

capability (Bianchi et al., 2021). This disregards the presence of variations in 

time courses within individual samples. To overcome this limitation, they 

address each matrix 𝐻𝑛 ∈  ℛ
𝑁𝑇 ×𝑅   , obtained by slicing ℋ along its first 

dimension (𝑁), as an individual sample. With this modification, they 

introduced a sample covariance matrix that is defined as follows: 

𝑆 =  
1

𝑁 − 1
∑ (𝐻𝑛 − 𝐻)(𝐻𝑛 − 𝐻)

𝑇
𝑁

𝑖=1
 (3.3) 

 

The first D leading eigenvectors of S are stacked in a matrix obtained as 𝐸 ∈

 𝑅𝑅×𝐷 and the desired tensor of reduced dimensionality is obtained ℋ =

ℋ ×3 𝐸. Where, ×3 is the three-mode product, C, S denotes the variations of 

the variables in the reservoir. However, since the whole sequence of reservoir 

states is treated as a single observation, the temporal ordering in different MTS 

is preserved. After dimensionality reduction, the model representation becomes 
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ℎ̃(𝑡 + 1) =  𝑈ℎℎ̃(𝑡) + 𝑢ℎ (3.4) 

where ℎ̃(. ) are the columns of a frontal slice 𝐻 of ℋ , 𝑈ℎ ∈  𝑅
𝐷×𝐷 , and 𝑢ℎ ∈

 𝑅𝐷. The representation will now coincide with the parameters vector 𝑟𝑥 =

θℎ = [𝑣𝑒𝑐(𝑈ℎ); 𝑢ℎ] ∈ 𝑅𝐷(𝐷+1), as shown in Figure 3.7. 

 

 

 

Figure 3.7:Reservoir model representation(Bianchi et al., 2021) 

 

 

3.2.3.4 Readout 

 

The readout module classifies the representations and is either 

implemented as a linear readout or SVM classifier or a multilayer perceptron 

(MLP). In a standard ESN, the readout is linear and is quickly trained by 

solving a convex optimization problem. Based on their result, the linear readout 

outperformed the SVM and MLP.  
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3.2.4 Experimental Setup 

 

The features are obtained from the vibration signal of each sensor. For 

example, in the PHM09 dataset, features are extracted from the input and the 

output sensor where each sensor is located on one of the sides of the shaft in 

the gearbox as shown in Figure 3.1. Regarding the DDS dataset, the features 

are extracted from each of the sensors (direction x, y, and z). Consequently, 14 

coefficients of each frame for both features (MFCC and GTCC) are the output 

from this process such that the obtained features are formed by a 𝑡 × 𝑟 matrix 

(A) for each input sample, where r is the number of features (dimensions) and 

t is the number of time steps. Regarding time series ESN  models with one 

reservoir which is illustrated in Figure 3.8, the matrix A ( 𝑡 × 𝑟) for both MFCC 

and GTCC are combined to produce a matrix of size (𝑡 × 2𝑟), where r 

represents time step. The obtained feature (matrix A) is fed into the reservoir, 

and its dynamics transform the input into a higher-dimensional representation. 

The classifier is trained using the output of the reservoir after reducing high 

dimensional output using PCA. The 10-folds cross-validation techniques are 

conducted to assess the performance of all adopted models.  

 

 

 

Figure 3.8: Gear fault detection model based on ESN where we have three 

coefficients (r=3) and three-time steps (t=3). 
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3.2.5 Modified ESN Model 

 

According to the architecture of the ESN, model explained above, only 

one reservoir is adopted for each input direction. In this section, we are going 

to present a new modification that adopts three reservoirs’ modules instead of 

one as shown in Figure 3.9. This can serve input data of multi-channel 

especially when the focus of the model is dealt with each channel in an 

independent way at the reservoir module level.  

 

 

 

Figure 3.9: ESN with three reservoirs 

 

 

In this proposed model, we utilized the three reservoirs-ESN approach, which 

employs three reservoirs with a late fusion. By processing data from different 

reservoirs independently, we can obtain diverse relational information about 
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the sequences. Combining the outputs of the three reservoirs using reservoir 

model space fusion yields more varied representations of the data and 

emphasizes the unique characteristics of each reservoir. Consequently, we 

modified the equation from the original to incorporate three separate outputs 

from PCA, which are presented in the following equations (3.5) 

ℎ1
~(𝑡 + 1) = 𝑈ℎ1ℎ1

~(𝑡) + 𝑢ℎ1 

ℎ2
~(𝑡 + 1) = 𝑈ℎ2ℎ2

~(𝑡) + 𝑢ℎ2 

ℎ3
~(𝑡 + 1) = 𝑈ℎ3ℎ3

~(𝑡) + 𝑢ℎ3 

(3.5) 

where ℎ1
~(𝑡), ℎ2

~(𝑡), 𝑎𝑛𝑑 ℎ3
~(𝑡) are the columns of a frontal slice H˘1 and H˘2 

respectively, 𝑈ℎ1ℎ1
~, 𝑈ℎ2ℎ2

~, 𝑎𝑛𝑑 𝑈ℎ3ℎ3
~∈ 𝑅D×D  and 𝑢ℎ1, 𝑢ℎ2, 𝑎𝑛𝑑 𝑢ℎ3∈𝑅

𝐷. 

The late fusion of triple reservoirs will be applied in this stage by combining 

all three outputs from 𝑟𝑥1, 𝑟𝑥2, 𝑎𝑛𝑑 𝑟𝑥3 

𝑟𝑥1 = 𝜃ℎ1 = [𝑣𝑒𝑐(𝑈ℎ1); 𝑢ℎ1] 

𝑟𝑥2 = 𝜃ℎ2 = [𝑣𝑒𝑐(𝑈ℎ2); 𝑢ℎ2] 

𝑟𝑥3 = 𝜃ℎ3 = [𝑣𝑒𝑐(𝑈ℎ3); 𝑢ℎ3] 

(3.6) 

 

𝑟𝑥 = [𝑟𝑥1;  𝑟𝑥2;  𝑟𝑥3] (3.7) 

Regarding the readout layer, three classification models were adopted by 

(Bianchi et al., 2021) including SVM, LR, and MLP. We employed all three 

methods, but LR is preferable for this work as it is mentioned in the experiment 

setup and evaluation.   

 

3.2.6 Experimental Setup  

 

The proposed ESN model with three reservoirs model for gear fault 

detection is evaluated based on two different gearboxes including planetary and 



74 

 

parallel gearboxes (see Figure 3.3). We extracted 14 MFCCs and 14 GTCCs as 

features from the vibration signal for each individual direction (x, y, and z) (see 

Figure 3.10) and fed them to different reservoir model. The features are 

extracted from the vibration signal for each window with a length of 30ms and 

an overlap of 20ms. These features were chosen to capture the essential 

characteristics of vibration signals. The MFCC and GTCC are fed to the ESN 

model individually and as a fusion. The fusion feature's size is 28 coefficients 

with 17-time steps, with each frame representing a time step while the 

individual size of each feature (MFCC and GTCC) is 14 coefficients with 17-

time steps. 

The proposed model was evaluated on two types of gearboxes - planetary and 

parallel gearboxes. As mentioned in section 3.1.2, data was collected under two 

different configurations, namely 20 Hz–0 V and 30 Hz–2 V. As a result, four 

configurations were examined for gear fault detection, comprising planetary 

gearboxes under 20 Hz–0 V and 30 Hz–2 V, and parallel gearboxes under 20 

Hz–0 V and 30 Hz–2 V. In addition, two distinct scenarios were employed to 

assess the ESN model. The first scenario employed a single reservoir ESN, 

while the second scenario used our proposed model which featured three 

reservoirs. For the first scenario (one reservoir ESN), the extracted feature from 

all channels (x,y, and z) are combined and fed to the ESN model based on one 

reservoir. While, the proposed model consists of three reservoirs and each 

channel (x,y, and z) is given to the specific reservoir.   

The output of reservoirs is very high dimension and therefore, PCA is used to 

reduce the output dimension. Flattening of the output reservoir is applied to the 

output of the late channel fusion and three classifiers are employed including 

SVM, Linear Regression (LR), and MLP. The performance of LR and MLP 

outperformed the performance of SVM with the P-value (5.90133E-13, 

1.53519E-09) respectively. As shown in Figure 3.10, there is not a significant 
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difference between the performance of LR and MLP with (P-value 0.162). 

However, the MPL is very slow and time-consuming compared to LR. Thus, 

the LR is fixed in the proposed model for classifying classes.  

 

 

 

Figure 3.10: Accuracy of modified ESN for DDS dataset based on Linear, 

SVM, and MLP 

 

 

3.2.7 ESN Hyperparameters 

 

ESN hyperparameters play a critical role in determining the performance 

of the ESN model, and many studies have reported challenges in identifying 

the optimal values for these parameters. In most cases, researchers have relied 

on manual parameter assignment or previous experiences to determine the ESN 

hyperparameters. In this study, we aimed to optimize several critical ESN 

hyperparameters, including the size of the reservoir state, spectral radius, 
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connectivity size, input scaling, leakage in the reservoir state update, and 

number of dropouts. For this purpose, Bayesian optimization is applied to 

optimize these parameters as according to a comparison conducted in reference, 

Bayesian optimization was found to be more efficient than other gradient 

optimizations [48]. Table 3.4 shows all optimized parameters and Table 3.5 

illustrates the performance of the model in each of the 10-fold cross-validation 

as the 10-fold cross-validating is used to optimize parameters based on overall 

vibration data.   

 

 

Table 3.4: The parameters utilized in the proposed method have been 

optimized using the Bayesian optimizer. 

Positions Name of parameters  

Reservoir  Internal units which is a number of units in the reservoir 

PCA Dimension which is number of the features 

Model space  Regularization of the ridge regression is the value which 

lead to reduce penalty function 

Readout  Regularization of the ridge regression in readout is also the 

value which lead to reduce penalty function  

 

 

Table 3.5: Accuracy of each of the cases based on each fold during the 

validation. 

Cases\No. fold 1 2 3 4 5 6 7 8 9 10 

planetary 20-0 0.94 0.96 0.97 0.91 1.00 1.00 1.00 1.00 0.96 1.00 

planetary 30-2 1.00 0.94 0.96 1.00 0.92 0.90 0.95 1.00 1.00 0.92 
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Parallel 20-0 0.95 1.00 1.00 1.00 0.92 0.96 0.96 1.00 0.94 1.00 

Parallel 30-2 0.96 1.00 0.74 0.77 0.95 0.96 0.91 1.00 0.91 0.96 

 

 

3.3 Result of Gear Fault Detection Based on Time Series Model 

 

3.3.1 LSTM Result  

 

Regarding the results of the PHM09 and based on Table 3.6, the average 

accuracy of the LSTM model, when the gear is helical and trained by individual 

sensors, is less compared to the model accuracy fed by the concatenation of the 

features of both sensors. However, because the fault detection in spur gear is 

more predictable since spur gear has a symmetrical tooth profile and single pair 

engagement, the performance of the model in both cases is equally performing 

when spur gear is utilized. 

 

 

Table 3.6 Accuracy of the LSTM model for PHM09 dataset (helical and spur 

gear)  

 
LSTM (%) LSTM (input & output %) 

Input Helical 92.79 
99.32 

Output Helical 99.52 

Input spur 100 
100 

Output spur 100 
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Regarding the DDS dataset, authors (Abdul et al., 2020) extracted the feature 

from the signal channels (x, y, and z), then concatenated them. In this work, the 

features of individual sensors (x, y, and z) are extracted and fed to the LSTM 

model individually. As illustrated in Tables 3.7 and 3.8, significant degradation 

of the average accuracy of individual channels is observed in both gearboxes 

including planetary and parallel gearboxes. The reason for this degradation in 

both gearboxes might be due to the lack of input data to train the LSTM model. 

Moreover, the LSTM model requires a large amount of computation and 

memory space during the training phase, which can be a challenge on resource-

constrained devices. To avoid this issue, we may need a low computation 

model, as we shall see in the next section that adopting the ESN model can be 

beneficial in that sense. 

 

 

Table 3.7: Accuracy of the LSTM model for DDS dataset (planetary gearbox) 

Case name LSTM (%) LSTM (x, y, and z) 

planetary _x_20 85.6 

97.87 planetary _y_20 96 

planetary _z_20 80.4 

planetary _x_30 85.6 

94 planetary _y_30 75.2 

planetary _z_30 75.2 
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Table 3.8: Performance of the LSTM model for DDS dataset (parallel 

gearbox) 

Case name  LSTM (%) LSTM (x, y, and z) 

parallel_x_20 100 

97.45 parallel_y_20 89.6 

parallel_z_20 98.4 

parallel_x_30 96.4 

95.7 parallel_y_30 83.6 

parallel_z_30 92.4 

 

 

3.3.2 ESN Result  

 

  Two ESN structures have been implemented including ESN with one 

reservoir and ESN with three reservoirs. The ESN model with one reservoir 

was developed by (Bianchi et al., 2021), while the ESN model with three 

parallel reservoirs is one of the contributions of this dissertation. In this chapter, 

the ESN with one reservoir is trained and tested either by obtained features 

(MFCC and GTCC) from the individual sensor (input and output sensor in 

PHM09 dataset and (x, y, and z) sensor in DDS dataset) or by the concatenated 

representation of the features in all sensors. From the obtained results, one can 

observe that the model with single sensors significantly outperforms the model 

that uses the concatenation of the channels.  To exploit the independence of the 

provided information of each channel, we proposed to add parallelly two other 

reservoirs to the original ESN model. Each reservoir handles and manipulates 

one of the channels (x, y, and z). As shown in Table 3.9 and 3.10, a significant 

improvement has been observed with p-value= 0.02 compared to the ESN 
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model with one reservoir. The reason for this improvement is adding a reservoir 

which leads to generating complex and high-dimensional dynamics in response 

to input features. It also allows the network to efficiently process temporal data 

and capture long-term dependencies. Further information is presented in Figure 

3.11 which is the confusion matrix of the modified ESN model for one of the 

folds when the gearbox is parallel with configuration 20-0 (DDS dataset).  

 

 

Table 3.9: Accuracy of the ESN model for DDS dataset (planetary gearbox) 

 
ESN three 

reservoirs 

ESN Combined 

signals 

ESN 

channel 

x 

ESN 

channel 

y 

ESN 

channel 

z 

Planetary 20-0 97.41 71.3 95.8 90.5 98.4 

Planetary 30-2 95.90 64.4 95.8 84.1 92.1 

 

 

Table 3.10: Accuracy of the ESN model for DDS dataset (parallel gearbox) 

 
ESN three 

reservoirs 

ESN 

Combined 

signals 

ESN 

channel 

x 

ESN 

channel 

y 

ESN 

channel 

z 

Parallel 20-0 97.34 71.8 98.4 93.7 98.4 

Parallel 30-2 91.65 78.7 98.4 96.8 88.9 
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3.3.3 Comparison with State of Art Studies 

 

In this work, to make a comparison between the models (LSTM and 

ESNs) with the best-achieved result and the state-of-the-art studies, we have 

presented a number of works that were applied to the same adopted datasets.  

Regarding the DDS dataset where our proposed models have been applied to 

fault detection in the parallel gearbox, Table 3.11 shows five-time series 

models, which have been found in the literature, all of which used the same 

DDS dataset to feed models. For instance, Authors of (Wang et al., 2017) used 

four-time series models including the Stacked Autoencoders-Deep Neural 

Network (SAE-DNN), GRU, Bidirectional Gated Recurrent Units (BiGRU), 

and Local Feature-Based Gated Recurrent Unit Networks (LFGRU) which 

enhanced gated recurrent unit network (GRU) that was based on a hybrid 

handcraft feature and learned feature to detect fault. Abdul et al.(Abdul et al., 

2020) extracted a temporal feature from all sensors, which is based on the 

MFCC and GTCC and fed the LSTM to classify gear faults for helical gears 

Figure 3.11: Confusion matrix of modified ESN model for parallel 20-0 

(DDS dataset) 
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and parallel gearbox alone. The result of our proposed model (ESN with one 

reservoir and LSTM when they feed by the individual sensor) is able to 

outperform all the presented state-of-the-art works. Moreover, ESN with three 

reservoirs outperforms SAE-DNN, Gated Recurrent Units (GRU), BiGRU, and 

LFGRU. However, when the configuration of the parallel gearbox is 30-2, the 

ESN with three reservoirs cannot achieve a better accuracy  (in some sensors) 

compared to LSTM, which was adopted by Abdul et al.(Abdul et al., 2020). 

Moreover, there is no guarantee to know the location of a gear fault during the 

operation time. Consequently, the importance of the vibration direction remains 

unknown. Therefore, the ESN with three reservoirs is still reasonable to be used 

as it is stronger and less time-consuming compared to the LSTM model. 

 

 

Table 3.11: The accuracies of adopted time series models and the state-of-arts 

models for parallel gearbox. 

Sources  Fault diagnosis method 20-0 30-2 

Wang et al.(Wang 

et al., 2017) 

SAE-DNN 92.70 91.90 

GRU 93.80 90.50 

BiGRU 93.80 90.70 

LFGRU 94.80 95.80 

Abdul et al.  MFCC-GTCC-LSTM 97.45 95.70 

LSTM MFCC-GTCC-LSTM 

x 100 98.4 

y 89.60 96.8 

z 98.40 88.9 

ESN ESN with one reservoir 

x 98.4 96.40 

y 93.7 83.60 

z 98.4 92.40 
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ESN with one reservoir 

(Combined signals) 
71.8 78.7 

ESN with three reservoirs 97.34 91.65 

 

 

Regarding the case of the helical gear data (in the PHM09 dataset), authors in  

(Abdul et al., 2016) extracted a handcraft feature and fed it to the LSTM 

classifiers. The performance of our work has not outperformed their achieved 

result as shown in Table 3.12. However, the difference is not statically 

significant (p-value=0.08)  

 

 

Table 3.12: The accuracies of the ESN and the state-of-arts models for helical 

gear. 

 Features Accuracy% 

Abdul et al (Abdul et 

al., 2020) 

MFCC-GTCC-LSTM 99.30 

ESN with one reservoir  MFCC-GTCC from 

input sensor  

98.80 

MFCC-GTCC from 

output sensor 

98.80 

 

 

Concerning spur gear (in PHM09 dataset), C. Wu et al. (Wu et al., 2019) used 

the same dataset adopted in this work and proposed 1-D CNN model which was 
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fed by the raw data directly and their result shows that the performance of the 

ESN  is better than the 1-D CNN (see Table 3.13). 

 

 

Table 3.13: The accuracies of the ESN and the state-of-arts models for spur 

gear. 

 Features Accuracy% 

C. Wu et al. (Wu et al., 

2019) 

1-DCNN 99.33 

ESN with one reservoir  MFCC-GTCC from 

input sensor  

100 

MFCC-GTCC from 

output sensor 

100 

 

 

Regarding the ESN model with three reservoirs, it is not applicable to be 

evaluated by the PHM09 dataset as the data was collected by an accelerometer 

sensor which was a 1-axis accelerometer. This sensor can record only one axis 

(one channel). Therefore, the PHM09 dataset does not have three different 

vibration channels as the DDS dataset has, as it mentioned in section 3.1.2. 
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3.4 Summary of Chapter Three 

 

In this chapter, two models were employed: LSTM and ESN. Initially, the 

LSTM model was trained by concatenating both features and utilizing all 

channels of the vibration signal for gear fault detection. Although the model's 

performance was reasonable, it is a time-consuming model during the training 

phase and required significant memory space for implementation. To address 

this issue, a single channel of vibration signal was used for training the LSTM 

model, but this led to a slight degradation in its average performance, which 

may be due to the underfitting. 

To overcome the time-consuming issue of the LSTM model, attention was 

shifted toward the ESN model, an enhanced version of the RNN. The ESN 

model offered a notable advantage as certain parameters were selected 

randomly, resulting in significantly reduced time requirements. The ESN 

model was trained using concatenated features (MFCC and GTCC) and the 

complete set of vibration signal channels. However, the accuracy of the ESN 

model for gear fault detection was not satisfactory enough for real-life 

applications. 

Subsequently, the ESN model was trained individually for each channel of the 

vibration signal, resulting in a significant improvement in performance. Certain 

channels demonstrated superior performance, potentially due to a higher 

occurrence of vibrations in those specific channels. However, it was 

challenging to determine the exact location of the fault solely based on these 

results. To ensure reliable results irrespective of the fault location, the ESN 

model was enhanced by adding two additional parallel reservoirs to the 

standard ESN model, which originally had only one reservoir. Each reservoir 

was responsible for increasing the variance of the data. 
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The enhanced ESN model utilized the three reservoirs, with each reservoir 

being fed data from one of the channels. This approach resulted in achieving 

more reliable results for gear fault detection, considering that the location of 

the fault was not known in advance. 
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CHAPTER FOUR 

4 GEAR FAULT DETECTION USING NON-TIME SERIES MODEL. 

In this chapter, fault detection based on non-time series feature 

representation has been investigated. For this purpose, the implementation of 

three different approaches using non-time series features have been presented 

namely, an approach that adopt optimizing features, the use of statistical 

representation of features hyperparameters, and brute force usage of all values 

by concatenating time steps feature values where the utilized features are 

MFCC and GTCC.  

Time series-based classifiers pay attention to the dependencies of the time step 

values, however, there are still two main reasons that motivate the use of 

features firstly non-time series representation considers the overall behavior 

and characteristics of the vibration signal, rather than focusing on individual 

data points or local patterns. Second, non-time series features may also be 

useful to enhance the robustness of fault detection systems by reducing the 

impact of noise or fluctuations in individual data points. By aggregating 

information across the entire system, non-time series features can provide a 

more stable and reliable indication of potential faults. 

 

4.1 The Motivation for Using the SVM  

 

Support Vector Machines (SVM) is a supervised machine learning 

algorithm used for classification and regression tasks. They operate by creating 

hyperplanes in a high-dimensional feature space. The objective of SVMs is to 

identify an optimal hyperplane that not only separates the classes but also 

maximizes the margin, indicating a higher level of confidence in the 

classification process. The motivation behind the use of SVM in this 
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dissertation can be summarized in two main points. First, SVM performs well 

in high-dimensional spaces, even when the number of features (dimensions) is 

much greater than the number of samples. This makes SVM more suitable for 

handling complex, high-dimensional classification problems compared to 

alternative algorithms such as k-Nearest Neighbors, Naïve Bayes and DT. 

Second, SVM is inherently less affected by outliers since the margin-based 

approach focuses on the critical support vectors closest to the decision 

boundary.  

 

4.2 Optimized Features 

 

As introduced in Chapter 3, the same two feature techniques have been 

adopted in this chapter, which are MFCC and GTCC.  Both features were 

originally developed for extracting features from speech signals. Consequently, 

the default hyperparameter values of the MFCC and GTCC are based on speech 

features, and they may not be optimal for gear fault detection. To overcome this 

limitation and enhance the effectiveness of MFCC and GTCC as a feature for 

gear fault detection, in this section, we employ the GWO optimization 

algorithm. But the performance of optimized MFCC as we will see in 4.5.1 

does not change compared to default MFCC. So, we focus on optimizing the 

hyperparameters of GTCC.  The GWO and FDO algorithms are utilized to fine-

tune three important GTCC hyperparameters: the number of coefficients, the 

minimum frequency, and the maximum frequency. By adjusting these 

parameters, the gear fault detection system accuracy has been improved. In the 

following section, we will explain the methodology of optimizing the GTCC 

hyperparameter step by step. 
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4.2.1 Initializing GWO and FDO Parameters 

 

Based on the literature, GWO and FDO optimization algorithm have the 

potential to get a solution in a short time as it is called speed convergency and 

it has the ability to achieve accurate solutions compared to other metaheuristic 

algorithms (Salih et al., 2022)(Panda and Das, 2019). For any metaheuristic 

algorithm, there are three fundamental parameters that need to be identified 

before conducting the algorithm including an objective function which is also 

called the fitness function, the number of iterations, and the number of agents 

to find out the solution. In this work, optimizing the GTCC hyperparameter 

using GWO and FDO minimizes the classification error rate which is based on 

the SVM classification method as illustrated in Figure 4.1. One of the initial 

parameters in both GWO and FDO, which is the number of iterations, is set to 

100. The minimum and maximum of all optimized parameters of CTCC 

including number of coefficients, range of minimum and maximum frequency, 

are set to (10-20), (15-100) and (100-frequency rate/2) respectively. 

In the proposed model, the number of iterations of GWO and FDO is set to 100. 

Moreover, 500 iterations are also adopted but there is not a significant change 

in tuning the parameters as shown in Figure 4.2. Regarding GWO, this confirms 

that GWO is able to converge in a fast way.  The number of agents must not be 

less than three as the GWO works are based on at least three agents namely 

alpha (𝛼), beta (𝛽), and delta (𝛿) (Faris et al., 2018). So, we set the number of 

agents to 10 agents for both algorithms (GWO and FDO). The main reason 

behind choosing GWO for this work is that GWO is simpler in terms of 

formulation compared to FDO. The number of parameters in GOW is also 

minimal to avoid any complexities. Consequently, the GWO can be 

implemented without consuming more iterations throughout the training of 

classifiers (Mansor et al., 2021). 
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Figure 4.1: Optimization process based on GWO and SVM 

 

 

 

Figure 4.2: convergence line of GWO 
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4.2.2 Model Design  

 

In this section, the processes of the proposed method are described as also 

shown in Figure 4.3. These processes are decomposed into three main processes 

namely feature extraction, applying GWO, and classification method. The 

vibration signal length in both datasets is set to be ( 2 × 104). The total sample 

is (416) and (750) for PHM09 and DDS datasets respectively. Various speeds 

in both datasets are utilized to evaluate the proposed model and all three 

channels (x, y, z) in the DDS dataset are concatenated. 

 In this section, GTCC is adopted to be extracted from the samples and the 

optimization process is applied to tune its main parameter since it is initially 

derived for speech signals. In other words, optimizing these parameters is 

motivated by the fact that the default GTCC parameters’ values have been set 

based on the speech feature. Thus, the parameters need to be tuned to be a more 

effective feature for gear fault detection. To address this problem, the GWO 

optimization algorithm is used in this section to adjust three GTCC 

hyperparameters including the number of coefficients, minimum, and 

maximum frequency which can be effective in gear fault detection system 

development. GWO has optimized these three parameters based on the 

accuracy of SVM performance as shown in Figure 4.3. Later, the GTCC frames 

are concatenated to accommodate harmonic characteristics on vibration signal 

such that the size of each feature vector is equal to (1 × (𝑓𝑟𝑎𝑚𝑒 ×

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠)), which feeds the SVM to classify various faults. 

As a consequence of optimizing these parameters, the size of the feature will 

be changed because of the change in the number of coefficients and frequency 

range during the optimization process. The number of coefficients will affect 

the dimensional of each feature and the frequency range will impact the number 

of frames. For example, after optimizing these parameters, the optimum 



92 

 

number of coefficients becomes 17, and the number of frames is optimized to 

be 6. While in the default case, the number of coefficients and frames are equal 

to 14 and 17 respectively. Consequently, the number of dimensions of the 

feature degrades from (1 × 238) to (1 × 102). The accuracy obtained by the 

SVM classifier is utilized as a fitness function and fault classifier during the 

optimization process and classification process respectively. The process of 

parameter optimization validation is done by 10- fold cross-validation. 

 

 

 

Figure 4.3: The proposed model with optimized feature 

 

 

4.3 SVM with Statistic Feature (Stat-SVM) 

 

Windowing time-series signals lead to capturing the short time 

information, however, various ways are adopted to globalize the time-series 

feature representation and consequently lead to unifying the length of the signal 

representation regardless of its original length. Statistical features are one of 

the ways that offer numerous advantages including dimension reduction of the 

data, unifying the length, and easing the interpretation of the feature 
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representation. Statistical features allow us to summarize large amounts of data 

into a few key measures, providing a concise representation of the dataset 

including information about the distribution of data and patterns within the 

dataset. Statistical features provide quantitative metrics that summarize or 

describe various aspects of the data. These metrics are making them 

interpretable by individuals with a basic understanding of statistics. 

The feature extraction process involves two main steps: extracting MFCC and 

GTCC. Each process starts with breaking down the raw signal into frames using 

a technique called framing or windowing. The feature extraction step generates 

a (t × r) matrix (A) for each input sample, where t is the number of frames and 

r is the number of coefficients. From this matrix, nine statistical values are 

extracted including mean, variance, standard deviation, root mean square, min, 

max, skewness, and kurtosis, resulting in 126 features (9 statistics × 14 

coefficients (r)). The statistical features for both MFCC and GTCC are then 

concatenated, resulting in 252 statistic features, which are fed to the SVM as 

shown in Figure 4.4.  

 

 

 

Figure 4.4: The design of the Stat-SVM model where we have three coefficients 

(r=3) and three-time steps (t=3). 
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However, the statistical features reduce complex data, potentially leading to an 

oversimplification of the underlying information. By reducing the data to a few 

key statistics, certain nuances and detailed patterns may be lost, limiting the 

richness of the analysis. That leads to a situation where the statistical features 

alone may struggle to detect faults that manifest as subtle or non-linear changes 

across different dimensions. To address this problem, we shall see in the next 

section that all the frames of the features (MFCC and GTCC) have been 

concatenated in order to keep all the information that is obtained from the 

features. 

 

4.4 SVM with Concatenated Feature (Concat-SVM) 

 

Windowing the vibration signal is a crucial step in both adopted feature 

extraction techniques, namely MFCC and GTCC. This step holds significant 

importance as it effectively reduces spectral leakage, enhances frequency 

resolution, and minimizes side lobes and border effects. These advantages 

contribute to more precise and reliable feature extraction for various signal-

processing applications, including fault detection. In order to avoid losing any 

information inside each window as we have faced in the Stat-SVM, we propose 

a model based on the concatenation of the whole feature values for all of the 

windows, then it is fed to the SVM (called Concat-SVM). Figure 4.5 shows the 

design of the Concat-SVM model. 

The features are extracted from the vibration signal, and this produces a t×r 

matrix (A) for each input sample, where t is the number of time steps (frames) 

and r is the number of coefficients. The matrix A is flattened into a one-

dimensional vector of 1×P, where P is equal to t×r. The flattened representation 

of both features of the size of 2×P is fused and used to train the SVM for 

classifying the faults of the gears.  
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The hyperparameters of SVM have been selected based on Bayes optimization 

algorithms including Box-Constraint (the c parameter) and kernel function. 

Based on the result of the bayes optimizer, Box-Constraint is optimized to be 1 

while the kernel function is chosen to be Linear. Moreover, the 10-fold cross-

validation technique is used for evaluating the performance of the model. 

 

 

 

Figure 4.5: The design of the Concat-SVM where we have three coefficients 

(r=3) and three-time steps (t=3). 

 

 

4.5 Result of Non-time series Model 

4.5.1 Result of Optimized Feature 

 

In this section, the proposed model is evaluated based on two different 

datasets (PHM09 and DDS). Three GTCC parameters (minimum frequency, 

maximum frequency, and the number of coefficients) are optimized using the 

GWO and FDO optimizers. Regarding the convergence of the GWO, according 

to the obtained result, it is changed based on the load of the data samples. For 

instance, the convergence in the case of 20Hz-0V-load in the DDS dataset is 

significantly faster, and the error rate is lower than what is in the case of the 

30Hz-2V-load as shown in Figure 4.6. Achieving a lower error rate for 20Hz-
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0 load is also confirmed in (Wang et al., 2017) (Shao et al., 2019) (Saufi et al., 

2020) and (Abdul et al., 2020). This might be due to the increasing overall 

acceleration levels of the vibration signal when the load is high. Additionally, 

the amplitude of each component of the vibration signal increases 

proportionally to the load variation  (Sharma and Parey, 2017).  

The minimum frequency is one of the important parameters because of the 

characteristics of the severe gear fault location in low-frequency regions 

(Watson et al., 2007). According to the optimized parameters using GWO, the 

minimum frequency in five out of six cases for both datasets are in the range of 

31 to 43 Hz, while the default minimum frequency is set to 50 Hz.  

 

 

 

Figure 4.6: Convergence curve of GWO for both configurations (20Hz-0V-load 

and 30Hz-2V load). 
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Regarding the maximum frequency, the default maximum frequency range is 

equal to (
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑒

2
) which is about 33333 Hz for the adopted cases in this 

chapter. In contrast, the optimized maximum frequency is less than half of the 

default range value as it is shown in Table 4.1 and 4.2 for both DDS and PHM09 

datasets respectively. Moreover, the optimized maximum frequency has 

increased according to the speed of the input shaft as GMF is proportional to 

the speed. The change in the GMF and its sidebands is one of the well-known 

indicators for fault appearance and the GMF depends on the speed of the input 

shaft and the number of the teeth gear.  Equation 4.1 illustrates the relationship 

between speed and gear mesh frequency where, 

 

 T is the number of gear teeth and RPM is the speed of the input shaft.  

 

 

Table 4.1: Optimized values for three parameters in DDS.  

Speed-load No. Coefficient  Min Frequency (Hz) Max Frequency (Hz) 

20Hz-0V 17 34.07 8059.95 

30Hz-2V 17 43.66 9517.48 

 

 

Table 4.2: Optimized values for three parameters in PHM09. 

Speed No. Coefficient  Min Frequency (Hz) Max Frequency (Hz) 

30 Hz 16 31.00 7991.06 

35 Hz 17 32.19 9489.32 

40 Hz 17 31.27 10061.14 

GMF =  T x RPM (4.1) 



98 

 

45 Hz 17 55.07 12037.44 

50 Hz 17 31.19 12309.94 

 

 

The three optimized parameter values are used to extract GTCC from the 

vibration signal. The obtained handcraft feature (GTCC) is then fed to the SVM 

model to discriminate gear faults. Once again, the SVM is validated using 10-

fold cross-validation. Based on the result for the PHM09 dataset, the use of the 

optimized parameters increases the accuracy of SVM as shown in Table 4.3 

and Figure 4.7 shows the confusion matrix of the model when the gear speed is 

50Hz. This improvement indicates that the default parameters are not the 

perfect values for the gear fault detection application, and this supports the 

claim that choosing speech-based parameters may not be suitable for other 

applications. Although the FDO optimizer was able to improve the result by 

optimizing the parameters in four cases out of five cases, GWO is still 

outperforming the default in all the cases and the FDO in most of the cases.  

 

 

Table 4.3: Accuracy result for PHM09 

Speed GTCC 

Default (100%) GWO (100%) FDO (100%) 

30 Hz 99.04 100 100 

35 Hz 98.08 100 99.52 

40 Hz 97.60 99.76 100 

45 Hz 100 100 99.28 

50 Hz 98.32 100 99.52 

 



99 

 

 

 

Figure 4.7: Confusion matrix of optimized GTCC model for PHM09 (speed 

50Hz) 

 

 

Regarding the DDS dataset, a significant improvement is observed using GWO 

as displayed in Table 4.4. In addition to the improvement of the performance 

of the SVM to classify gear faults, the optimization of these parameters leads 

to a reduction in the dimension of the GTCC feature as all frames will be 

flattened eventually. Consequently, the number of frames decreased from 17 

frames to 6 frames. However, the number of coefficients increased from 14 to 

17. As an output of the optimization process, the feature vector  is reduced from 

(1 × (14 × 17) = 238)  to (1 × (17 × 6) = 102).  

The use of FDO in this dataset has not shown improvement compared to GWO. 

The reason might be that the FDO suffers from two main issues including low 

exploitation and slow convergence (Salih et al., 2022). 
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Table 4.4: Accuracy result for the DDS dataset 

Various speed GTCC 

default GWO FDO 

Planetary 20 Hz-0V 93.33 97.90 93.73 

Planetary 30 Hz-2V 94.70 96.30 93.20 

Parallel 20 Hz-0V 94.20 98.3 93.30 

Parallel 30 Hz-2V 95.10 97.1 94.70 

    

 

Regarding the PHM09 dataset, the proposed model achieves a higher accuracy 

rate compared to the state of arts as shown in Table 4.13. This confirms the 

usefulness of the proposed optimized GTCC and SVM and is an indication of 

the potential of the optimized GTCC to extract information on the gear faults 

from the vibration signal.  

Regarding the MFCC feature, the mentioned optimizers have been used for 

optimizing its hyperparameter. However, the performance of the adopted 

model for gear fault detection does not change and no significant improvement 

is achieved during GWO iteration as shown in below Figure 4.8, which is a 

pilot test for planetary gear box under 20 Hz-0v configurations. This might be 

due to the fact that tuning these parameters does not affect the bandwidth of the 

Mel filter bank because the bandwidth in MFCC is only determined by the 

frequency spacing, which is uniform and overlaps between adjacent filters.  
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Figure 4.8:Convergence line of GWO during MFCC optimization  

 

 

4.5.2 Result of Stat-SVM and Concat-SVM Models 

 

The result of the PHM09 dataset is presented in Table 4.5 for each of the gears 

(Spur and Helical). The vibration signal for the spur gear gets reflected easily 

for any fault due to the low contact ratio. However, because of the large contact 

ratio in helical gears, the faults do weakly affect the vibration signal (Amarnath 

and Praveen Krishna, 2014). This has been confirmed by our results as well. 

The Concat-SVM and Stat-SVM models achieved 100% of accuracy for both 

input and output spur cases, while the input and output helical cases record 

slightly lower accuracy. However, the performance of the concat-SVM method 

for helical gear achieves better accuracy than the Stat-SVM method. 
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Table 4.5: Accuracy of Concat-SVM and Stat-SVM for PHM09 dataset 

Cases Concat-SVM (%) Stat-SVM (%) 

Input Helical 99.62 99.62 

Output Helical 100 99.81 

Input spur 100 100 

Output spur 100 100 

 

 

The result of the DDS dataset is also presented for each of the gearboxes 

(planetary and parallel gearbox). In the planetary gearbox, there are several 

gears that are attached to each other, such as sun, ring, and multi-planet gears. 

Multiple planet gears produce similar vibrations with differently phased gear 

meshes coupled with each other, consequently, some of the excitations of 

multiple gear meshes, which are very helpful for detecting faults, may be 

neutralized or cancelled (Lei et al., 2012). Thus, fault detection and diagnosis 

in the planetary gearbox is more complex compared to fault detection in parallel 

gearboxes. This is also observed from the performance of the stat-SVM model, 

which is degraded significantly. However, the concat-SVM model shows the 

capability of effectively handling gear fault detection and the performance 

outperformed the other adopted models (see Table 4.8). The reason for the good 

performance of the concat-SVM may be the capability of having a 

comprehensive representation of the vibration signal features. In that sense, the 

concat-SVM outperforms the statistical representation of the time step feature 

values and the sequence-related information that fed the LSTM and ESN model 

in the previous chapter. Figure 4.9 shows the confusion matrix of Stat-SVM for 

the best-case achievement (channel z and confirmation 20-0). 



103 

 

 

Figure 4.9: Confusion matrix of Stat-SVM model for DDS (planetary 20-0) 

 

 

In parallel gearbox, as shown in Table 4.9, it is obvious that the concat-

SVM has outperformed other models with a p-value less than 0.05 (p-value of 

0.01 against the stat-SVM). The concatenation of the feature values along all 

the frames has performed better than the adopted statistics representation which 

might be an indication of losing information by the statistics. The computed 

statistics (mean, variance, standard deviation, root mean square, min, max, 

skewness, and kurtosis) are a sort of dimension reduction and globalizing the 

data representation. However, they are able to capture global information based 

on the characteristics of the adopted statistics and the distribution of the values 

along the time steps. Some of the adopted statistics are more useful to represent 

data with Gaussian distribution such as mean, variance, and standard deviation. 
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Some others are detecting more of the non-Gaussian properties of the data such 

as skewness and kurtosis. Consequently, the distribution of the data may not be 

a serious issue since various statistics have been adopted. However, it leads to 

discarding some data values that may carry related information to fault gear 

application. Moreover, based on the feature distribution (as shown in Table 4.6 

and 4.7), some statistical values like (mean, variance, standard division, and 

root to mean square) are less effective if the distribution of the feature is not 

normally distributed. 

 

 

Table 4.6: Normality test for MFCC and GTCC coefficients (PHM09 dataset) 

Kolmogorov-Smirnova 

Coefficients Speed-30 Speed-35 Speed-40 Speed-45 Speed-50 

P-value P-value P-value P-value P-value 

GTCC1 0 0 0 0 0 

GTCC2 4.93E-92 1.30E-150 1.30E-150 1.20E-163 3.47E-89 

GTCC3 3.70E-260 0 0 0 0 

GTCC4 9.20E-47 5.40E-44 5.40E-44 1.96E-36 1.26E-40 

GTCC5 3.40E-67 4.94E-29 4.94E-29 3.27E-34 4.79E-16 

GTCC6 8.30E-167 1.40E-297 1.40E-297 9.80E-133 4.30E-186 

GTCC7 7.04E-05 1.67E-33 1.67E-33 2.12E-19 2.78E-22 

GTCC8 3.62E-16 8.30E-143 8.30E-143 4.99E-44 4.21E-53 

GTCC9 3.94E-25 2.20E-105 2.20E-105 4.40E-130 1.11E-96 

GTCC10 5.99E-46 3.85E-16 3.85E-16 1.53E-06 5.21E-26 

GTCC11 1.12E-15 3.90E-102 3.90E-102 4.05E-36 2.60E-28 

GTCC12 2.59E-70 0.137426 0.137426 4.03E-11 4.59E-19 

GTCC13 0.2 1.58E-07 1.58E-07 6.62E-09 0.008212 

GTCC14 7.34E-65 1.07E-14 1.07E-14 1.50E-63 1.03E-52 

MFCC1 0 0 0 0 0 
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MFCC2 6.93E-30 1.10E-17 1.10E-17 1.88E-12 1.12E-18 

MFCC3 1.30E-27 1.69E-13 1.69E-13 0.015297 3.03E-07 

MFCC4 4.14E-12 1.55E-10 1.55E-10 5.89E-13 1.22E-25 

MFCC5 3.15E-11 3.92E-29 3.92E-29 5.44E-12 0.095177 

MFCC6 1.55E-37 3.82E-09 3.82E-09 2.89E-13 0.000103 

MFCC7 3.48E-05 1.47E-05 1.47E-05 1.19E-06 2.16E-16 

MFCC8 4.29E-18 2.85E-10 2.85E-10 1.26E-12 5.47E-12 

MFCC9 1.35E-28 0.030251 0.030251 0.2 1.16E-14 

MFCC10 4.44E-06 0.000473 0.000473 0.045631 1.61E-09 

MFCC11 1.84E-07 5.26E-22 5.26E-22 4.77E-68 1.70E-35 

MFCC12 3.92E-09 2.13E-09 2.13E-09 3.20E-48 7.18E-16 

MFCC13 0.001824 8.50E-05 8.50E-05 0.114221 0.048262 

MFCC14 3.43E-06 3.67E-10 3.67E-10 0.032757 2.10E-10 

     

 

Table 4.7: Normality test for MFCC and GTCC coefficients (DDS dataset) 

Kolmogorov-Smirnova 

Coefficients Parallel 20-0 Parallel 30-2 Planetary 20-0 Planetary 30-2 

P-value P-value P-value P-value 

GTCC1 0 1.90E-206 0 0 

GTCC2 1.50E-168 9.70E-106 2.83E-58 7.90E-294 

GTCC3 0 1.63E-05 0.003 3.24E-05 

GTCC4 5.19E-78 0.2 0.011 1.65E-07 

GTCC5 1.21E-74 0.2 0.001 3.61E-05 

GTCC6 4.60E-249 4.13E-05 0.141 0.2 

GTCC7 3.40E-121 0.0188 0.09 0.2 

GTCC8 1.17E-69 0.08 0.0241 0.2 

GTCC9 5.56E-24 0.2 0.048 0.2 

GTCC10 3.03E-10 0.003 0.2 0.2 

GTCC11 1.61E-39 0.2 0.2 0.2 

GTCC12 1.48E-72 0.0005 0.147 0.2 
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GTCC13 0.005118 0.2 0.018 0.129 

GTCC14 9.05E-41 0.2 0.2 0.081 

MFCC1 0 1.90E-206 0 0 

MFCC2 6.54E-10 5.70E-61 5.39E-20 5.30E-294 

MFCC3 3.76E-72 0.007 0.009 0.002 

MFCC4 6.04E-14 0.098 0.2 0.2 

MFCC5 3.05E-29 0.2 0.2 0.2 

MFCC6 3.46E-12 0.2 0.2 0.2 

MFCC7 4.10E-11 0.03 0.2 0.2 

MFCC8 0.06446 0.08 0.11 0.1 

MFCC9 1.31E-05 0.13 0.08 0.2 

MFCC10 0.004575 0.15 0.2 0.09 

MFCC11 6.63E-10 0.2 0.2 0.2 

MFCC12 2.09E-12 0.2 0.2 0.2 

MFCC13 1.79E-26 0.2 0.2 0.2 

MFCC14 6.41E-06 0.2 0.2 0.2 

 

 

In spite of the fact that the concatenation increases the dimension of the data 

but fortunately, the SVM classifier has been reported to be useful with high 

dimensional data(Al-Talabani et al., 2015). The performance of the concat-

SVM model tells us that the sequence base information of the vibration signal 

is not mandatory for detecting gear faults. 

 

 

Table 4.8:Accuracy  of Concat-SVM and Stat-SVM for the planetary gearbox. 

case name concat -SVM (%) Stat-SVM (%) 

planetary _x_20 99.60 95.20 
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planetary _x_30 100 93.80 

planetary _y_20 100 94.00 

planetary _y_30 99.60 86.00 

planetary _z_20 100 98.00 

planetary _z_30 99.60 88.00 

mean 99.80 92.50 

 

 

 

Table 4.9: Accuracy of Concat-SVM and Stat-SVM for parallel gearbox. 

case name  concat-SVM(%) Stat-SVM(%) 

Parallel_x_20 100 99.40 

Parallel_x_30 100 96.60 

Parallel_y_20 100 97.00 

Parallel_y_30 100 92.40 

Parallel_z_20 100 97.80 

Parallel_z_30 100 98.00 

mean 100 96.87 

 

 

 

4.5.3 Comparison With State of Art Studies 

 

In order to make a comparison between the model with the best-achieved 

result in this work and the state-of-the-art studies, we have presented a number 

of previous works that were applied to the same adopted dataset.  
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Regarding GTCC optimization, as shown in Table 4.10, the state-of-the-art 

results for the DDS dataset include various approaches and achieve higher 

results, however, the proposed model records more accuracy at 98% and 

96.30% for the 20Hz-0V and 30Hz-2V loads respectively except Pre-trained 

model which was developed by Shao et al.(Shao et al., 2019). Nevertheless, 

there is a significant difference between our proposed model and the pre-trained 

model in terms of the complexity of the model. The pre-trained model, 

nonetheless, has two blocks of convolution layers, and three fully connected 

layers, which are required to be trained to consume a lot of memory space and 

time. For both blocks of convolution layers, the learning parameters are equal 

to 12979200 and the number of weights for three fully connected layers is 

119576336 weights. The proposed architecture in this dissertation is much 

simpler; however, it achieves a comparable result to the work in (Shao et al., 

2019). Moreover, the proposed work demonstrates notable improvement over 

the approach presented in (Abdul et al., 2020), which utilized the same GTCC 

feature, however, in a time series-based representation without optimizing its 

hyperparameters. 

 

 

Table 4.10: Comparison between the Achieved Results of the DDS Dataset and 

the State-of-the-Art Results 

Sources Fault diagnosis 

method 

20Hz-0V 30Hz-2V 

Wang et al.(Wang 

et al., 2017) 

SAE-DNN 92.7 91.9 

GRU 93.8 90.5 

BiGRU 93.8 90.7 

LFGRU 94.8 95.8 
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Shao et  al.(Shao et 

al., 2019) 

Pre-trained model 99.64 99.02 

Saufi et al.(Saufi et 

al., 2020) 

SSAE+PSO+fast 

kurtogram+tSNE 

97.53 96.16 

Abdul et al.(Abdul et 

al., 2020) 

GTCC-LSTM  96.55 93.80 

Proposed method Optimized GTCC-

SVM 

98 96.30 

 

 

Regarding the Concat-SVM, the best achievement recorded by our proposed 

models has been applied to fault detection in parallel gearbox, Table 4.11 shows 

four state of art studies where all used three channels (x, y, and z) together to 

feed their models. The only two works that use the channel separately are our 

proposed models and the work by Saufi et al.(Saufi et al., 2020), where the 

mean accuracy of the three channels is presented in Table 4.12. Authors of 

(Wang et al., 2017) proposed an enhanced gated recurrent unit network (GRU) 

which was based on a hybrid handcraft feature and learned feature to detect 

fault whereas, Shao et al. (Shao et al., 2019) used time-frequency distributions 

as an image input by conducting wavelet transform to convert vibration signal 

to image and then fed to a pre-trained network. Additionally, Saufi et al. (Saufi 

et al., 2020) proposed a deep learning model based on a stacked sparse 

autoencoder and then combined it with t-SNE. And finally, Abdul et al.(Abdul 

et al., 2020) extracted a temporal feature from all sensors, which is based on 

the MFCC and GTCC, and fed the LSTM to classify gear faults for helical gears 

and parallel gearbox alone. The result of our proposed model (concat-SVM) is 

able to outperform all the presented state-of-the-art works. 
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Table 4.11: The accuracies of the cancat-SVM model and the state-of-art 

models for parallel gearbox 

Sources Fault diagnosis method 20-0 30-2 

Wang et al.(Wang 

et al., 2017) 

SAE-DNN 92.70 91.90 

GRU 93.80 90.50 

BiGRU 93.80 90.70 

LFGRU 94.80 95.80 

Shao et  al.(Shao et 

al., 2019) 

CNN 98.70 94.14 

Pre-trained model 99.64 99.02 

Saufi et al.(Saufi et 

al., 2020) 

SSAE+PSO+fast 

kurtogram+tSNE 

97.53 96.16 

Abdul et al.(Abdul 

et al., 2020) 

GTCC-LSTM  96.55 93.80 

MFCC-GTCC-LSTM 99.73 99.20 

Proposed Optimized GTCC-SVM 98 96.30 

Proposed method Concat-SVM 100 100 

 

 

Regarding dealing with the channels (x,y, and z) separately, tables (4.12 and 

4.13) show the accuracies of each channel for both of our proposed model 

contact-SVM and the adopted model by  Saufi et al.(Saufi et al., 2020) for both 

configurations 30hz-2 -20hz-0 respectively. 
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Table 4.12: The accuracies of the models using individual channels for 30hz-2 

configuration. 

 planetary gearbox parallel gearbox 

x y z x y z 

Saufi et 

al.(Saufi 

et al., 

2020) 

DNN 77.6 67.2 80.8 76 63.6 65.2 

CNN 80.4 75.6 81.6 82 79.6 83.2 

SSAE+PSO+fast 

kurtogram+tSNE 

97.5 95.5 100 95 97.1 96.4 

proposed method (concat-

SVM) 

100 99.6 99.6 100 100 100 

 

 

Table 4.13: The accuracies of the models using individual channels for 20hz-0 

configuration.  

 planetary gearbox parallel gearbox 

 
 

x y z x y z 

Saufi et 

al.(Saufi 

et al., 

2020) 

DNN 80.4 86.8 84.8 80 75.6 79.8 

CNN 87.6 81.2 83.6 76.8 81.6 84.4 

SSAE+PSO+fast 

kurtogram+tSNE 

97.5 97.5 98.8 96.8 97 98.8 

proposed method (concat-

SVM) 

99.6 100 100 100 100 100 

 

 

Regarding the case of the helical gear data (in the PHM09 dataset), authors in  

(Abdul et al., 2016) extracted a handcraft feature and fed it to the SVM and k-
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NN classifiers, however, the performance of our work has outperformed their 

achieved result. In another research, Abdul et al (Abdul et al., 2020) used a 

temporal feature based on MFCC and GTCC that was extracted from both input 

and output accelerometer sensors and then fed to the LSTM model. L. Jing et 

al. (Jing et al., 2017) developed a CNN model to learn features from frequency 

data of vibration signals instead of the raw data directly. The whole achieved 

accuracies have been presented in Table 4.14 and the proposed concat-SVM 

model shows the capability to achieve the best result.   

 

 

Table 4.14: The accuracies of the cancat-SVM and the state-of-art models for 

helical gear 

 Features Accuracy% 

Abdul et al. (Abdul et al., 2016) 
LBP_SVM 81.00 

LBP_k-NN 90.00 

Abdul et al (Abdul et al., 2020) MFCC-GTCC-LSTM 99.32 

L. Jing et al. (Jing et al., 2017) 
CNN + Learning feature 99.33 

CNN + manual feature 91.21 

Proposed model(GTCC optimized-SVM) GTCC 99.75 

Proposed model (concat-SVM) 
Concatenating MFCC and 

GTCC with SVM 
99.81 

 

 

For the spur case (in the PHM09 dataset), C. Wu et al. (Wu et al., 2019) used 

the same dataset adopted in this work and proposed a 1-D CNN model which 

was fed by the raw data directly and their result shows that the performance of 

the 1-D CNN  is better than the traditional machine learning algorithm for a 
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fixed-shaft gearbox and planetary gearbox fault diagnosis. However, the 

proposed concat-SVM shows better performance than this model as well (see 

Table 4.14). 

 

 

Table 4.15: The accuracies of the cancat-SVM and the state-of-art models for 

spur gear 

model Features Accuracy% 

C. Wu et al. (Wu et al., 2019) 1-DCNN 99.33 

The proposed (concat-SVM) 
Concatenating MFCC 

and GTCC with SVM 
100 

The proposed (GTCC optimized-SVM) GTCC 99.75 

 

 

4.6 Summary of the Chapter 

 

In this chapter, three models for automatic fault detection have been 

suggested: optimized feature-SVM, Stat-SVM, and Concat-SVM. The features 

used, namely MFCC and GTCC, were originally designed for extracting 

features from speech signals and their parameters were fine-tuned accordingly. 

Our proposal involves optimizing these parameters to make them more suitable 

for gear fault detection. We utilized two optimization methods, GWO and FDO, 

and found that the performance of MFCC remained unchanged. However, the 

optimized GTCC exhibited superior performance compared to the default 

GTCC. 

This led us to expect that the statistical values of both features could be 

valuable. We extracted statistical values from the concatenated MFCC and 
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GTCC and fed them to the SVM. The results indicated that the statistical 

features may lose some relevant information since certain statistical values are 

sensitive to feature distribution, such as mean, average, standard deviation, 

variance, and root mean square. 

To prevent information loss, we proposed a technique called "frame 

concatenation," where all frames of each feature (MFCC and GTCC) are linked 

together in one series. The concatenated frames of MFCC are then connected 

to the concatenated frames of GTCC, resulting in an augmented feature. This 

augmented feature is fed to the SVM for gear fault detection. This approach, 

known as concat-SVM, not only preserves information from all frames but also 

increases the feature dimensions, which benefits the SVM as it performs better 

with higher-dimensional features. Our results demonstrate that concat-SVM 

outperforms existing literature and all other implemented models in this 

dissertation.  
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CHAPTER FIVE 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion  
 

To meet the growing demand for reliable and accurate monitoring systems, 

there is a significant interest in developing automatic fault detection and 

diagnosis methods for rotating machinery. These methods are crucial for 

ensuring high efficiency in modern industrial systems. There are some key 

factors to develop an automatic fault detection model. One of the key factors in 

achieving accurate fault detection and diagnosis is the extraction of fault 

features and the selection of appropriate features to train a machine learning 

algorithm. The second main factor is selecting a proper machine learning 

algorithm in terms of the behavior of the utilized feature whether the feature is 

a time series feature or non-time series feature. 

In this dissertation, both time-series and non-time series-based 

representation models have been investigated using the cepstrum features 

MFCC and GTCC. Based on the literature, both features (especially MFCC) 

are useful for many pattern recognition systems such as fault detection and 

identification. Time series classification models (LSTM and ESN) and non-

time series (SVM) classification models have been trained by the obtained 

feature (MFCC and GTCC) with two different forms including concatenating 

and statistical form for gear fault detection. 

For the time series model, two models have been adopted namely, LSTM 

and ESN. The model based on the LSTM is trained by concatenating both 

features. In the beginning, the combination of whole channels of the vibration 

signal has been used for gear fault detection. The performance of the model is 

reasonable however, it is very time-consuming in the training phase and takes 
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more memory space during the implementation. In order to reduce the time 

consumption, we have used one channel of the vibration signal for training the 

LSTM model. but the performance of the LSTM faced a little degradation 

which might be due to an underfitting problem. 

To overcome the time-consuming training process of the LSTM model, we 

have focused on the ESN model, which is a random weight-based reservoir 

model inspired by the RNN. The ESN model is less time-consuming as some 

of the parameters are selected randomly. In this dissertation, the ESN model 

has been fed by the concatenated features (MFCC and GTCC) with the whole 

channels of the vibration. However, the accuracy of the ESN model for gear 

fault detection is not sufficiently reliable to be suitable for real-life applications. 

The ESN model was then trained via individual channels of the vibration signal 

and the result improved significantly. The performance of the model for some 

channels outperformed the other channels and this might be due to the high 

vibration rate occurring in that channel. However, there is no guarantee to know 

the location of the fault, and this led us to know which of the channels is more 

related to the fault. To get a reliable result regardless of the location of the fault, 

we have enhanced the ESN model by adding two other reservoirs to the 

standard ESN which has only one reservoir. Each of the reservoirs is 

responsible for increasing the variance of the data. The enhanced ESN fed each 

of the three reservoirs by one channel and late fusion of the representation is 

adopted, the resulting improvement proves the usefulness of this approach. 

Regarding the non-time series analysis, three automatic fault detection 

models have been proposed namely optimized feature-SVM, Stat-SVM, and 

Concat-SVM. Both features (MFCC and GTCC) were originally developed for 

extracting features from the speech signal and their parameter was tuned based 

on the same aspect. We proposed to optimize their parameters to become more 

suitable for gear fault detection. Based on the two optimization methods (GWO 
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and FDO), the performance of the MFCC does not change. However, the 

performance of the optimized GTCC outperforms the default GTCC. We then 

think that the statistical values of both features might be useful. The extracted 

statical values are extracted from the concatenated MFCC and GTCC and fed 

to the SVM. Based on the result, statistical features might lose some 

information from the feature where they are most relevant information since 

some of the statistical values are sensitive to the distribution of the features for 

instance mean, average, standard deviation, variance, and root mean square. 

To avoid losing the information, we proposed to link all the frames’ features 

(MFCC and GTCC) together in a vector (called frame concatenation). The 

obtained frame concatenation of MFCC is linked to the obtained frame 

concatenation of GTCC. The gained feature is then fed to the SVM to detect 

faults in gears. This technique (concat-SVM) besides keeping information from 

all frames, shows the capability to increase the dimensions of features which is 

beneficial for SVM as the SVM works better in high dimensions features. The 

result shows that the concat-SVM outperforms the state of arts in the literature 

and also all adopted models that have been implemented in this dissertation. 

This may ensure the usefulness of all of the frame feature values in the whole 

signal. 

Based on the experimental results in this dissertation, Concat-SVM 

outperformed all other adopted models and state of arts in literature. This 

implies that the temporal relationships among the sample values within the 

vibration signal may not be crucial for detecting gear faults. The Concat-SVM 

is less time consuming compared to all other model that we have adopted that 

leads to the proposed model will be useful to be employed in a continuous 

learning environment. 
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5.2 Future work 

In the future work, we are going to explore the performance of our 

framework in the fault detection tasks. For example, the ESN can be further 

enhanced by conducting booting method for the reservoir layers that might be 

useful to predict gear fault detection in earlier stage. We can also use other 

sensors to detect the location of fault which is useful to know which of the 

vibration channels to be utilized for gear fault detection.   
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