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ABSTRACT 

Load forecasting is a nonlinear problem and complex task that plays a 

crucial role in power system planning, operation, and control. The 

complexity, ambiguity, and wide range of factors influencing the prediction 

make the load forecasting problem difficult. It is considered a type of time 

series problem that needs a special solution. A recent study proposed a deep 

learning approach called historical data augmentation (HDA) to enhance the 

accuracy of the load forecasting model by dividing the input data into several 

yearly sub-datasets. When the original data is associated with high time step 

changes from one year to another, the approach was not found as effective as 

it should be for a long-term forecasting. Because the time-series information 

is disconnected by the approach between the end of one-year sub-data and the 

beginning of the next-year sub-data. Alternatively, this study proposes using a 

two-year sub-dataset to connect the two ends of the yearly sub-sets. A 

correlation analysis is conducted to show how the yearly datasets are 

correlated to each other. 

 Several inputs are considered in the model to increase the model 

generalization, including load demand profile, weather information, and some 

important categorical data such as weekday and weekend data that are 

embedded using the one-hot encoding technique. In addition, a Simulink-

based program is introduced to simulate the problem which has the advantage 

of visualizing the algorithm. The deep learning methods used in this study are 

the long short-term memory (LSTM) and gated recurrent unit (GRU) neural 

networks which have been increasingly employed in recent years for time 

series and sequence problems. The proposed model is applied to the Kurdistan 

regional load demands and compared with classical methods of data inputting, 

demonstrating improvements in both the model accuracy and training time. 

Also, it showed that an OTSAF forecasting structure works better in terms of 

accuracy than an MTSAF forecasting structure. 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Overview 
 

Electricity is an essential element utilized in daily life and one of the most 

popular economic factors. A continuous supply of electricity to the load side 

is necessary for modern power systems. For this purpose, an accurate method 

of estimating load demand in the present and the future with the least amount 

of error is needed. To achieve this goal, scientists and academics have been 

working to employ the most effective and efficient technique known as load 

forecasting for predicting future electricity demand (Al Mamun et al., 2020). 

Load forecasting predicts future load demands by analyzing historical data 

and finding dependency patterns of its time-step observations (Kwon et al., 

2020). Historical data is the most significant element in a forecasting model. 

The model should first comprehend the pattern of electrical load data 

consumption in order to be trained. It has many applications in power system 

operation and planning including demand response, scheduling, unit 

commitment, energy trading, system planning, and energy policy (Jacob et al., 

2020). 

Accurate load forecasting helps power companies and decision-makers to 

achieve a balance between supply and demand, prevent power interruptions 

due to load shedding, and avoid excess reserve of power generation. Demand 

forecasting reduces power generation costs and aids in creating a well-

organized power system utility, which is vital due to the high cost of power 

generation (Kim et al., 2019).  

The lack of a consistent electrical supply is one of the main obstacles to 

Iraq's economic development. Although grid-based power capacity has grown 

significantly over the past few years, it is still far from enough to fulfill the 

growing demand (Mohammed, 2018). This issue has an influence on 
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Kurdistan as well, as ongoing growth has led to more demand. There are three 

provinces in the Kurdistan Region: Erbil, Dohuk, and Sulaimani shown in 

Fig.1.1. Erbil is a populated area with a number of businesses, industries, and 

government offices. However, as a result of modern society and technological 

advancements, electrical loads change from day to day. Power system 

overload and shortage are results of rising demand from industrial, residential, 

and commercial sectors. Figure 1.2, shows the difference between annual 

peak demand and average supply from Kurdistan Region. It is obvious that 

the demand has increased in recent years (Taherifard, 2019). 

Various Machine Learning (ML) based approaches are frequently utilized 

by various power and energy utility companies to forecast the amount of 

energy required to achieve stability between generation and demand. In the 

present study, LSTM and GRU approaches based on DL are proposed. The 

Erbil load dataset is used to evaluate each suggested model. 

 

 

 

Figure 1.1  Map of Kurdistan Region  (Hamad and Abdulrahman, 2022). 
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Figure 1.2 Difference between demand and generation in Kurdistan Region 

from 2004 to 2018 (Taherifard, 2019). 

 

 

1.2 Problem Statement  
 

Because there is no way of storing and creating electrical energy at the 

same time, the amount of electricity generated should be balanced with the 

amount used by users. Electricity providers are required to produce power that 

is balanced among consumer services, distribution, transmission, and 

generation. Load forecasting can assist in resolving these issues and reducing 

additional generating and end-user costs. Reliable forecast findings for 

electrical load prediction models are essential for the utility's generation and 

transmission plans as well as other economic factors. 

The load forecasting studies conducted in the Kurdistan region that were 

accessible, revealed that many of them used statistical techniques, while 

others used simple ML approaches. Statistical techniques have limited 

accuracy and uncertainty when dealing with highly nonlinear systems. 

Contrarily, ML approaches such as artificial neural networks (ANN), DL, and 

RNN are more accurate and perform better. 
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Since load forecasting is a time-series issue, sequence-based and time-

series issues can be solved with RNN. It is a feed-forward multi-neural 

network with additional feedback cycles from previous time steps used to 

store temporal information as internal states. A recurrent network adds a 

memory state to learn the sequence order of input data and extracts the 

dependencies among the input observations.  However, almost all RNNs are 

nowadays replaced with LSTM or GRU to solve major shortcomings in the 

RNNs: vanishing and exploding gradients. When the RNN weights are 

updated, it quickly results in either too small changes in the weights 

(vanishing gradient) or too large changes (exploding). The result is a short-

term memory which is extremely hard for the RNN to learn and determine the 

dependencies among observations from earlier time steps to the later ones.  

Consequently, replacing RNN with LSTM and GRU allows for handling 

longer data sequences.  

To improve the accuracy of the load forecasting model, we divide the 

input data into multiple-year sub-datasets and employ a DL method termed 

historical data augmentation (HDA). This method was not found to be as 

effective as it should be for long-term forecasting of Erbil data (explained in 

section 4.2). Since it disconnects the time-series information at the end of one 

year and the beginning of the next. To connect the two ends of the yearly sub-

sets, this study suggests using a two-year sub-dataset. 
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1.3 Research Motivation 
 

There is currently a critical shortage of electricity production and reserves 

in the Kurdistan region. Population growth as well as the expansion of the 

industrial and commercial sectors need a continuously high level of power 

supply. Governments and power providers are under pressure to find a way to 

solve these issues. Load forecasting is used to forecast future power usage 

over a certain period. If the model predicts a load pattern close to the actual, 

responsible entities can make cost-effective decisions depending on the 

expected values. Furthermore, a predictive model allows power companies to 

manage scheduling, such as maintenance activities, as well as enhance energy 

efficiency. Generally, load forecasting lowers costs, improves the reliability 

of the system, and maximizes the use of available energy resources.  

Load forecasting is a time-series problem. Modeling time series with an 

RNN is a powerful technique. It utilizes an internal state to recall data over 

time and is useful for load forecasting. While learning from long data 

sequences is difficult. When the gradient gets lower and smaller, the weight 

updates become irrelevant, which implies no meaningful learning is taking 

place. As alternatives, LSTM and GRU can move information over length 

sequences and solve this issue. In addition, the historical data which appears 

to be sequential was collected every day for six years. LSTM and GRU are 

employed to estimate the daily load, weekly load, and 365-day load. As a 

result, this study emphasizes DL methods for predicting load for the province 

of Erbil. 
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1.4 Research Objectives 
 

The main objective of this research is to propose a load forecasting model 

for the Erbil province. This study concentrated on the following objectives:  

 To apply different DL techniques in the context of regression 

forecasting based on historical data of average daily load demand.  

 To conduct load forecasting with factors including temperature, 

weekdays, and weekends. Considering factors with load data, to 

enhance the accuracy. 

 To propose a reform in the forecasting input data to obtain a better 

performance and solve certain complex problems that the one-year 

data-augmentation approach fails to predict accurately.  

 To introduce the Simulink model of prediction in order to fill the gap in 

the current programs used for load forecasting. 
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1.5 Outline of Thesis  
 

The thesis is divided into five chapters, each of which is described as 

follows: 

Chapter 1 Introduction of load forecasting model for Erbil province 

utilizing deep learning algorithms based on historical data of daily average 

load. It also shows research problems, as well as the thesis objectives and 

outline. 

Chapter 2 Covers the related work, which provides literature discussing 

load forecasting methods. In addition, the definition of load forecasting and 

the key factors that influence load forecasting are explained. Statistical and 

machine learning load forecasting techniques are also discussed.  

 Chapter 3 Describes the methodology of the thesis. The architecture of 

load forecasting techniques employed in this study and the functionalities of 

each technique are explained. 

 Chapter 4 presents the results of applying the proposed approach to the 

Kurdistan region. The scatter plots in this chapter show how the dataset for 

one year is correlated to another yearly dataset of the same time-series 

sequence. The simulations developed as a result of the research are also 

included. The results of the weekly load forecast using smoothed data are 

displayed at the end of the chapter. 

Chapter 5 Summarizes the thesis conclusions and suggestions for future 

work. 
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CHAPTER TWO: BACKGROUND AND LITERATURE 

REVIEW 

2.1 Introduction 
 

This chapter gives a background theory of load forecasting with literature 

related to the thesis's work and discusses various forecasting approaches. 

Differences and similarities among studies have been highlighted. Over the 

years, there has been a rise in interest in load forecasting research, with 

multiple studies on load forecasting systems. Techniques of load forecasting 

are also addressed. While there are two types of load forecasting techniques: 

statistical and machine learning, only studies relating to ML, particularly DL, 

will be covered in this chapter. When training a neural network, some factors 

must be taken into account; these factors were also mentioned. 

 

2.2 Load Forecasting 
 

A forecast is the prediction of an upcoming event or series of events, and 

producing accurate forecasts often isn't easy.  It is a complex issue that affects 

a wide range of sectors, including industry and business, government, finance, 

environmental sciences, medical, sociology, politics, and economics. 

Forecasting is important because it serves as a source of input in many 

management processes (Soliman and Al-Kandari, 2010). The electricity sector 

is a vital aspect of society that has a big impact on people's lives. To avoid 

wasting energy resources, power energy should not be supplied over demand. 

Furthermore, there shouldn't be a shortage of it because that could lead to 

outages in some locations. For keeping the balance between supply and 

demand for electricity, load forecasting is necessary  (He, 2017). 
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 Knowing future load requirements assists utility businesses in planning, 

making financially viable decisions, and reducing risk. Forecasting is also 

used to make decisions about future generating and transmission investments. 

It aids in preparing resources like fuels necessary to operate the generation 

side and other resources necessary to ensure that consumers have 

uninterrupted power. This demonstrates cost-effective electricity generation 

and distribution. Load forecasting assists in planning a future generation 

plant's size, location, capacity, and type. Also, it offers an overview of the 

costs of transmission and distribution infrastructure (Al Mamun et al., 2020).  

Time-series data is used in the majority of forecasting situations. A time 

series is a collection of values collected over a period of time and organized 

sequentially. Moreover, load forecasting can be seen as a time series problem 

(Martínez-Álvarez et al., 2015). A sequence of random variables, 

𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛 can be defined as an observed time series. Where 𝑦1 signifies 

the series value at the first time step, 𝑦2indicates the series value at the second 

time step, and so on until period n (Montgomery et al., 2015). It indicates that 

time series is made up of n sequential data derived from a random variable. 

Predicting a random variable in a time series entails obtaining knowledge 

about the random variable to be forecasted by looking at previous random 

variables. To forecast 𝑦1+𝑖 at moment n, we used the observational data 

𝑦1, 𝑦2, … , 𝑦𝑛−1  for  𝑖 > 0. This refers to the function 𝑦𝑛(𝑖) that gives us useful 

information about 𝑦𝑛+𝑖 in terms of previous data. 

 Various methods for predicting future values based on previous 

observations have been developed. When data is available and a pattern in the 

data is predicted to persist into the future, these strategies are appropriate to 

utilize. 
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The input and output of the system can be used to classify time series 

forecasting. Univariate and multivariate models can be differentiated based on 

input. Multi-step/single-step models can be distinguished based on the output. 

The multivariate model combines extra time-series variables such as weather 

or calendar data to achieve the forecasting objective, whereas univariate 

models produce forecasts purely based on univariate data like previous load 

data. Models that anticipate forwards in time only for one time step are 

referred to as single-step forecasting, while multi-step forecasting makes 

forecasts up to a specific timescale (Rana and Rahman, 2020). 

 

2.3 Load Forecasting Types 
 

Depending on its application, load forecasting can be classified into very–

short-term load forecasting (VSTLF), short-term load forecasting (STLF), 

medium-term load forecasting (MTLF), and long-term load forecasting 

(LTLF), as shown in Fig 2.1. VSTLF is used in the problems of demand 

response and real-time operation that requires a time horizon of a few minutes 

to several hours ahead. It is rarely mentioned in studies because it is very 

short. Forecasting the load demand from one day to several days ahead called 

STLF; is essential for a utility's daily operations, such as unit commitment 

and load control. One week forecasting to several weeks ahead is known as 

MTLF. These two types of forecasting cover the majority of load-forecasting 

studies in the literature and are mainly used in scheduling, unit commitment, 

and energy marketing. Lastly, LTLF refers to the forecasting with a time 

frame of up to several years ahead and it is useful for planning and energy-

trading purposes (Farsi et al., 2021, Eskandari et al., 2021). 
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Figure 2.1 Load forecasting types 

 

 

2.4 Load Forecasting Techniques  
 

The use of different forecasting techniques for load forecasting by 

different researchers is an important point to note from all of those studies. 

Although all of the strategies utilized in those studies can reliably forecast 

load, some forecasting techniques outperform others in various conditions. 

Forecasting models employ a variety of methodologies that can be classified 

as statistical, artificial intelligence (AI), or hybrid. Statistical methods 

necessitate the development of a mathematical model that depicts the 

connection between the end load and other input variables. These were the 

earliest techniques utilized, and they are still relevant today.  Statistical 

techniques are relatively fast, easy to set up, and computationally inexpensive. 

However, they suffer from uncertainty and low accuracy with high nonlinear 

systems. Time series analysis, exponential smoothing, and regression 

approaches are commonly used (López et al., 2018). These models have the 

advantage of producing accurate findings under normal circumstances. But 

they have limited accuracy or cannot produce satisfactory results when 

dealing with nonlinearly related variables (Talaat et al., 2020). Autoregressive 

integrated moving average (ARIMA) is the most natural technique for 

forecasting load among the traditional time series models. The unpredictable 

nature of the load time series can be expressed well by ARIMA processes. It 

does not have any issues with modeling several seasonal cycles or adding 

Load Forecasting Types 

 

VSTLF STLF LTLF MTLF 
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exogenous variables. ARIMA model drawback is that they can only represent 

linear correlations between variables (Dudek, 2016). The intricacy of certain 

nonlinear data patterns, as well as the excessive amount of computational 

options leading to long solution durations, are among the explanations. 

Therefore, artificial neural networks (ANN) and intelligent ML techniques 

offer a promising and appealing alternative to this type of challenge. The 

relationship between the input and output variables, which can be difficult and 

complex to derive from the mathematical formulation, is the basis for the 

ANN's model strength. Increased processing capacity has made forecasting 

easier in various power system management applications, from load 

forecasting to security assessment and problem diagnostics. As a result, AI 

approaches have proven to be effective in reducing prediction errors (Kuster 

et al., 2017). 

In AI-based methods for nonlinear time series issues, neural network 

techniques are the most prevalent. As a branch of ML, DL evolved from 

ANN.  

Deep learning, which primarily refers to the multi-layer network with strong 

feature learning capabilities, has recently drawn a lot of attention for electrical 

load-interval forecasting. It has three key characteristics: big-data training, 

excellent generalization ability, and unsupervised feature learning (Dong et 

al., 2021). Because most DL algorithms imply a neural network topology, 

they are sometimes referred to as DNN. However, because of the back 

propagation (BP) approach, neural networks do not operate effectively when 

there are several hidden layers. It takes a long time, and because of the 

random initialization, it occasionally produces a bad local minimum and slow 

convergence. Deep architectures are the best solution for solving difficult ML 

challenges (Wei et al., 2019). Therefore, DL models are employed. 
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2.5 Factors that Impact the Accuracy of Load Forecasting  
 

A comprehensive understanding of the system's properties is necessary in 

order to develop an effective and efficient forecasting model. Many factors 

affect consumer load behavior as well as overall losses in the transmission 

systems. These factors include time considerations, weather, the economy, 

population, epidemic, and war. Some factors have a long-term impact, while 

others have a short-term impact. The most essential factors will be discussed 

below. 

One of the most significant independent factors in load forecasting is 

the weather. The weather impacts residential and agricultural customers,  it 

can also change the load profile of industrial users. Weather forecasts and 

other elements are used in load forecasting models to estimate future loads 

and save operational costs. Weather is frequently considered a tipping point 

that can create system unreliability by reducing the efficient power supply. 

Weather data can be temperature, wind speed, rainfall, humidity, etc. (Liu et 

al., 2016). Among them, temperature is a critical meteorological variable that 

has a considerable impact on load demand. It has an impact on the generators' 

unit commitment status. Three input variables are represented by the 

temperature data points. When the temperature is included in the inputs, the 

minimum and maximum values are also gathered in addition to the current 

load demand inputs (Reddy, 2018). 

Time is also a significant factor. The hour of the day, the day of the 

week (weekday, weekend), and the month of the year all influence the load 

consumption. Peak loads occur in the morning and evening during the winter. 

While during summer, increasing load intensity in the afternoon hours 

correlates to the use of air conditioning. Therefore, the load curve is periodic. 

Holidays and special days have a different load pattern than regular days 

(Lusis et al., 2017). Since electricity has become a need in people's daily lives, 
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it has become a commodity. As a result, the state economy has an impact on 

electricity demand. Economic factors play a larger role in long-term 

forecasting but can also affect the total load in short-term forecasting. In 

comparison to the daily load curve of underdeveloped countries, the daily 

load curve of developed countries reveals various patterns (Zhao et al., 2021). 

The educational level, annual income, price, and other economic factors 

influence the building load. Low energy costs and a large annual income will 

further encourage the resident  to use the device frequently (Ma et al., 2017). 

 

2.6 Literatures Review Based on Deep Learning 
 

Recently, deep learning has been receiving special attention because of its 

capacity to capture data behavior when dealing with complicated non-linear 

patterns and massive amounts of data (Bouktif et al., 2018). Numerous studies 

have been conducted on DL approaches, which are at the top of innovation in 

load forecasting systems. Their effectiveness as reliable predictions has been 

proven by researchers, as long as a dataset of acceptable quality and quantity 

is provided and the appropriate parameters are determined (Jin et al., 2021). 

Among DL approaches, the LSTM and GRU are quite well to time series data 

and have good adaptability (Tang et al., 2019). They outperform other ML 

algorithms in many ways, especially in terms of storing sequential data for 

long-term forecasting. (Rajagukguk et al., 2020).  

The literature review was divided into three time periods: Firstly: Short-

term forecasting can help with load flow estimation and decision-making to 

prevent overloading (Khan et al., 2013). Most recent studies use LSTM as the 

main DNN or a hybrid model. They suggested multi-features, and 

characteristics for extracting relevant data from previous data to construct a 

better STLF or VSTLF network. Secondly, medium-term forecasting, it is 

necessary to develop a perfect schedule for generating plants in order to 

improve the effectiveness of fuel supply in power plants (Askari and Keynia, 
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2020). While, long-term load forecasting refers to forecasting with a time 

frame of up to several years ahead and it is helpful for planning and energy-

trading purposes (Xie et al., 2015). There are many variables to consider 

when forecasting over a long period of time, which adds complexity and 

reduces forecast confidence. As a result, there is little research on this time 

period (Khuntia et al., 2016). 

For predicting non-residential consumer load in (Jiao et al., 2018), LSTM 

is suggested. A sizable amount of energy consumption is composed of non-

residential consumers, such as commercial and industrial users. Using 

multiple correlated sequence information, the k-means algorithm assesses 

non-residential consumer daily load curves, categorizes, and extracts their 

energy consumption patterns. 

The RNN with LSTM cells was proposed by (Agrawal et al., 2018) as a 

core of the model. The model Forecasts power usage over five years at the 

hourly resolution. As well, a new deep supervised learning model based on 

LSTM was introduced by (Tan et al., 2019) to evaluate ultra-short-term 

industrial power consumption. Depending on the bias-variance tradeoff, they 

developed a novel loss function that includes peak demand forecasting 

inaccuracy. This loss function aids model learning through mixing two types 

of error average error across all samples and maximum error across various 

sample distribution and making a tradeoff between both errors. Potentially 

ensuring that the model performs well in each situation. 

In (Bouktif et al., 2019), LSTM and GRU models with single and multi-

sequences have been proposed to forecast daily, weekly, monthly, and yearly 

load. They showed that by feeding both models numerous temporal sequences 

as inputs, they were able to learn critical information reliably over extended 

timescales. In addition, it decreased forecast error by over 15%. 

Also, in (Dong and Grumbach, 2019) the hybrid of LSTM and GRU is 

proposed on distribution feeders. Compared to traditional models, the 
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proposed method with the inclusion of a virtual feeder displayed higher 

performance for both summer and winter forecasts. Many aspects have been 

considered (max demand from last year, max commercial load percentage, 

max residential load percentage, max temperature, max temperature change, 

net load change for a large number of customers). 

 Authors (Tang et al., 2019, Sehovac and Grolinger, 2020) showed that 

when LSTM and GRU are introduced to the network, experimental results 

indicate that the model has an improved accuracy rate. Also (Wu et al., 2019) 

illustrated that GRU's computation speed is faster than LSTM, and its 

accuracy is higher. Further, taking into consideration past electricity costs 

improves accuracy. The multi-sequence approach suggested by (Bouktif et al., 

2019, Lai et al., 2020) was found to be more resistant to time fluctuations than 

machine learning and single-sequence models output. However (Lai et al., 

2020), used DNN and historical data augmentation (DNN–HDA). The 

approach divides the incoming data into numerous sequences, each 

representing a single year. When data is separated into several parts, 

information concerning the relationship between the end of one portion and 

the start of the following portion is lost. As illustrated in this research, this 

may not be an issue for some data and load forecasting situations. When the 

nature of the data changes and involves high uncertainty and volatility in the 

time step information. It struggles to anticipate future load demand, 

particularly for long-term forecasting. 

Regarding forecast power usage in residential buildings, researchers 

(Sajjad et al., 2020) presented a hybrid CNN-GRU model. According to the 

representative features' extraction possibilities of CNNs and the efficient 

gated design of multi-layered GRU, the suggested model is a great 

replacement for earlier hybrid models in terms of performance and 

computational complexity efficiency. Day-ahead load forecasting is carried 

out for normal days (excluding special days) by (Kwon et al., 2020). The fully 
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connected (FC) layer is utilized as input for the forecasting day, with an 

LSTM layer extracting features from previous data. While (Alhussein et al., 

2020, ,nShao et al., 2020, Shang et al., 2021, Farsi et al., 2021, Rafi et al., 

2021), used CNN layers to extract features from the input data, and LSTM 

layers to learn sequences. The proposed methodologies are executed with 

their hidden properties, which can obtain the benefits of both methods. To 

ensure the stability and effectiveness of the produced models, they are tested 

by examining the electrical load forecasting of various datasets. There are 

several beneficial aspects offered by CNN, and it can identify the necessary 

characteristics without human interaction. There is less dependency on pre-

processing, which reduces the amount of human effort required to build its 

features. Furthermore, it is effective in both supervised and unsupervised 

learning situations, and simple to comprehend and execute. Most studies used 

a one-dimensional convolution layer (Conv1D) since they deal with sequence 

data. The hybrid CNN-LSTM for prediction shown in Fig 2.2 was proposed 

by (Rafi et al., 2021). 

 

 

 

Figure 2.2 hybird CNN-LSTM model for prediction (Rafi et al., 2021). 
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In addition, CNN was proposed by (Tudose et al., 2021), which took into 

account pandemic impacts (COVID-19) and traditional exogenous parameters 

(weather, weekday, season, etc.). The pandemic limits are a crucial 

component of innovative load forecasting algorithms, as government choices 

and infection rates influence economic activity, modifying power demand at 

both aggregated and individual consumption levels. A simulated analysis of 

monthly electricity usage time series for 35 European countries was presented 

by (Dudek et al., 2021). Exponential Smoothing (ETS), and advanced LSTM 

are used in this model. ETS extracts the key components of each time series 

in real-time allowing the model to learn how to represent them. Multilayer 

LSTM has expanded recurrent skip connections and a spatial shortcut channel 

from lower layers to capture long-term seasonal patterns and enable more 

efficient training. 

Also, a stacked LSTM network (SLSTMN) is used to suggest a model 

by (Farrag and Elattar, 2021). This model is typically built to anticipate the 

annual peak load or annual energy consumption as a single sequence. The 

proposed approach is intended to address this gap by predicting the daily load. 

When compared to other techniques on the same dataset as well as related 

work models on various datasets, SLSTMN achieves great accuracy and has 

the lowest percentage error (nearly 1%). Furthermore, via LSTM, the effect of 

weather factors on the prediction of a particular household's electricity usage 

was presented by (Wang et al., 2021). The analysis indicated that including 

weather data improved prediction accuracy, particularly in terms of 

temperature. The abstracts of the above studies are listed in table 2.1. 
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Table 2.1 Summaries of literature reviews. 

Ref. Year 
Algorit

hm 
Duration 

No. of 

(Hidden _Layer) 
Inputs Error rate 

(Jiao et 

al., 2018) 
2018 

LSTM+

K-

means 

Daily LSTM(3) 

Adjacent-time point 

correlation, day-

related correlation,  

week-related 

correlation 

%5.15 

(Agrawal 

et al., 

2018) 

2018 LSTM Five years LSTM(3), 

      Dense(1) 

Dew point 

temperature, dry bulb 

temperature, load 

demand, day-ahead 

locational marginal 

pricing with its 

components 

%6.54 

(Tan et 

al., 2019) 
2019 LSTM 

From(1-5) 

minutes 

LSTM(2), 

      FC(1) 

 

Demand load, hour, 

week-day, month 
%4.17 

(Bouktif 

et al., 

2019) 

2019 
LSTM+

GRU 

Daily, 

weekly, 

monthly, 

yearly 

LSTM(1_4), 

    GRU(1_4) 

Load, temperature, 

humidity, wind-

speed, week-day, 

weekend 

%0.55 

(Dong 

and 

Grumbac

h, 2019) 

2019 

LSTM/

GRU+ 

NN 

One year 
     LSTM(1)/ 

    GRU(1),NN(1) 

 

Max demand-last 

year, max 

commercial load 

percentage, max  

residential load 

percentage, max 

temperature, max 

temperature change, 

net load change for a 

large number of 

customers 

%6.67 

(Tang et 

al., 2019) 
2019 

LSTM+

GRU 
Hourly LSTM(2), 

      GRU(2) 
Load, weather data %1.90 

(Wu et 

al., 2019) 
2019 GRU Hourly GRU(3) 

Load, hour of day, 

weekend, week-day, 

holiday, electricity 

price, dry bulb 

temperature. 

%1.13 

(Lai et 2020 DNN Monthly NN(4) Different years' load Different 
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al., 2020)  values on the same 

day, the adjacent 

loads, weather, 

calendar information 

 

datasets 

Austria (2.79%) 
Czech (3.48%) 
Italy (2.97%) 

(Sajjad et 

al., 2020) 
2020 

CNN+ 

GRU 
Hourly CNN(1),GRU(2) 

Load, weather data 

 

%4 

(Kwon et 

al., 2020) 
2020 LSTM Day-ahead LSTM(1),FC(1) 

 

Load, weather data 

 
%1.52 

(Alhussei

n et al., 

2020) 

2020 
LSTM+

CNN 

Next 3-

hour 

LSTM(3),Conv1

D(3),Pooling(3),

FC(1) 

Hour, holiday, week-

day, electricity 

consumption data 

 

4.01%, 4.76%, 

and 5.98% for 

one, two, and 

six next time 

steps. 

(Shao et 

al., 2020) 
2020 

LSTM+

CNN 
Next-hour 

LSTM(2),Conv1

D(3),Pooling(1),

Flatten(1) 

 

Power consumption 

data 
%2.52 

(Shang et 

al., 2021) 
2021 

LSTM+

CNN 

Next-24 

hour 

LSTM(1),Conv1

D(2),Pooling(1),

Dense(2) 

Temperature, 

humidity, wind-

speed, weekday, 

weekend, holiday, 

electric-price 

%1.34 

(Farsi et 

al., 2021) 
2021 

LSTM+

CNN 

Different 

time 

frames 

LSTM(2),Conv1

D(2),Pooling(1), 

Dense(3) 

Flatten(1) 

Load 

German data 

(8.82) 

Malaysian data 

(1.77 ) 

 

(Rafi et 

al., 2021) 
2021 

LSTM+

CNN 

Different 

time 

frames 

LSTM(1),Conv1

D(2),pooling(1),F

latten(1), 

Dense(1) 

Load 
Weekly(4.84) 

Monthly(4.89) 

(Tudose 

et al., 

2021) 

2021 CNN Day-ahead 
Conv1D(1_3)De

nse(1)Flatten(1), 

Pooling(1_3) 

Pandemic restriction, 

load, temperature, 

day of week, holiday, 

season 

 

%3.59 

(Dudek 

et al., 

2021) 

2021 LSTM Monthly LSTM(4) Load %1.61 

(Farrag 

and 

Elattar, 

2021) 

2021 LSTM Yearly LSTM(3), 

Dense(3) 

Daily-max load, 

daily- max 

temperature, daily-

min temperature, 

holidays, weekday, 

and month 

 

%1 

(Wang et 

al., 2021) 
2021 

 

LSTM 
Hour-ahead 2LSTM 

 
Load, weather data %7.43 
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2.7 Load Forecasting Studies for Kurdistan Region 
 

Many techniques have been developed to forecast load in Kurdistan 

Region. In (Ali, 2020, Taherifard, 2019, Kareem and Majeed, 2006), the 

authors tried the statistical method which is the traditional method of time 

series. An attempt was made by (Ali, 2020) to forecast Erbil peak monthly 

demand. For a dataset of power consumers, a simple linear regression (LR) 

and ARIMA were utilized as forecasting models. They conclude that the 

ARIMA approach is significantly superior to employ for load forecasting than 

the regression analysis. For the following reasons, they recommend this 

strategy. First: despite a decrease in load needs in May and April, the ARIMA 

was able to forecast electrical load data. When the findings are compared to 

the actual electrical load needs, ARIMA not only anticipates electrical load 

but also forecasts future electrical load demands with a significantly lower 

inaccuracy. Second: ARIMA is thought to be more robust in forecasting 

electrical load demand due to its high accuracy and precision. Third: due to 

the obvious straightforward arithmetical calculations, the ARIMA approach 

gives findings significantly faster than regression analysis, whereas regression 

analysis requires certain math calculations before it can start forecasting 

electricity load. 

 ARIMA was also offered in (Taherifard, 2019), but this time for the 

province of Sulaimani. To forecast load and demand on a daily, weekly, and 

monthly basis, the model is tested on supply and demand datasets. The 

outcome demonstrated that the supply forecasts were more accurate than the 

demand forecasts. Another study (Kareem and Majeed, 2006), proposed a 

monthly peak-load demand based on the most extensively used traditional 
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approach, seasonal autoregressive integrated moving average (SARIMA). The 

collected results reveal a reasonably accurate load estimation. Alternatively, 

other studies employed simple ML approaches such as ANNs, which have 

been successfully used in (Cankurt and Yasin, 2018, Muhammed, 2011, 

Rasool et al., 2009) studies, especially for STLF in Erbil. In (Cankurt and 

Yasin, 2018), the highest energy demand in Kurdistan is forecasted daily. To 

normalize the dataset, they employed a transformation technique that scales 

the input between the top and bottom boundaries of -1 and 1. It could help the 

network function better by decreasing the effects of noisy data and flattening 

the attribute distribution.  

Two distinct ANN architectures for predicting the power for the upcoming 

hour are suggested by (Muhammed, 2011). Because the training and testing 

data are both fixed in length, the BP learning technique is chosen to train both 

network architectures. The findings show that the second network structure is 

more convenient and accurate than the first. This is because, instead of the 

two input characteristics (current hour, current hourly load) used in the first 

network construction, four input features (period, previous hour, current hour, 

and current hourly load) were chosen and fed to the network. In (Rasool et al., 

2009), wavelet transform  is used to improve the learning capability of ANN 

by merging them to forecast the coming seven days. The approach was 

evaluated with actual data based on 2006 dataset, and the error percent for the 

last week of August using average temperature was 2.99 percent, but it was 

4.56 percent with maximum and minimum temperature. Given the inaccuracy 

of the available data, because they had a lack of weather information, results 

demonstrated an encouraging level of accuracy.  

In (Melhum et al., 2013), three-layer feed-forward neural network (FFNN) 

with a BP for Duhok province was suggested. It considered the impact of the 

length of time spent disconnected on load. They applied and validated four 

models. The first and second models forecast values for one day ahead and 
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incoming seven days, while the third and fourth models estimate values for 

the next and seven days, respectively, in terms of the amount of disconnected 

time. The findings indicated that neural networks are an effective and 

practical approach for STLF.  

 

Another intelligence method that applied MTLF for Sulaimani was 

investigated by (Ali et al., 2020). An ANN was used to forecast monthly 

peak-load demand. Temperature and humidity are considered to be additional 

factors because the environment in Kurdistan is characterized by cold winters 

and warm summers. The demand is affected by the significant temperature 

change. Since electricity demand peaks every year in January, February, and 

December. As a result, they conclude that the city requires further investment 

in electricity energy load to meet consumer demand.  The type of forecasting, 

forecasting period, and the input features used in each study for building level 

forecasting are discussed in table2.2. 
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Table 2.2 Summary of Kurdistan-related papers (grouped by area). 

Ref. Year Algorithm  Duration 
Forecast 

Type 
Inputs Province 

S
ta

ti
st

ic
al

 

(Ali, 2020) 2020 
ARIMA& 

LR 
Monthly MTLF Load 

Erbil 

 

(Taherifard

, 2019) 
2019 ARIMA 

Daily, 

weekly, 

monthly 

STLF+ 

MTLF 
Load 

Sulaimani 

 

 

(Kareem 

and 

Majeed, 

2006) 

2006 SARIMA Monthly MTLF Load 
Sulaimani 

 

(Cankurt 

and Yasin, 

2018) 

2018 ANN 
From day 

(1-14) 
STLF Load 

Erbil 

 

M
ac

h
in

e 
le

ar
n
in

g
 a

lg
o
ri

th
m

 

(Muhamme

d, 2011) 
2011 ANN Next hour STLF 

Previous 

hour, Current 

hour, Current 

hour load, 

period 

 

Erbil 

(Rasool et 

al., 2009) 
2009 WT&ANN Next week STLF 

Load, 

temperature 

 

Erbil 

(Melhum et 

al., 2013) 
2013 FFNN&BP 

Day-ahead, 

week-ahead 
STLF Load Duhok 

(Ali et al., 

2020) 
2020 ANN Monthly MTLF 

Load, 

temperature, 

humidity, 

precipitation 

 

Sulaimani 
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CHAPTER THREE: METHODOLOGY 
 

3.1 Introduction 
 

This chapter discusses the applied deep learning methods. Deep learning 

forecasting techniques have been widely used in the load consumption system 

because of their capacity to accurately forecast and provide timely 

predictions. RNN and time-series models are subclasses of DL forecasting 

methods. For load forecasting, this study utilizes DL techniques, specifically 

LSTM and GRU models. To better understand of the procedure applied in the 

empirical study, the outcomes of the suggested model using those methods 

will be shown in the next chapter. 

 

3.2 Deep Learning (DL) 
 

Deep learning is a type of machine learning that encompasses a wide range 

of techniques. DL has been a developing study subject since 2006, examining 

performance in a variety of fields including, image segmentation, machine 

translation, speech recognition, and object detection. As the sample data for 

training grows, the algorithm's efficiency increases adaptively. It uses 

multiple nonlinear layer processing for supervised or unsupervised learning 

and attempts to benefit through hierarchical data descriptions (Solyali, 2020). 

In the science of ML, DL is a relatively recent concept.  

The correlation between them is depicted in Fig. 3.1. Its goal is to create 

and simulate a human brain neural network for analysis and learning. It 

replicates the human brain's ability to process data such as text, sound, and 

images. In theory, a deep architecture is defined as a neural network with 

more than two layers (input and output). The approximation error can be 

decreased by introducing hidden layers between both the input and output 

layers. Deep architectures are useful for detecting and capturing higher-level 

representations and abstractions. However, it is not only about the number of 



Chapter 3                                                                                                    Methodology 
 

26 

 

layers; it is also about the concept of automating the construction of more 

complicated features at each stage. These complicated architectures aren't 

limited to hard tasks to learn, but they can also outperform humans’ level 

performance in specific applications (Wani et al., 2020). 

Many researchers argued that traditional ML approaches were limited in 

their ability to analyze raw data. These strategies are required for manually 

designing feature extractors that convert raw data via human engineering. On 

the other hand, DL models are representation or feature learning models that 

can automatically identify and classify many levels of features. Furthermore, 

it requires minimal manual engineering, allowing it to expand the amount of 

data and processing available. Deep neural networks are currently progressing 

in terms of new learning architectures and methods. 

Deep learning makes use of the neuron, which is a basic computational 

unit that accepts many signals as input. It linearly integrates these signals with 

the weight before transferring the combined signals to the nonlinear tasks to 

generate outputs. Many different architectures and algorithms can be used to 

apply the concept of DL into practice such as (auto-encoder (AE), 

convolutional neural network (CNN), restricted boltzmann machine (RBM), 

deep stacking network (DSN), long short term memory (LSTM), gated 

recurrent unit (GRU) network, and recurrent neural network (RNN)) (Dargan 

et al., 2019). 
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Figure 3.1 The link between ML and DL (Wani et al., 2020). 

 

 

3.3 Recurrent Neural Network (RNN) 
 

Traditional neural networks, such as the multilayer perceptron (MLP), can 

be used to solve sequence-based and time-series problems, but they have 

several drawbacks in practice. Some of these drawbacks include its stateless 

nature, fixed-sized inputs and outputs, messy scaling, and lack of knowledge 

of time-related structure (Brownlee, 2017). RNN is a superior alternative 

neural network for these kinds of situations and it is a feed-forward multi-

neural network that includes an input layer, a hidden layer, and an output 

layer that uses extra feedback cycles from prior time steps that are used to 

hold temporal data as internal states. That is skilled at recognizing patterns in 

sequences of text, video, language, audio, and time-series data. 

RNN is a powerful algorithm for classifying, clustering, and predicting 

data, especially time series and text. Because of its internal memory, it has 

been incredibly successful when applied to problems where the input data are 

in the form of a sequence for which predictions are to be made. It is designed 

to work with arbitrary inputs over long sequences, repeating the same task for 

each element inside the sequence and relying on past computations for output. 
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Instead of a single piece of data, the outcome is dependent on the sequence of 

data (Manaswi, 2018). 

 

(Input1) Output1 

(Input2, Input1)             Output2 

(Input3, Input2, Input1)                  Output3 

As shown, the output is determined by the current and prior inputs. Also, the 

nodes of the input layer are connected to the nodes of the hidden layer. 

(Input1) Hidden1 

(Input2, Hidden1)                Hidden2 

(Input3, Hidden1, Hidden2)             Hidden3  

   

RNN has usually trained with the BP algorithm. Data flows forward when 

employing a feed-forward neural network that receives inputs (x) and 

generates output (y). The initial information is provided by the inputs (x), 

which are subsequently propagated up to the hidden units at every layer, 

eventually producing (y). This is referred to as "forward propagation" 

(Goodfellow et al., 2016). Transmitting information back is what the term 

"back propagation" signifies. This is precisely what the BP algorithm does: it 

returns the estimated loss to the system, where the optimizer adjusts the 

weights and biases.  

Furthermore, it is a training process that is used to change weight in neural 

networks to reduce error. After obtaining network output, the predicted output 

is compared to the actual output, and a different error is calculated based on 

the difference. Weight is modified to reduce errors, and the resulting output 

will be closer to the desired output. This procedure is repeated indefinitely 

until overriding, with each iteration producing a more precise result than the 

last one. The training of the neural network refers to the complete process that 

occurs within the neural network layer (Géron, 2019). Unfortunately, due to 
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its vanishing gradient problem, RNN is unable to train to connect knowledge 

with long-term dependence. Back propagation has difficulty training the 

sequence long-term (Chen et al., 2019). Figure 3.2 shows the RNN method 

additional feedback cycle structure. 

 

 

 

Figure 3.2 common structure of RNN (Chen et al., 2019). 

 

 

As illustrated in fig 3.2, RNNs take a sequence of inputs of the neural 

network {𝑥0, 𝑥1, … , 𝑥𝑡}, and previous hidden states ℎ𝑡−1, to compute a 

sequence of outputs {𝑦0, 𝑦1, … , 𝑦𝑡}, 𝑦𝑡 is output at time step t. U, W, and V are 

the weights of the input to the hidden layer, the hidden layer to the hidden 

layer, and the hidden layer to the output respectively. Equation (1) is the 

mathematical representation of this unfolded process, where ℎ𝑡 =hidden state 

and 𝜎 =a non-linear activation function, such as a sigmoid function. 

ℎ𝑡 = 𝜎(𝑊 × ℎ𝑡−1 + 𝑈 × 𝑥𝑡)                                                                        3.1 

The output 𝑦𝑡is modified at every time step t, as follows: 

𝑦𝑡 = 𝜎(𝑉ℎ𝑡)                                                                                                  3.2 
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3.4 Long Short-Term Memory (LSTM) 
 

A more advanced version of the RNN architecture is the LSTM network. 

Hochreiter and Schmidhuber (1997) proposed the LSTM architecture 

(Hochreiter and Schmidhuber, 1997). The LSTM model is developed to 

overcome the drawback of the RNNs by adding a memory or cell state to the 

network. The cell state is responsible for adding or removing past information 

based on its relevance and importance to make predictions. It is currently 

extensively utilized because of its superior performance in precisely modeling 

both long- and short dependencies. LSTMs are commonly employed to solve 

problems in applications that deal with sequential data and have a more 

complicated structure than the RNN (Brownlee, 2017, Nielsen, 2015). It has 𝑆 

cell blocks connected in series, where 𝑆 is the total time steps. Figure 3.3 

illustrates the structure of an LSTM with 𝐶 features and 𝐷 hidden nodes. To 

regulate the state of each LSTM cell, there are three adjusting-gate blocks. . 

The gates are simple neural networks composed of weights, biases, and 

activation functions. The LSTM gates can be described as follows: 

 Forget gate: using information from the previous hidden state ℎ𝑡−1  

and the present input 𝑥𝑡, this gate determines whether information from the 

cell state 𝑐𝑡−1 (in Fig 3.4, the top horizontal line is colored orange) should be 

discarded. The weight matrix 𝑊𝑓 is multiplied by current input 𝑥𝑡, but the 

recurrent weight matrix 𝑅𝑓is multiplied by the prior hidden-state ℎ𝑡−1. These 

products outputs are combined to form a bias vector 𝑏𝑓. Lastly, a sigmoid 

function 𝜎𝑔 is used to generate the output vector 𝑓𝑡, which has values ranging 

from 0 to 1. The number "0" indicates that no information from the earlier 

time of the cell state is permitted to flow (this is not relevant information), 

whereas "1" indicates that all prior memory information is permitted to pass 

(extremely important). The function returns the result between "0" and "1" if 
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the information is only partially relevant. This description can be expressed 

mathematically as follows: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓)                                                              3.3 

The gate's activation function is denoted by 𝜎𝑔, and all other elements and 

parameters are specified above. The weights 𝑊𝑓 and 𝑅𝑓 are matrices with 

dimensions 𝐷 × 𝐶 and 𝐷 × 𝐷, respectively, if the input 𝑥𝑡 is a vector of 

sequences with 𝐶 features and each cell contains 𝐷 hidden units. The bias 𝑏𝑓, 

on the other hand, is a vector with 𝐷 elements. As a result, the gate 𝑓𝑡 's output 

is a 𝐷 element vector. 

 

Figure 3.3 An LSTM layer with multi-inputs and multi-outputs. 
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Figure 3.4 Internal structure of an LSTM cell. 

 

Update gate: this gate updates the memory or cell state that was 

previously controlled by the forget gate. It is made up of two neural 

components: candidate cell 𝑔𝑡 and input gate 𝑖𝑡, which are supplied with the 

same inputs as the forget-gate (𝑥𝑡 and ℎ𝑡−1). The biases, weights, and 

activation functions of the 𝑖𝑡, and 𝑔𝑡  branches, however, are different. The 

input 𝑥𝑡 and ℎ𝑡−1 are weighted by matrices 𝑊𝑖 and 𝑅𝑖, and biased with 𝑏𝑖, for 

the input-gate branch-𝑖𝑡. Then, the sigmoid function 𝜎𝑔 was used to activate 

this branch. 

The same is done with candidate-state branch-𝑔𝑡, but instead, the 

designating letter 𝑔 is used, and the sigmoid function 𝜎𝑔is replaced with a tan 

hyperbolic (tanh or 𝜎𝑠) which squishes the values between -1 and 1. The 

candidate state is controlled by the input branch, which controls the output of 

the squished data. Finally, the update gate output is produced by multiplying 

the outputs of these two neural networks, 𝑖𝑡 and 𝑔𝑡. 

The two networks can be represented mathematically as follows: 
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𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖)                                                                       3.4 

𝑔𝑡 = 𝜎𝑠(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔)                                                                    3.5 

Where 𝜎𝑠 stands for state activation function. 

The currently hidden state ℎ𝑡 is computed using this gate. After multiplying 

with the corresponding weights 𝑊𝑜 and 𝑅𝑜, and adding to the bias 𝑏𝑜, transmit 

a copy of the combined input (𝑥𝑡  and ℎ𝑡−1) to a sigmoid function 𝜎𝑔. After 

squishing to the range [-1, 1] with the tanh function 𝜎𝑠, the output 𝑜𝑡 is 

multiplied by the current cell state 𝑐𝑡. The output gate can be mathematically 

expressed as follows: 

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜)                                                                    3.6 

 

The new cell-state 𝑐𝑡 and hidden-state ℎ𝑡 equations are as follows: 

𝑐𝑡 = 𝑓𝑡 .∗ 𝑐𝑡−1 + 𝑖𝑡 .∗ 𝑔𝑡                                                                                 3.7 

ℎ𝑡 = 𝑜𝑡 .∗ 𝜎𝑠(𝑐𝑡)                                                                                            3.8 

The Hadamard multiplication is denoted by the operator ∗ (element-wise or 

pointwise operation). Because we are using MATLAB to train our network, 

the software's parameter and variable names are used in this study. 

To summarize, the forget gate chooses which information from the old 

memory should be kept and which should be forgotten. The input gate is used 

to generate the current memory and update the relevant memory in the 

following block. The output gate is used to calculate the current block output 

as well as the next hidden state .It is important to note that all of the gates 

have identical inputs: three replicas of the prior hidden state paired with the 

current input (the bottom line in Fig 3.4). The LSTM memory or cell state 

shown at the top of Fig 3.4 is used by the network to learn about the order of 

input data sequences. 
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3.5 Gated Recurrent Unit (GRU) 
 

The GRU model is a simplified and newer version of LSTM. It is 

composed of two gates and one candidate-state network, namely: reset gate 𝑟𝑡, 

update gate 𝑧𝑡, and candidate state ℎ̃𝑡. The update gate used by the GRU is 

equivalent to the forget and input gates in the LSTM model combined as a 

single network as illustrated in Fig 3.5. It is used to figure out what 

information should be removed or added. The reset gate is used to determine 

how much information from the previous state to forget. In contrast to the 

LSTM, there is no cell state in the GRU network (Huang et al., 2019). In 

other words, the prior hidden state ℎ𝑡−1can be considered as the cell state. The 

network parameters of the GRU are less than those in LSTM and hence the 

network requires less training time to learn about dependencies among the 

time-step observations or sequence data.  

 

 

 

 

Figure 3.5 Internal structure of a GRU cell. 
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 Mathematically, the following equations are used for the reset and update 

gates, candidate state, and the hidden state, respectively: 

𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑅𝑟ℎ𝑡−1 + 𝑏𝑟)                                                                   3.9 

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧)                                                                   3.10 

ℎ̃𝑡 = 𝜎𝑠(𝑊ℎ̃𝑥𝑡 + 𝑟𝑡𝑅ℎ̃ℎ𝑡−1 + 𝑏ℎ̃)                                                              3.11 

ℎ𝑡 = (1 − 𝑧𝑡) .∗  ℎ̃𝑡 + 𝑧𝑡 .∗  ℎ𝑡−1                                                                3.12 
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CHAPTER FOUR: RESULT AND DISCUSSION 

 

4.1 Introduction  
 

In this chapter, the datasets and system settings employed in our 

experiments are introduced to assess the performance of the proposed model. 

MATLAB Simulink has been used to create systems with multi-domain 

models in a block diagram context. Then it provides the results of the 

proposed model and compares different cases with others. Furthermore, it is 

discussed how converting a single input sequence to several input sequences 

can save time, reduce error, and improve performance. 

 

4.2 Historical Data Augmentation (HDA) 
 

A deep neural network and historical data augmentation (DNN–HDA) is 

proposed by (Lai et al., 2020) for data with high correlation which shows a 

great improvement in the accuracy. The method is based on dividing the input 

data into multiple sequences, each sequence represents a dataset for one year, 

as shown in Fig (4.1). However, when data is divided into multiple parts, 

information about the connection between the end of one part and the 

beginning of the next part is missing. For some data and load forecasting 

problems, this could be unproblematic. However, when the nature of data 

changes and includes high uncertainty and fluctuations in the time step 

information, this approach was found struggling to predict future load demand 

especially for long-term forecasting.   
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Figure 4.1 Historical data augmentation structure. 

 

 As shown, assuming that the loads are forecasted in year Y and there 

are C-year historical data. In the procedure of HDA, for each load to be 

predicted, several features could be used to construct C samples. After 

generating samples, the DNN is trained with the training data. For one 

predicted load, there are C outputs that will be averaged to generate the final 

prediction. 

To connect the two ends of the yearly sub-sets, this study proposes the 

use of a two-year sub-dataset. Figures 4.2a-d illustrates and display the 

differences, once applied to Erbil load data, it causes issues and unconnected 

data. When comparing it with two years of input per sequence the percentage 

of an error is higher. Whereas the average error in HDA is 634.0072/2696 or 

%23, it is reduced to 199.4247 or %7.40 in the proposed model. Where 2696 

MW is the dataset's maximum load demand for the years 2015 to 2020. Also, 

the expected shape for the forecast data is completely different from the 

training and tested data shapes. 
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Figure 4.2a Forecasting one year, by one year input per sequences / (HDA) 

approach. 

 

 

Figure 4.2b Forecasting one-year, by two years of input per sequence. 
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Figure 4.2c Error rate , by HDA approach. 

 

 

Figure 4.2d Error rate , by two years of input per sequence. 
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4.3 Dataset Description 
 

In this study, a historical dataset is collected for the Kurdistan regional 

power system containing load profiles for Erbil governorate for the range of 

years 2015 to 2020.The daily consumption of the load dataset was used to 

train our model. The Erbil load dataset consists of the following data: date, 

average demand, average load, maximum and minimum demand, and 

maximum and minimum load (MW/h) attributes.  

Training and test subsets are separated from the rest of the data. The data 

from the first five years are utilized for training the network, while the data 

from the last year is used to test the trained network. These two subsets are 

referred to as XTrain and XTest, and they represent the predictors or 

independent variables for the respective training and test datasets, 

respectively. The response or dependent variables for the relevant training and 

test datasets YTrain and YTest are generated by moving moving the 

predictors in a one-time step. 

A correlation analysis is performed on the sample data in order to see how 

the dataset for one year is connected with another yearly dataset from the 

same time-series sequence. Correlation coefficients between all pairs of 

variables in the matrix of time series data of the (Erbil_load) dataset are 

plotted in Fig 4.1 by using the [R,PValue] = corrplot(X)  equation in 

MATLAB. The plot is a numVars-by-numVars grid, where numVars is the 

number of time series variables (columns/sequences) in X. The equation 

returns the correlation matrix in the plots R as well as a matrix of p-values, R 

denotes a relationship or correlation between variables and PValue denotes a 

test of the null hypothesis that each pair of coefficients is uncorrelated against 

the alternative hypothesis of a nonzero correlation (MATLAB, 18/6/2022 

Retrieved). 
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Figure 4.3 depicts the six-year association among pairs of time-series data, 

where the x-axis and y-axis represent daily Erbil load in megawatts from 2015 

to 2020.  

 

 

 

Figure 4.3 Correlation analysis of the input data. 
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The histograms of data are displayed diagonally, and this position has a 

value of R=1 due to the correlation between the same years. The scatter plots 

of pair variables are shown in the off-diagonal figures. A scatter plot is a 

graph that illustrates the relationship between two numeric values. Every 

element of the dataset is represented by a point with x-y coordinates 

corresponding to the two variable values (Jacoby, 2000). R is a number that 

ranges from 0 to 1. There is no correlation if the value is zero, and there is a 

perfect correlation if the value is one. When the R is negative, the variables 

are inversely related (Akoglu, 2018). The correlation coefficients for each pair 

of variables are highlighted on the graph and listed in table 4.1. 

 

 

Table 4.1 Numerical values for the correlation analysis. 

Erbil_LoadData 

Corelation 

Year-

2015 

Year-

2016 

Year-

2017 

Year-

2018 

Year-

2019 

Year-

2020 

Year-2015 
1 0.8828 0.8374 0.8793 0.7777 0.8257 

Year-2016 
0.8828 1 0.8935 0.8708 0.8352 0.8341 

Year-2017 
0.8374 0.8935 1 0.86 0.8953 0.9167 

Year-2018 
0.8793 0.8708 0.86 1 0.8118 0.8899 

Year-2019 
0.7777 0.8352 0.8953 0. .8118 1 0.8613 

Year-2020 
0.8257 0.8341 0.9167 0.8899 0.8613 1 
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 It can be observed from these plots and the table that the input loads used 

in this study are highly correlated. The minimum and maximum correlation 

coefficients are 0.777 and 0.9167, respectively, and the average of these off-

diagonal values is 0.8991. The implicit relationships motivate us to 

investigate the use of this nature in the historical data to improve load 

forecasting. As mentioned earlier, one recent study (Lai et al., 2020) observed 

this correlation using another dataset and introduces the concept of historical 

data augmentation (HDA). However, for high uncertainty data with fast 

changes in the time step information, the use of one-year data for training a 

long-term dataset is a challenging problem; the data corresponding to the end 

of one year has no connection with the beginning of the next year dataset.  

In fact, if the starting day of historical data marks the first day of a year, 

then the data starts in the middle of a winter season which has a similar load-

profile shape concerning the loads obtained for the end of the previous year. 

Therefore, in the results section, a simple modification of this method is 

proposed to remove this shortcoming and accelerate the process. 
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4.4 Results 
 

To predict the future values of load demands, one time-step ahead 

forecasting (OTSAF) or multiple time-steps ahead forecasting (MTSAF) can 

be used. For their future prediction, both approaches use an initial value 

computed from the last time-step of the historical load demands. However, 

the difference between OTSAF and MTSAF is in the way the network is 

updated for the next predictions. OTSAF updates the network using the 

current value of the test data whereas MTSAF updates the network from the 

current predicted value. In other words, in MTSAF, the test dataset is not used 

anymore for future time-step prediction except for the first one. For the rest of 

remaining predictions, it loop over the predicted values once at a time until 

the end of the time-step sequence. It should be noted that for the OTSAF, the 

network state needs to be reset to prevent the influence of past predictions on 

new data forecasting. 

In this study, single and multi sequences input-output forecasting scenarios 

are addressed. The historical load demands are used as the input for single 

sequence prediction. Weather data, load demands, and week-day and holiday 

information are among the inputs for the multi-sequence. In addition to the 

traditional way for data inputs with a whole series of time steps, a change to 

the data input is offered by separating the data into many subsets and 

considering a two-year period per subset rather than a single-year dataset. 

This study includes different models with separate network training 

settings. The models are decided empirically starting from a single LSTM 

model with default values. The number of recurrent neural networks is 

increased gradually until a satisfying result is obtained. Most of the models 

need at least three blocks of LSTM, GRU, or a combination of them with a 

fully connected layer to get an acceptable accuracy. The gradient threshold is 

set to 1.0 to avoid any exploding in the network update. The initial value of 

learning rate is chosen to be in the range 0.001 to 0.01 to balance between 
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training time and model accuracy. Reducing this value increases the training 

time but might reduce the error. The maximum number of epochs is not fixed 

here and it varies from a network to network according to the complexity of 

the model and pattern of the input data. To evaluate our models, the 

forecasting error is calculated using the root mean square error (RMSE), 

which is the difference between both the forecasted and real load data. 

4.4.1 One Time-step Ahead Forecasting, OTSAF Approach 

 

We begin with the results of the traditional OTSAF model, in which the 

input data is presented as a single set of time-series load demands without 

being divided into subgroups and without taking into account other variables 

including time or weather data. Figure 4.4a illustrates the data for training 

colored blue for the years 2015 through 2019 then the test data for 2020 and 

lastly the forecasting values put over the test data for comparison. The 𝑥 axis 

represents the day index, which begins on January 1, 2015 and ends on 

December 31, 2020, whereas the 𝑦 axis represents the load demands in 

megawatts. A deep neural network is a network that is empirically chosen, use 

three LSTM layers with 128 hidden units each which setting by default.  

Figure 4.4b displays the observed and forecasted values for the dataset's 

last year, 2020, highlighting the various MW errors. For this setting, the 

RMSE is 84.3636/2696 MW, and the relative percentage error is 3.12. It is 

important to note that MATLAB and Simulink programs produce exactly the 

same results. A maximum of 100 epochs (Fig. 4.4c) as shown to be sufficient 

for achieving the above accuracy in a network using OTSAF. On a typical 

PC, training the network using the method took about six minutes. 
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Figure 4.4a OTSAF Model for Load Forecasting 

 

 

Figure 4.4b Errors in model output–OTSAF 
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Figure 4.4c OTSAF model for training and loss function errors. 

 

 

 

 

4.4.2 Multi Time-step Ahead Forecasting, (MTSAF) Approach 

 

On the same data set, we apply the MTSAF method and create a network 

that can learn from the five years of training data and forecast the load 

demand for the next year. The network architecture is selected experimentally 

and it consists of two layers of LSTM on the top connected to two layers of 

GRU on the bottom. The number of hidden units for these layers is chosen 

empirically to be 128, 64, 32, and 16, respectively. A maximum number of 

1500 epochs are chosen to train the network with a learning rate of 0.001. The 

results shown in Fig. 4.5a–c  show that the network learned from training the 

data and predicting the next-year forecasting given only a single-day initial 

value and loop over until the end of the year.  

Compared to the case of OTSAF, the relative RMSE error is 216.08/2696 

or 8.01% which is higher than the previous case. This is expected as we know 

that OTSAF is a one-day ahead forecasting whereas MTSAF here is a 365-

day ahead forecasting. It is worth pointing out that this method of updating 
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network parameters requires a relatively long training time. Compared to 

OTSAF, the network training process with MTSAF takes about eight times 

longer.  

 

Figure 4.5a MTSAF model for load forecasting 

 

 

Figure 4.5b Errors in model output–MTSAF 
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Figure 4.5c MTSAF model for training and loss function errors. 

 

 

4.4.3 Single Sequence per Variable 

 

The load demands are employed as an input for forecasting. The network 

can be trained using multivariable inputs including weather data, weekday, 

and weekend information. The necessary data for the average daily 

temperature for the region is collected and preprocessed. The one-hot 

encoding technique is used for the calendrical variables so that it does not 

give more weights to week-day variables. However, the weekend days have 

different one-hot values owing to the reduction in power consumption during 

these days. Categorical data are transformed into numerical data via one-hot 

encoding. Binary features are created from categorical features, therefore if a 

feature is represented by a certain column, it obtains a 1. Otherwise, it 

receives a 0. The network is trained with the above four input variables. The 

corresponding errors for the output variables are 206.5580, 3.6647, 0.5347, 

and 0.5353, respectively. The relative percentage error for the load demand is 

calculated to be 7.66%, and the results are plotted and displayed in Fig. 4.6a–

c. Because each variable has a lengthy sequence, it takes a long time. The 
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outcome of the load during the computation of the factors generally changed, 

decreasing from 8.01 to 7.66. 

 

 

 

Figure 4.6a Single sequence per variable model for load forecasting 

 

 

 

 

 

Figure 4.6b Errors in single sequence per variable model 
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Figure 4.6c Single sequence per variable model for training and loss function 

errors 

 

 

 

4.4.4 Multi Sequences with Single-Variable   
 

The current scenario is when the input is separated into several subsets, 

each of which is for two consecutive years (or the same year twice) in order to 

connect the two ends of the year. As a result, our model has five-sequence 

inputs. For this case, an LSTM-GRU hybrid network is used, with the same 

number of hidden units and layers just like the MTSAF case. The average 

error rate is determined to be 199.4247/2696 MW, with the corresponding 

value of 7.40, which is lower than the error in the MTSAF model single-

sequence case (8.01). 

 Not only is the error smaller, but the training period is also significantly 

less than in the MTSAF scenario. The results are plotted and shown in Fig. 

4.7a–c. It is worth mentioning that the previous forecasting method used for 

the data augmentation failed here to learn from the data and predict the next 

365-day demands using the exact training settings and network structure 

above. The gap of information between the starting and ending points of the 

yearly dataset had a significant impact on model accuracy. 
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Figure 4.7a Single variable multi sequences model for load forecasting 

 

 

 

Figure 4.7b Errors in single variable multi-sequence model 
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Figure 4.7c Single variable multi sequences model for training and loss 

function errors. 

 

 

4.4.5 Multi-Sequences per Variable 
 

By dividing the demand sequence into several training yearly subsets, it is 

possible to forecast future load demands using multi-input data augmentation. 

For this study case, the same input variables as in the (single sequence per 

variable) case are used. Load demand, averaged-daily temperature, weekday 

information, and weekend day data are the input factors. The total input 

sequences are 20 sequences, five per each input variable representing the five-

year training sets. The network is trained and simulated with the test data. The 

average errors for each variable are computed to be 198.7859, 2.10207, 

0.4669, and 2.9073 respectively.  According to calculations, the load demand 

relative percentage error is 7.37%, which is lower than the single sequence 

per variable model equivalent to classical inputs. Figure 4.8a–c shows the 

outcomes of the network training and model analysis for this situation. 
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Figure. 4.8a Multi varible multi sequences model for load forecasting 

 

 

 

Figure. 4.8b Erorrs in multi varible multi sequences model for load 

forecasting 
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Figure. 4.8c Multi variable multi sequences model for training and loss 

function errors. 

 

 

4.4.6 Forecasting Loads with Different Sampling Rates 

 

All the networks created above are for input data with a daily sampling 

rate of one prediction. Investigating the problem of the same data input but 

different sampling rates, like one prediction each week, will be beneficial. The 

input is smoothed with MATLAB Gaussian function for comparison 

purposes. The difference between the original and smoothed data is shown in 

Fig 4.9a. The previously discussed OTSAF example is reproduced here with a 

new sample rate and smoothed input. The findings are displayed in Fig. 4.9a–

d, and the network is DL with the same structure as the OTSAF. The relative 

error is calculated to be 10.1117/2696 corresponding to a value of 0.37, which 

is small enough to allow for reliable load forecasting. For the remaining 

models in this study, the same technique can be used. 
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Figure. 4.9a Load forecasting, original and smoothed weekly data. 

 

 

Figure. 4.9b Load forecasting, smoothed weekly data. 
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Figure. 4.9c Forecasted errors– smoothed weekly data. 

 

 

 

 

Figure. 4.9d Training and loss function errors– smoothed weekly data. 
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4.5 Simulink Model 
 

This section presents the Simulink model developed for load 

forecasting and applied to the OTSAF and MTSAF methods. Simulink is a 

visualized version of MATLAB and is bidirectionally connected to 

MATLAB. It has several advantages over coding in MATLAB. For instance, 

you can see how the algorithm works by looking into the block diagram 

shown as a chart for the problem. It is easier to understand how the algorithm 

works visually by separating the essential processes into blocks that are 

connected to one another. An additional built-in or customizable component 

can be easily set up and added to the model. The blocks and the signals can 

hold values in the form of scalars or vectors. The block diagrams for OTSAF 

and MTSAF approaches can be seen in Fig. 4.10 (a,b).  

 In the OTSAF, a variable from the test dataset is required for each time 

step to predict the next load demand. The network will have a vector of test 

inputs (or matrix in the case of multiple sequences). The three main processes 

in the OTSAF approach are standardization, prediction, and 

unstandardization. The first block is standardization. In order to standardize or 

rescale the range of features in the input data set, standardization is an 

important process that is frequently used as a pre-processing step in many ML 

models. Additionally, feature scaling speeds up the training and convergence 

of ML algorithms. The process of the standardization block is done, once the 

standard deviation and mean for the test data are obtained. To reset the 

network after each prediction, the standardization block requires a counter 

block. The counter is always reset to zero when it first starts. 

The process of forecasting happens in the block stateful prediction. It can 

utilize a trained recurrent neural network to forecast. A MAT file can be used 

to import the trained network. MAT are categorized as data files that include 

variables, functions, arrays, and other information that belongs to the 

MATLAB preferences. Each prediction in this block modifies the network's 
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state. The output of this block, which is the expected data or forecasted 

(YPredict), serves as the input for the last block. In the last block, the 

predicted output is compared with the test data to evaluate the process 

accuracy.   

The MTSAF model processes are different from the previous one since 

training data is used instead of test data. In addition, it has an updating loop 

signal. To avoid an algebraic loop in the model, a memory block is added 

between the two ends of the prediction block. For multiple sequence 

problems, it can keep all output sequences unchanged and plot the results or 

evaluate a statistical value for these outputs such as their average, minimum, 

or maximum. As can be observed in Fig. 4.10b, the current output is fed to the 

input of the prediction block to be used for forecasting the next time step of 

load demand. By making this loop, we are replacing the for-loop command 

required by MATLAB to achieve this task pragmatically. It is more beneficial 

to see visually how the algorithm works by showing the main steps in blocks 

connected to each other. To move the input from the first-time-step value 

acquired from the test data to the next values derived from the prediction, a 

switch and clock blocks are added. When the initial input meets the selected 

criterion, switch block is used to pass through the predicted output that serves 

as input for the upcoming step. Data transfer between different rates and tasks 

is managed by rate transition blocks. Comparing the outcomes (Ypredict) to 

the test data (YTest) from the scope block is the final step for the MTSAF 

model. 
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Figure. 4.10a Simulink program for the OTSAF model developed for this 

study. 

 

 

 

Figure. 4.10b Simulink program for the MTSAF model developed for this 

study. 
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4.6 Discussion  
 

In this section, the different models discussed so far are compared to their 

errors and training times. The OTSAF model requires less time for training 

the network compared to the same network using MTSAF approach owing to 

its forecasting time window. The time ratio is 361/3083 (seconds) which is 

around 12%. Error ratio is also different for these methods with a percentage 

of 3.12% for OTSAF and 8.01% for MTSAF. However, when the data is 

smoothed, and sampling ratio is changed from one-day to one-week per 

prediction, additional improvements in training time and model error of 

OTSAF are obtained which are found to be 165s (it was 361s) and 0.37% (it 

was 3.12%). Next, we compare the classical method of data inputting as one 

sequence and the proposed data augmentation technique. The main difference 

is in the training time where the proposed model requires only 15% 

(484/3083) of the training time of the classical model. The error is also 

improved, which is around 8 % (8.01/7.40). Table 4.2 provides more 

information and comparisons between the case results. 
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Table 4.2 Comparison among models 

Cases OTSAF MTSAF 

Multi-Var 

Single-Seq 

 

Single-Var 

Multi-Seq 

 

Multi-Var 

Multi-Seq 

 

Weekly 

 

Inputs 

 

Load 

 

 

Load 

 

Load, 

Weather, 

Weekday, 

Weekend 

 

Load 

 

Load 

Weather, 

Weekday, 

Weekend 

 

Load 

 

Structure 

LSTM(128) 

LSTM(128) 

LSTM(128) 

 

LSTM(128) 

LSTM(64) 

GRU(32) 

GRU(16) 

 

LSTM(256) 

LSTM(128) 

LSTM(64) 

 

LSTM(128) 

LSTM(64) 

GRU(32) 

GRU(16) 

 

LSTM(256) 

LSTM(128) 

LSTM(64) 

 

LSTM(128) 

LSTM(128) 

LSTM(128) 

 

Forecast 

Duration 
daily 365_day 365_day 365_day 365_day Weekly 

RMSE/MW 

Percentage 

84.36 

3.12% 

 

216.08 

8.01% 

 

206.55 

7.66% 

 

199.42 

7.40% 

 

198.78 

7.37% 

 

10.11 

0.37 

 

Time/minutes 6 51 153 8 66 3 

 

 

Another significant improvement in the model is that the previous model 

in the literature with the one-year data division fails to accurately predict the 

365-day ahead demand for this dataset. For the multi-variable models, the 

proposed data augmentation improves the accuracy with 4% less error 

(7.66/7.37) and accelerates the learning process 232% (3964/9207) times 

faster than the classical inputting with one sequence per a variable. 
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CHAPTER FIVE: CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion 

This study presented model of machine learning and specifically deep 

learning in forecasting load demand for the Kurdistan Region. While the 

previous regional-related studies employed some statistical methods, this 

study is the first of its kind to apply a better approach to forecasting. Deep 

learning has been proven to be more powerful than statistical in the aspects of 

accuracy and training time speed. For time series and sequence-based 

challenges, deep learning networks are applied with state-of-the-art LSTM 

and GRU algorithms. 

Forecasting load is a hard to process, especially when dealing with 

nonlinearity and external influences. Our empirical analysis focused on 

applying deep learning techniques to multi-sequence input variables. Multiple 

input sequences are employed to increase the generality of the model 

including load demands, temperature data, and essential calendrical data such 

as weekday and weekend information. While the literature uses mainly 

MATLAB coding for forecasting load demands, this study introduces 

MATLAB and Simulink programs to present the algorithm in a visualized 

way. Simulink has a layout similar to a block diagram, making it simple to 

read. In both OTSAF and MTSAF scenarios Simulink was employed, and the 

output from the MATLAB and Simulink programs are similar. The test data 

employed in this study is the load profile for Kurdistan regional power 

system. The load data from 2015 to 2020 was obtained from the Erbil control 

center.  

In the Kurdistan Region, when the weather is typically cold, power 

consumption is found to be higher. People need to use more electricity 
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throughout the winter, which peaks around December and January. Also, the 

relationship between observations in the input data is conducted using 

correlation analysis which showed a high correlation value among the time 

series observations. While the previous data augmentation approach was 

unsuccessful in training the network for several cases, the proposed method 

demonstrates its ability to forecast the subsequent 365-day load demands in a 

comparatively short training time and with better accuracy. 

Additionally, using smoothed data to evaluate the suggested model at 

different timescales, such as weekly, it was found to have lower error. It also 

indicated that an OTSAF forecasting structure outperforms an MTSAF 

forecasting structure in terms of accuracy. This is to be anticipated because 

OTSAF forecasts one day ahead of time, whereas MTSAF forecasts 365 days 

ahead of time, so it has a longer sequence of data. We obtain the result more 

rapidly when multiple sequences are utilized instead of a single sequence for a 

variable. 
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5.2 Suggestion for Future Study 
 

The work that was done in this study can be further enhanced in the future  

in the following ways: 

 Getting involved with smart meter data, as it is more accurate. This 

data was not available for us to include in our model. 

 Forecast the load for Kurdistan as a whole rather than one area. This 

process requires load and weather data from all the provinces in the 

region which was not possible for us to add it to the study, and it 

was out of the scope of this thesis.  

 For quick and accurate load forecasting, parallel computations are 

particularly beneficial for creating speedy simulations with a larger 

number of processors.  
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Erbil_Load Dataset [year 2018,month December] _ preproccesing 

date Averg_load max_load min_load Averg_demand max_demand min_demand 

1-Dec-18 993.05 1132.20 810.21 1902.69 2177.26 1288.37 

2-Dec-18 996.87 1048.68 944.58 1963.74 2152.49 1548.73 

3-Dec-18 973.45 1095.26 899.66 1907.46 2098.90 1434.98 

4-Dec-18 998.97 1159.24 855.75 2030.77 2253.35 1552.33 

5-Dec-18 955.54 1044.73 855.32 2054.57 2324.39 1501.53 

6-Dec-18 947.82 1082.58 793.96 2071.35 2333.26 1541.99 

7-Dec-18 961.38 1067.91 662.31 2011.70 2205.39 1615.34 

8-Dec-18 1059.79 1133.88 947.35 2108.27 2344.77 1511.72 

9-Dec-18 999.73 1124.68 843.40 2182.32 2380.75 1745.16 

10-Dec-18 1015.15 1077.25 877.38 2163.21 2364.15 1752.62 

11-Dec-18 1073.47 1176.57 969.82 2118.94 2357.52 1702.33 

12-Dec-18 1107.25 1192.72 1024.24 2060.51 2274.37 1627.16 

13-Dec-18 1019.12 1184.65 745.01 2139.51 2358.26 1705.43 

14-Dec-18 1067.65 1148.87 972.20 2102.18 2258.60 1764.08 

15-Dec-18 1031.47 1154.20 938.04 2196.51 2372.24 1857.31 

16-Dec-18 1023.97 1107.68 946.85 2189.96 2379.47 1926.61 

17-Dec-18 927.98 1110.76 732.73 2276.60 2481.58 1987.29 

18-Dec-18 996.32 1063.51 891.11 2300.50 2456.98 1981.30 

19-Dec-18 972.66 1084.78 869.46 2278.76 2433.45 2022.88 

20-Dec-18 962.54 1083.72 846.33 2232.78 2445.26 1928.60 

21-Dec-18 998.81 1085.00 909.99 2187.08 2327.80 1913.30 

22-Dec-18 995.73 1096.37 873.60 2243.19 2398.79 2040.15 

23-Dec-18 1001.91 1090.10 909.14 2264.48 2447.60 2023.90 

24-Dec-18 1031.63 1103.49 949.85 2246.10 2475.56 1929.83 

25-Dec-18 997.90 1119.92 911.30 2231.08 2408.18 1952.92 

26-Dec-18 981.78 1071.54 864.99 2301.63 2455.29 2044.55 

27-Dec-18 1008.59 1148.92 845.31 2293.84 2479.48 1944.31 

28-Dec-18 981.19 1084.68 763.47 2176.68 2363.98 1822.53 

29-Dec-18 1006.31 1120.80 849.90 2257.78 2430.31 1996.25 

30-Dec-18 987.19 1115.86 889.01 2311.09 2468.70 2052.78 

31-Dec-18 922.11 1086.22 496.92 2282.55 2452.94 2040.95 
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Erbil_Weather Dataset [year 2018, month December] 

بەرزترین پلەی  ڕۆژ
 گەرمی

نزمترین پلەی 
 گەرمی

تێكرایی پلەی 
 تێبینى شێڕێژەی  گەرمی

1 16.7 12.0 14.4 83.1   

2 18.5 12.0 15.3 92.8   

3 19.6 9.8 14.7 78.8   

4 17.6 9.9 13.8 73.6   

5 16.7 13.5 15.1 79.8   

6 13.7 12.1 12.9 91.0   

7 13.2 10.5 11.9 94.0   

8 11.9 10.2 11.1 89.0   

9 13.8 10.0 11.9 89.6   

10 15.3 7.0 11.2 84.1   

11 17.6 8.0 12.8 74.3   

12 15.7 11.5 13.6 70.4   

13 12.1 11.4 11.8 90.3   

14 14.0 6.6 10.3 77.8   

15 14.1 4.0 9.1 78.3   

16 17.3 5.0 11.2 74.8   

17 10.9 9.5 10.2 92.1   

18 11.1 10.0 10.6 96.1   

19 17.6 8.7 13.2 77.3   

20 13.6 10.4 12.0 85.5   

21 12.1 9.4 10.8 91.8   

22 15.1 5.2 10.2 83.0   

23 15.5 4.5 10.0 85.4   

24 11.7 7.0 9.4 90.8   

25 13.9 5.6 9.8 87.4   

26 15.7 4.6 10.2 60.9   

27 13.4 11.0 12.2 71.9   

28 11.0 9.0 10.0 87.8   

29 11.6 5.0 8.3 78.3   

30 11.4 4.2 7.8 65.1   

31 12.5 8.7 10.6 72.1   

   82.1 11.5 8.6 14.4 كؤ

 

 

 

 

 

A4 



    

 

 

 پوخته

ین ڕۆ ێدببب  ،گن و ئنشیێدببب ئببێ    ێپێشببنیکیدنی ب رببێش یێشببنانیب  ببێ      

سببنش یب ی ڕێتێبب  لان پن ببو  ێر و یببێشپێدنیر و یبب   نۆ دنی ب  سی بب ن ب 

 (Deep Learning)ئنم توێژاکنو ان  پێشبکیێش  رێتب نینی ب  ب یێ ب  .یێش رێی 

رب  رنش یبنی نو    (HDA) ین پێب ی وتنێ   اێیینی ب ی تێ  ێژوواینیێر ،یێتیه

رب   اب ه    كب و ی تێاێ ب وشی    یێ ب پێشنیکیدنی ب رێش رن ی رنتدنی ب ئب 

 كبێر كب ك كن وه چن و ی  ن ن ی تێانیب لاو یبب سبێە ن. یێتێبا ی تبێ  ێژوواب 

ش  یێ ب هن گبێو  یبێتنو  هنان لان سبێ ێدنو  رب  پناو  وایێر رن ڕ ڕ  دێشاین رن

ر  پێشنیکب یشێژخێانر. چو دن  ،تێو ان یێشاگنش  ی  مرن ك سێ ێدب تن،   یێ  

پچت ور.  وهكێ   ێو ر ی تێاب سێ   وا  ك یه    یێشاینیێ ب   جین  یێتیینیێر ك 

ت رن  نرنسب ب   یوو سبێ ن ی یبێوهس ک ئنم تێز  پێشکیێش  رنیێشهێکێ ب ر 

 س  ر م   ك تێ ی تێكێ ب  ێو ر سێ نكێر. ر  ئ  وهس ک و ر  ك   ێفێنروو ب   ی

تیدێشاینیب پناو  و  ئن جێم ی ی ت، ر  ئنو    یشێر رو ت ین چ ر ی  ن ن 

                                                                  ی تێ سێە نیێر پناو  وایێر رن انینو  هنان.                                                   

  تبێوهشێ و  ب یێشنین ر  یی خنێ نڕوو ر   (Simulinkنش )  گن لان       

ر   اێتن ڕشب ێ و ب   هێوهنشكێت. ئێسێ  ن یه ك   یێ   اش ن لا تێگ  ك  ،ر  ك

پنۆفێا ب : )چن وان    یێش  لان   یێ نینی  لانرنشچێو ی ڕینێن. لانو  ن  یێ نین، 

كبێ ب ی و یێش  رێش،    یێش  ینتوهنو ، هن وێا ی تێ   ڕن گ و ک ی تبێ  ڕۆهه

كبنێن. ه ێش یهش رێش هب س ش لا ك ه كێش  كێشاگ ین وه ،ی تێاب هنف ن هنف ن و

 ن لانانی  رنیێشهێکن ور ربنا یین لانم لاێد  یکنو  (Deep Learning)تێو   یێ ب 

(LSTM)  و(GRU)،  ین لان سێە ب ڕ رنیووی   اێتن ر  یێشنیێ ب   جین  یێتیب و

  ب پێشببکیێشین و ربب  ی و یێشاینیببێ ب رببێش  لابب ێ  جین یببێر رنیببێشهێکن ور.  بب ی

یوشیس ێر رنیێشی هێکنێب  و رنش وشی ی ینێب  لانڕنش تبێو    ینسبیدیینیێ ب 

 كێشرهێکبوشا  كب ر  ك   جیبنه یبێتب اب  لا  م   یێ  لا  چو ك . ی تێ ی خڵدنی ب

کین. ێكێشیك ربب  ببو   جیببنهچ  ،ربب  ی خببد كنی ببب ی تببێ ا ك سببیكی كن تببێو  ه

  یببێتب ڕ هێکببێر، ووشی  و وهم كنی بب كبب ) :ش رنا ببب رببوو لابب كبب  جێ  شئ یه

.( جێ ببببببببببببببببببببو ئ  لابببببببببببببببببببب  یشوسبببببببببببببببببببب ب  اببببببببببببببببببببێتن



  

 

 

 

 حدو نتب هنشێمب یوشیس ێر 
 سنشۆیێانتب ئن جو ن ب و  ان ر

بو   ش تب خوێکو ب رێە و توێژاکنو          
نێولاپ لای كکیكب ه    د     

  و  اێش كکیكب ئ ك لاێژ  ت 
 رنتب سی  مب    یێش 

 

 

 

 

 

پارێزگای هەولێر پێشبینیکردنی داواکاری بار لە 
 ركراوێمیكی فلەسەر بنەمایی سیسته

 
   ێ نانی

ین و   و  اێش  كکیكب ئ ك لایژ  ت پێشدنتب ئن جو ن ب 
و ک رنتێا لان ن ێولاه كکیكب پ لای  لان    د   

كکیكب ت پێو وا  ینیێ ب رنی س هێکێ ب پ ن   ێس نش لان 
  ب    یێش سی   

 
 لەلایەن

 ه جمیل حمدڵژا
 1122 -   د   ك ا   -  و  اێش  پنۆڕن   ێ  ئ  رنیێلا شا سب لان

 
 بە سەرپەرشتی

 عبدالرحمن خورشید اسماعیل د.

 
 
 

 كوشیس ێر -ولاێنه 
 1711 ەشێز رڕ 


